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Abstract
This document explains the primary uses of the Gauss package. Included is a documented list of the most
important methods and functions needed to work with sparse matrices and the algorithms provided by the
Gauss package.
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This package may be distributed under the terms and conditions of the GNU Public License Version 2 or
(at your option) any later version.
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Chapter 1

Introduction

1.1 Overview over this manual

Chapter 1 is concerned with the technical details of installing and running this package. Chapter 2 an-
swers the question why and how the GAP functionality concerning a sparse matrix type and gaussian
algorithms was extended. The following chapters are concerned with the workings of the sparse ma-
trix type (3) and sparse Gaussian algorithms (4). Included is a documented list of the most important
methods and functions needed to work with sparse matrices and the algorithms provided by the Gauss
package. Anyone interested in source code should just check out the files in the gap/pkg/Gauss/gap/
folder (→ Appendix A).

1.2 Installation of the Gauss Package

To install this package just extract the package’s archive file to the GAP pkg/ directory. The Gauss
package utilizes some C-code by Max Neunhoeffer that has to be compiled before you can load Gauss.
To compile the code, first run ./configure. If the package is not installed in the pkg/ subdirectory of
GAP’s root directory you will need to provide the correct path to the latter. This will create a makefile.
Complete the installation of the package by running make. Recompiling the documentation is possible
by the command make doc in the Gauss directory, but this should not be necessary.

By default the Gauss package is not automatically loaded by GAP when it is installed. You must
load the package with LoadPackage("Gauss"); before its functions become available. Please, send
me an e-mail if you have any questions, remarks, suggestions, etc. concerning Gauss. Also, I would
like to hear about applications of this package.
Simon Goertzen
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Chapter 2

Extending Gauss Functionality

2.1 The need for extended functionality

GAP has a lot of functionality for row echelon forms of matrices. These can be called by
SemiEchelonForm and similar commands. All of these work for the GAP matrix type over fields.
However, these algorithms are not capable of computing a reduced row echelon form (RREF) of a
matrix, there is no way to "Gauss upwards". While this is not neccessary for things like Rank or Ker-
nel computations, this was one in a number of missing features important for the development of the
GAP package homalg by M. Barakat [Bar20].

Parallel to this development I worked on SCO [Gör08b], a package for creating simplicial sets and
computing the cohomology of orbifolds, based on the paper "Simplicial Cohomology of Orbifolds"
by I. Moerdijk and D. A. Pronk [MP99]. Very early on it became clear that the cohomology matrices
(with entries in Z or finite quotients of Z) would grow exponentially in size with the cohomology
degree. At one point in time, for example, a 50651 x 1133693 matrix had to be handled.

It should be quite clear that there was a need for a sparse matrix data type and corresponding
Gaussian algorithms. After an unfruitful search for a computer algebra system capable of this task,
the Gauss package was born - to provide not only the missing RREF algorithms, but also support a
new data type, enabling GAP to handle sparse matrices of almost arbritrary size.

I am proud to tell you that, thanks to optimizing the algorithms for matrices over GF(2), it was
possible to compute the GF(2)-Rank of the matrix mentioned above in less than 20 minutes with a
memory usage of about 3 GB.

2.2 The applications of the Gauss package algorithms

Please refer to [ht22] to find out more about the homalg project and its related packages. Most of
the motivation for the algorithms in the Gauss package can be found there. If you are interested in
this project, you might also want to check out my GaussForHomalg [Gör08a] package, which, just
as RingsForHomalg [BGKLH08] does for external Rings, serves as the connection between homalg
and Gauss. By allowing homalg to delegate computational tasks to Gauss this small package ex-
tends homalg’s capabilities to dense and sparse matrices over fields and rings of the form Z/⟨pn⟩.

For those unfamiliar with the homalg project let me explain a couple of points. As outlined in
[BR08] by D. Robertz and M. Barakat homological computations can be reduced to three basic tasks:

• Computing a row basis of a module (BasisOfRowModule).
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• Reducing a module with a basis (DecideZeroRows).

• Compute the relations between module elements (SyzygiesGeneratorsOfRows).

In addition to these tasks only relatively easy tools for matrix manipulation are needed, ranging from
addition and multiplication to finding the zero rows in a matrix. However, to reduce the need for
communication it might be helpful to supply homalg with some more advanced procedures.

While the above tasks can be quite difficult when, for example, working in noncommutative poly-
nomial rings, in the Gauss case they can all be done as long as you can compute a Reduced Row
Echelon Form. This is clear for BasisOfRowModule, as the rows of the RREF of the matrix are
already a basis of the module. EchelonMat (4.2.1) is used to compute RREFs, based on the GAP
internal method SemiEchelonMat for Row Echelon Forms.

Lets look at the second point, the basic function DecideZeroRows: When you face the task of
reducing a module A with a given basis B, you can compute the RREF of the following block matrix:

1
. . .

1
A

0 B

By computing the RREF (notice how important "Gaussing upwards" is here) A is reduced with B.
However, the left side of the matrix just serves the single purpose of tricking the Gaussian algorithms
into doing what we want. Therefore, it was a logical step to implement ReduceMat (4.2.3), which
does the same thing but without needing unneccessary columns.

Note: When, much later, it became clear that it was important to compute the trans-
formation matrices of the reduction, ReduceMatTransformation (4.2.4) was born, simi-
lar to EchelonMatTransformation (4.2.2). This corresponds to the homalg procedure
DecideZeroRowsEffectively.

The third procedure, SygygiesGeneratorsOfRows, is concerned with the relations between rows
of a matrix, each row representing a module element. Over a field these relations are exactly the kernel
of the matrix. One can easily see that this can be achieved by taking a matrix

A
1

. . .
1

and computing its Row Echelon Form. Then the row relations are generated by the rows to the
right of the zero rows of the REF. There are two problems with this approach: The computation
diagonalizes the kernel, which might not be wanted, and, much worse, it does not work at all for rings
with zero divisors. For example, the 1×1 matrix [2+8Z] has a row relation [4+8Z] which would not
have been found by this method.

Approaching this problem led to the method EchelonMatTransformation (4.2.2), which
additionally computes the transformation matrix T , such that RREF = T · M. Similar to
SemiEchelonMatTransformation, T is split up into the rows needed to create the basis vectors
of the RREF, and the relations that led to zero rows. Focussing on the computations over fields, it
was an easy step to write KernelMat (4.2.5), which terminates after the REF and returns the kernel
generators.
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The syzygy computation over Z/⟨pn⟩ was solved by carefully keeping track of basis vectors with
a zero-divising head. If, for v = (0, . . . ,0,h,∗, . . . ,∗),h ̸= 0, there exists g ̸= 0 such that g ·h = 0, the
vector g · v is regarded as an additional row vector which has to be reduced and can be reduced with.
After some more work this allowed for the implementation of KernelMat (4.2.5) for matrices over
Z/⟨pn⟩.

This concludes the explanation of the so-called basic tasks Gauss has to handle when called by
homalg to do matrix calculations. Here is a tabular overview of the current capabilities of Gauss (p
is a prime, n ∈ N):

Matrix Type: Dense Dense Sparse Sparse Sparse
Base Ring: Field Z/⟨pn⟩ Field GF(2) Z/⟨pn⟩
RankMat GAP n.a. + ++ n.a.

EchelonMat + - + ++ +
EchelonMatTransf. + - + ++ +

ReduceMat + - + ++ +
ReduceMatTransf. + - + ++ +

KernelMat + - + ++ +

As you can see, the development of hermite algorithms was not continued for dense matrices.
There are two reasons for that: GAP already has very good algorithms for Z, and for small matrices
the disadvantage of computing over Z, potentially leading to coefficient explosion, is marginal.



Chapter 3

The Sparse Matrix Data Type

3.1 The inner workings of Gauss sparse matrices

When doing any kind of computation there is a constant conflict between memory load and speed.
On the one hand, memory usage is bounded by the total available memory, on the other hand, com-
putation time should also not exceed certain proportions. Memory usage and CPU time are generally
inversely proportional, because the computer needs more time to perform operations on a compactified
data structure. The idea of sparse matrices mirrors exactly the need for less memory load, therefore
it is natural that sparse algorithms take more time than dense ones. However, if the matrix is suffi-
ciently large and sparse at the same time, sparse algorithms can easily be faster than dense ones while
maintaining minimal memory load.

It should be noted that, although matrices that appear naturally in homological algebra are almost
always sparse, they do not have to stay sparse under (R)REF algorithms, especially when the compu-
tation is concerned with transformation matrices. Therefore, in a perfect world there should be ways
implemented to not only find out which data structure to use, but also at what point to convert from
one to the other. This was, however, not the aim of the Gauss package and is just one of many points
in which this package could be optimized or extended. Take a look at this matrix M:

0 0 2 9 0
0 5 0 0 0
0 0 0 1 0

The matrix M carries the same information as the following table, if and only if you know how
many rows and columns the matrix has. There is also the matter of the base ring, but this is not
important for now:

(i,j) Entry
(1,3) 2
(1,4) 9
(2,2) 5
(3,4) 1

This table relates each index tuple to its nonzero entry, all other matrix entries are defined to be
zero. This only works for known dimensions of the matrix, otherwise trailing zero rows and columns
could get lost (notice how the table gives no hint about the existence of a 5th column). To convert the
above table into a sparse data structure, one could list the table entries in this way:
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[[1,3,2], [1,4,9], [2,2,5], [3,4,1]]

However, this data structure would not be very efficient. Whenever you are interested in a row i
of M (this happens all the time when performing Gaussian elimination) the whole list would have to
be searched for 3-tuples of the form [i,∗,∗]. This is why I tried to manage the row index by putting
the tuples into the corresponding list entry:

[[3,2], [4,9]],
[[2,5]],
[[4,1]]]

As you can see, this looks fairly complicated. However, the same information can be stored in this
form, which would become the final data structure for Gauss sparse matrices:

indices := [ [ 3, 4 ], entries:= [ [ 2, 9 ],
[ 2 ], [ 5 ],
[ 4 ] ] [ 1 ] ]

Although now the number of rows is equal to the Length of both ‘indices’ and ‘entries’, it is still
stored in the sparse matrix. Here is the full data structure (→ SparseMatrix (3.2.1)):

from SparseMatrix.gi
DeclareRepresentation( "IsSparseMatrixRep",

IsSparseMatrix, [ "nrows", "ncols", "indices", "entries", "ring" ] );

As you can see, the matrix stores its ring to be on the safe side. This is especially important for zero
matrices, as there is no way to determine the base ring from the sparse matrix structure. For further
information on sparse matrix construction and converting, refer to SparseMatrix (3.2.1).

3.1.1 A special case: GF(2)
from SparseMatrix.gi

DeclareRepresentation( "IsSparseMatrixGF2Rep",

IsSparseMatrix, [ "nrows", "ncols", "indices", "ring" ] );

Because the nonzero entries of a matrix over GF(2) are all "1", the entries of M are not stored at all. It
is of course crucial that all operations and algorithms make 100% sure that all appearing zero entries
are deleted from the ‘indices’ as well as the ‘entries’ list as they arise.

3.2 Methods and functions for sparse matrices

3.2.1 SparseMatrix (constructor using gap matrices)

▷ SparseMatrix(mat[, R]) (function)

Returns: a sparse matrix over the ring R

▷ SparseMatrix(nrows, ncols, indices) (function)

Returns: a sparse matrix over GF(2)
▷ SparseMatrix(nrows, ncols, indices, entries[, R]) (function)

Returns: a sparse matrix over the ring R
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The sparse matrix constructor. In the one-argument form the SparseMatrix constructor converts
a GAP matrix to a sparse matrix. If not provided the base ring R is found automatically. For the
multi-argument form nrows and ncols are the dimensions of the matrix. indices must be a list of
length nrows containing lists of the column indices of the matrix in ascending order.

Example
gap> M := [ [ 0 , 1 ], [ 3, 0 ] ] * One( GF(2) );

[ [ 0*Z(2), Z(2)^0 ], [ Z(2)^0, 0*Z(2) ] ]

gap> SM := SparseMatrix( M );

<a 2 x 2 sparse matrix over GF(2)>

gap> IsSparseMatrix( SM );

true

gap> Display( SM );

. 1

1 .

gap> SN := SparseMatrix( 2, 2, [ [ 2 ], [ 1 ] ] );

<a 2 x 2 sparse matrix over GF(2)>

gap> SN = SM;

true

gap> SN := SparseMatrix( 2, 3,

> [ [ 2 ], [ 1, 3 ] ],

> [ [ 1 ], [ 3, 2 ] ] * One( GF(5) ) );

<a 2 x 3 sparse matrix over GF(5)>

gap> Display( SN );

. 1 .

3 . 2

3.2.2 ConvertSparseMatrixToMatrix

▷ ConvertSparseMatrixToMatrix(sm) (method)

Returns: a GAP matrix, [], or a list of empty lists
This function converts the sparse matrix sm into a GAP matrix. In case of nrows(sm)=0 or

ncols(sm)=0 the return value is the empty list or a list of empty lists, respectively.
Example

gap> M := [ [ 0 , 1 ], [ 3, 0 ] ] * One( GF(3) );

[ [ 0*Z(3), Z(3)^0 ], [ 0*Z(3), 0*Z(3) ] ]

gap> SM := SparseMatrix( M );

<a 2 x 2 sparse matrix over GF(3)>

gap> N := ConvertSparseMatrixToMatrix( SM );

[ [ 0*Z(3), Z(3)^0 ], [ 0*Z(3), 0*Z(3) ] ]

gap> M = N;

true

3.2.3 CopyMat

▷ CopyMat(sm) (method)

Returns: a shallow copy of the sparse matrix sm

3.2.4 GetEntry

▷ GetEntry(sm, i, j) (method)

Returns: a ring element.
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This returns the entry sm[i,j] of the sparse matrix sm

3.2.5 SetEntry

▷ SetEntry(sm, i, j, elm) (method)

Returns: nothing.
This sets the entry sm[i,j] of the sparse matrix sm to elm .

3.2.6 AddToEntry

▷ AddToEntry(sm, i, j, elm) (method)

Returns: true or a ring element
AddToEntry adds the element elm to the sparse matrix sm at the (i,j) -th position. This is a

Method with a side effect which returns true if you tried to add zero or the sum of sm[i,j] and elm

otherwise. Please use this method whenever possible.

3.2.7 SparseZeroMatrix (constructor using number of rows)

▷ SparseZeroMatrix(nrows[, ring]) (function)

Returns: a sparse <nrows x nrows> zero matrix over the ring ring

▷ SparseZeroMatrix(nrows, ncols[, ring]) (function)

Returns: a sparse <nrows x ncols> zero matrix over the ring ring

3.2.8 SparseIdentityMatrix

▷ SparseIdentityMatrix(dim[, ring]) (function)

Returns: a sparse <dim x dim> identity matrix over the ring ring . If no ring is specified (one
should try to avoid this if possible) the Rationals are the default ring.

3.2.9 TransposedSparseMat

▷ TransposedSparseMat(sm) (method)

Returns: the transposed matrix of the sparse matrix sm

3.2.10 CertainRows

▷ CertainRows(sm, list) (method)

Returns: the submatrix sm{[list]} as a sparse matrix

3.2.11 CertainColumns

▷ CertainColumns(sm, list) (method)

Returns: the submatrix sm{[1..nrows(sm)]}{[list]} as a sparse matrix

3.2.12 SparseUnionOfRows (for a list of sparse matrices)

▷ SparseUnionOfRows(L) (function)

Returns: a sparse matrix
Stack the sparse matrices in the non-empty list L .



Gauss 12

3.2.13 SparseUnionOfColumns (for a list of sparse matrices)

▷ SparseUnionOfColumns(L) (function)

Returns: a sparse matrix
Augment the sparse matrices in the non-empty list L .

3.2.14 SparseDiagMat

▷ SparseDiagMat(list) (function)

Returns: the block diagonal matrix composed of the sparse matrices in list

3.2.15 Nrows

▷ Nrows(sm) (method)

Returns: the number of rows of the sparse matrix sm . This should be preferred to the equivalent
sm!.nrows.

3.2.16 Ncols

▷ Ncols(sm) (method)

Returns: the number of columns of the sparse matrix sm . This should be preferred to the equiv-
alent sm!.ncols.

3.2.17 IndicesOfSparseMatrix

▷ IndicesOfSparseMatrix(sm) (method)

Returns: the indices of the sparse matrix sm as a ListList. This should be preferred to the
equivalent sm!.indices.

3.2.18 EntriesOfSparseMatrix

▷ EntriesOfSparseMatrix(sm) (method)

Returns: the entries of the sparse matrix sm as a ListList of ring elements. This should be pre-
ferred to the equivalent sm!.entries and has the additional advantage of working for sparse matrices
over GF(2) which do not have any entries.

3.2.19 RingOfDefinition

▷ RingOfDefinition(sm) (method)

Returns: the base ring of the sparse matrix sm . This should be preferred to the equivalent
sm!.ring.



Chapter 4

Gaussian Algorithms

4.1 A list of the available algorithms

As decribed earlier, the main functions of Gauss are EchelonMat (4.2.1) and
EchelonMatTransformation (4.2.2), ReduceMat (4.2.3) and ReduceMatTransformation

(4.2.4), KernelMat (4.2.5) and, additionally Rank (4.2.6). These are all documented in the next
section, but of course rely on specific algorithms depending on the base ring of the matrix. These are
not fully documented but it should be very easy to find out how they work based on the documentation
of the main functions.

EchelonMat
Field: EchelonMatDestructive

Ring: HermiteMatDestructive

EchelonMatTransformation
Field: EchelonMatTransformationDestructive

Ring: HermiteMatTransformationDestructive

ReduceMat
Field: ReduceMatWithEchelonMat

Ring: ReduceMatWithHermiteMat

ReduceMatTransformation
Field: ReduceMatWithEchelonMatTransformation

Ring: ReduceMatWithHermiteMatTransformation

KernelMat
Field: KernelEchelonMatDestructive

Ring: KernelHermiteMatDestructive

Rank
Field (dense): Rank (GAP method)
Field (sparse): RankDestructive

GF(2) (sparse): RankOfIndicesListList

Ring: n.a.
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4.2 Methods and Functions for Gaussian algorithms

4.2.1 EchelonMat

▷ EchelonMat(mat) (method)

Returns: a record that contains information about an echelonized form of the matrix mat .
The components of this record are
‘vectors’
the reduced row echelon / hermite form of the matrix mat without zero rows.
‘heads’
list that contains at position <i>, if nonzero, the number of the row for that the pivot element is in

column <i>.
computes the reduced row echelon form RREF of a dense or sparse matrix mat over a field, or the

hermite form of a sparse matrix mat over Z/ < pn >.
Example

gap> M := [[0,0,0,1,0],[0,1,1,1,1],[1,1,1,1,0]] * One( GF(2) );;

gap> Display(M);

. . . 1 .

. 1 1 1 1

1 1 1 1 .

gap> EchelonMat(M);

rec( heads := [ 1, 2, 0, 3, 0 ],

vectors := [ <an immutable GF2 vector of length 5>,

<an immutable GF2 vector of length 5>,

<an immutable GF2 vector of length 5> ] )

gap> Display( last.vectors );

1 . . . 1

. 1 1 . 1

. . . 1 .

gap> SM := SparseMatrix( M );

<a 3 x 5 sparse matrix over GF(2)>

gap> EchelonMat( SM );

rec( heads := [ 1, 2, 0, 3, 0 ], vectors := <a 3 x 5 sparse matrix over GF(

2)> )

gap> Display(last.vectors);

1 . . . 1

. 1 1 . 1

. . . 1 .

gap> SM := SparseMatrix( [[7,4,5],[0,0,6],[0,4,4]] * One( Integers mod 8 ) );

<a 3 x 3 sparse matrix over (Integers mod 8)>

gap> Display( SM );

7 4 5

. . 6

. 4 4

gap> EchelonMat( SM );

rec( heads := [ 1, 2, 3 ],

vectors := <a 3 x 3 sparse matrix over (Integers mod 8)> )

gap> Display( last.vectors );

1 . 1

. 4 .

. . 2
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4.2.2 EchelonMatTransformation

▷ EchelonMatTransformation(mat) (method)

Returns: a record that contains information about an echelonized form of the matrix mat .
The components of this record are
‘vectors’
the reduced row echelon / hermite form of the matrix mat without zero rows.
‘heads’
list that contains at position <i>, if nonzero, the number of the row for that the pivot element is in

column <i>.
‘coeffs’
the transformation matrix needed to obtain the RREF from mat .
‘relations’
the kernel of the matrix mat if RingOfDefinition(mat ) is a field. Otherwise these are only the

obvious row relations of mat , there might be more kernel vectors - → KernelMat (4.2.5).
computes the reduced row echelon form RREF of a dense or sparse matrix mat over a field, or the

hermite form of a sparse matrix mat over Z/ < pn >. In either case, the transformation matrix T is
calculated as the row union of ‘coeffs’ and ‘relations’.

Example
gap> M := [[1,0,1],[1,1,0],[1,0,1],[1,1,0],[1,1,1]] * One( GF(2) );;

gap> EchelonMatTransformation( M );

rec(

coeffs := [ <an immutable GF2 vector of length 5>,

<an immutable GF2 vector of length 5>,

<an immutable GF2 vector of length 5> ], heads := [ 1, 2, 3 ],

relations :=

[ <an immutable GF2 vector of length 5>,

<an immutable GF2 vector of length 5> ],

vectors := [ <an immutable GF2 vector of length 3>,

<an immutable GF2 vector of length 3>,

<an immutable GF2 vector of length 3> ] )

gap> Display(last.vectors);

1 . .

. 1 .

. . 1

gap> Display(last.coeffs);

1 1 . . 1

1 . . . 1

. 1 . . 1

gap> Display(last.relations);

1 . 1 . .

. 1 . 1 .

gap> Display( Concatenation( last.coeffs, last.relations ) * M );

1 . .

. 1 .

. . 1

. . .

. . .

gap> SM := SparseMatrix( M );

<a 5 x 3 sparse matrix over GF(2)>

gap> EchelonMatTransformation( SM );
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rec( coeffs := <a 3 x 5 sparse matrix over GF(2)>,

heads := [ 1, 2, 3 ],

relations := <a 2 x 5 sparse matrix over GF(2)>,

vectors := <a 3 x 3 sparse matrix over GF(2)> )

gap> Display(last.vectors);

1 . .

. 1 .

. . 1

gap> Display(last.coeffs);

1 1 . . 1

1 . . . 1

. 1 . . 1

gap> Display(last.relations);

1 . 1 . .

. 1 . 1 .

gap> Display( SparseUnionOfRows( [ last.coeffs, last.relations ] ) * SM );

1 . .

. 1 .

. . 1

. . .

. . .

4.2.3 ReduceMat

▷ ReduceMat(A, B) (method)

Returns: a record with a single component ‘reduced_matrix’ := M. M is created by reducing A

with B , where B must be in Echelon/Hermite form. M will have the same dimensions as A .
Example

gap> M := [[0,0,0,1,0],[0,1,1,1,1],[1,1,1,1,0]] * One( GF(2) );;

gap> Display(M);

. . . 1 .

. 1 1 1 1

1 1 1 1 .

gap> N := [[1,1,0,0,0],[0,0,1,0,1]] * One( GF(2) );;

gap> Display(N);

1 1 . . .

. . 1 . 1

gap> ReduceMat(M,N);

rec(

reduced_matrix := [ <a GF2 vector of length 5>, <a GF2 vector of length 5>,

<a GF2 vector of length 5> ] )

gap> Display(last.reduced_matrix);

. . . 1 .

. 1 . 1 .

. . . 1 1

gap> SM := SparseMatrix(M); SN := SparseMatrix(N);

<a 3 x 5 sparse matrix over GF(2)>

<a 2 x 5 sparse matrix over GF(2)>

gap> ReduceMat(SM,SN);

rec( reduced_matrix := <a 3 x 5 sparse matrix over GF(2)> )

gap> Display(last.reduced_matrix);

. . . 1 .
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. 1 . 1 .

. . . 1 1

4.2.4 ReduceMatTransformation

▷ ReduceMatTransformation(A, B) (method)

Returns: a record with a component ‘reduced_matrix’ := M. M is created by reducing A with
B , where B must be in Echelon/Hermite form. M will have the same dimensions as A . In addition to
the (identical) output as ReduceMat this record also includes the component ‘transformation’, which
stores the row operations that were needed to reduce A with B . This differs from "normal" transfor-
mation matrices because only rows of B had to be moved. Therefore, the transformation matrix solves
M = A + T * B.

Example
gap> M := [[0,0,0,1,0],[0,1,1,1,1],[1,1,1,1,0]] * One( GF(2) );;

gap> Display(M);

. . . 1 .

. 1 1 1 1

1 1 1 1 .

gap> N := [[1,1,0,0,0],[0,0,1,0,1]] * One( GF(2) );;

gap> Display(N);

1 1 . . .

. . 1 . 1

gap> ReduceMatTransformation(M,N);

rec(

reduced_matrix :=

[ <a GF2 vector of length 5>, <a GF2 vector of length 5>,

<a GF2 vector of length 5> ],

transformation := [ <a GF2 vector of length 2>,

<a GF2 vector of length 2>, <a GF2 vector of length 2> ] )

gap> Display(last.reduced_matrix);

. . . 1 .

. 1 . 1 .

. . . 1 1

gap> Display(last.transformation);

. .

. 1

1 1

gap> Display( M + last.transformation * N );

. . . 1 .

. 1 . 1 .

. . . 1 1

gap> SM := SparseMatrix(M); SN := SparseMatrix(N);

<a 3 x 5 sparse matrix over GF(2)>

<a 2 x 5 sparse matrix over GF(2)>

gap> ReduceMatTransformation(SM,SN);

rec( reduced_matrix := <a 3 x 5 sparse matrix over GF(2)>,

transformation := <a 3 x 2 sparse matrix over GF(2)> )

gap> Display(last.reduced_matrix);

. . . 1 .

. 1 . 1 .

. . . 1 1



Gauss 18

gap> Display(last.transformation);

. .

. 1

1 1

gap> Display( SM + last.transformation * SN );

. . . 1 .

. 1 . 1 .

. . . 1 1

4.2.5 KernelMat

▷ KernelMat(M) (function)

Returns: a record with a single component ‘relations’.
If M is a matrix over a field this is the same output as EchelonMatTransformation (4.2.2) pro-

vides in the ‘relations’ component, but with less memory and CPU usage. If the base ring of M is a
non-field, the Kernel might have additional generators, which are added to the output.

Example
gap> M := [[2,1],[0,2]];

[ [ 2, 1 ], [ 0, 2 ] ]

gap> SM := SparseMatrix( M * One( GF(3) ) );

<a 2 x 2 sparse matrix over GF(3)>

gap> KernelMat(SM);

rec( relations := <a 0 x 2 sparse matrix over GF(3)> )

gap> SN := SparseMatrix( M * One( Integers mod 4 ) );

<a 2 x 2 sparse matrix over (Integers mod 4)>

gap> KernelMat(SN);

rec( relations := <a 1 x 2 sparse matrix over (Integers mod 4)> )

gap> Display(last.relations);

2 1

4.2.6 Rank

▷ Rank(sm[, boundary]) (method)

Returns: the rank of the sparse matrix sm . Only works for fields.
Computes the rank of a sparse matrix. If the optional argument boundary is provided, some

algorithms take into account the fact that Rank(sm ) <= boundary , thus possibly terminating earlier.
Example

gap> M := SparseDiagMat( ListWithIdenticalEntries( 10,

> SparseMatrix( [[1,1],[1,1]] * One( GF(5) ) ) ) );

<a 20 x 20 sparse matrix over GF(5)>

gap> Display(M);

1 1 . . . . . . . . . . . . . . . . . .

1 1 . . . . . . . . . . . . . . . . . .

. . 1 1 . . . . . . . . . . . . . . . .

. . 1 1 . . . . . . . . . . . . . . . .

. . . . 1 1 . . . . . . . . . . . . . .

. . . . 1 1 . . . . . . . . . . . . . .

. . . . . . 1 1 . . . . . . . . . . . .

. . . . . . 1 1 . . . . . . . . . . . .

. . . . . . . . 1 1 . . . . . . . . . .
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. . . . . . . . 1 1 . . . . . . . . . .

. . . . . . . . . . 1 1 . . . . . . . .

. . . . . . . . . . 1 1 . . . . . . . .

. . . . . . . . . . . . 1 1 . . . . . .

. . . . . . . . . . . . 1 1 . . . . . .

. . . . . . . . . . . . . . 1 1 . . . .

. . . . . . . . . . . . . . 1 1 . . . .

. . . . . . . . . . . . . . . . 1 1 . .

. . . . . . . . . . . . . . . . 1 1 . .

. . . . . . . . . . . . . . . . . . 1 1

. . . . . . . . . . . . . . . . . . 1 1

gap> Rank(M);

10



Appendix A

An Overview of the Gauss package
source code

Filename Content
SparseMatrix.gi Definitions and methods for the sparse matrix type
SparseMatrixGF2.gi Special case GF(2): no matrix entries needed
GaussDense.gi Gaussian elmination for GAP matrices over fields
Sparse.gi Documentation and forking depending on the base ring
GaussSparse.gi Gaussian elimination for sparse matrices over fields
HermiteSparse.gi Hermite elimination for sparse matrices over Z/⟨pn⟩

Table: The Gauss package files.
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