Introduction to MusicXML
Notensatz-Konferenz, Salzburg Mozarteum, January 17-18, 2020

Jacques Menu *

Abstract

This document presents a basic view of MusicXML and a couple of short examples illustrating
how MusicXML represents a music score. Our goal is to give a flavor of what MusicXML
definitions and data look like from a musician’s point of view. We use a combination of formal
definitions from the MusicXML DTD and free text explanations.

All the examples mentioned can be downloaded from https://github.com/grame-cncm/
libmusicxml/tree/lilypond/files/samples/musicxml. They are grouped by subject in sub-
directories, such as basic/HelloWorld.xml.

The contents of this document is verbose... because MusicXML itself is!

1 Software tools used

MusicXML files have been named with a ’.xml’ suffix for years, until it was decided rather
recently that this should be changed to ’.musicxml’. There are GUI applications that filter the
file names in their ’open’ or ’import’ dialogs and don’t know that change yet, though. We will
thus stick to the ’.xml’ suffix convention.

The scores fragments shown in this document have been produced by translating the ’.xml’
file to LilyPond syntax, and then creating the graphical score with LilyPond.

The translations have been done by xml2ly, a prototype tool developed by this author.
xml121y and some of the specific examples presented in this document are this author’s contri-
bution to libmusicxml2, an open-source C++ library created and maintained by Dominique
Fober at Grame, Lyon, France.

The home page to libmusicxml?2 is https://github.com/grame-cncm/libmusicxml, and
xml121ly is in the '1ilypond’ branch.

The reader is invited to handle the ’.xml’ file examples with their own software tools to
compare the results with the ones herein.

Other score editing applications are mentioned in this document, namely Sibelius™ 7.1.3,
Finale™ 2014 and MuseScore 3.3.4 (https://musescore.org), which is open-source. This
author doesn’t own licenses for other commercial applications such as Dorico™ or Capella™.

musicxml2ly is mentioned too: this translator of MusicXML to LilyPond is supplied with
LilyPond. The design goals of xm121y are to perform at least as well as musicxml2ly, while
providing as many options as needed to avoid too much editing of the LilyPond code generated.

*

Former lecturer in computer science at Centre Universitaire d’Informatique,
University of Geneva, Switzerland

1/40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml
https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml
https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/basic/HelloWorld.xml
https://github.com/grame-cncm/libmusicxml
https://musescore.org

w N

2 Overview of MusicXML
2.1 What is MusicXML?

MusicXML (Music eXtended Markup Language, https://www.musicxml.com) is a specification
language meant to represent western notation music scores by texts, readable both by humans
and computers, and to help sharing music score files between applications, through export and
import mechanisms..

It has been invented by Michael Good and initially developed by Recordare LLC, which was
bought by MakeMusic in 2011, and finally transferred to the W3C Music Notation Commu-
nity Group (https://www.w3.org/community/music-notation/) in 2015. See https://en.
wikipedia.org/wiki/MusicXML for more historical details.

MusicXML data contains very detailed information about the music score, and it is quite
verbose by nature. This makes creating such data by hand very difficult, and this is done by
applications actually.

2.2 Part-wise vs. measure-wise descriptions

MusicXML allows the score to be represented as a sequence of parts, each containing a sequence
of measures, or as a sequence of measures, each containing a sequence of parts, i.e. data
describing the contents of the corresponding measure in a part.

It seems that measure-wise descriptions have been very little used and then abandoned, and
we shall stick to part-wise MusicXML data in this document.

As a historical note, an XSL/XSLT script was supplied in the early days of MusicXML to
convert between part-wise and measure-wise representations.

2.3 MusicXML’s formal definition

As a member of the *XML family of languages, MusicXML is defined by a DTD (Document
Type Definition), to be found at https://github.com/w3c/musicxml/tree/v3.1.

An *XML DTD defines:
e clements, used to structure the data since they can be nested;
e attributes, that attach named values to the elements;

e entities, which are names of groups of elements, such as ’layout-tenths’ and ’start-stop’.
There are used to structure the DTD itself when those elements occur at multiple places
in the DTD, and make the latter more readable and easier to update.

For example, consider:

<part id="P1">
<measure number="1" width="464.29">
S e

We see that:

e the <part>’ element contains a nested '<measure>’ element;

e the <part>’ element has an ’id’ attribute containing the name of the part, 'P1’;

e the '<measure>’ element’s attributes contain measure number '1’and width '464.29’.

Some elements contain a single unnamed data item, such as durations and voice and staff
numbers:

<duration>4</duration>
<voice>2</voice>
<staff>1</staff>

2/40

https://www.musicxml.com
https://www.w3.org/community/music-notation/
https://en.wikipedia.org/wiki/MusicXML
https://en.wikipedia.org/wiki/MusicXML
https://github.com/w3c/musicxml/tree/v3.1

3
4

N

The dtds/3.1/schema subdirectory contains '*.mod’ text files defining the various concepts.
The file common .mod contains definitions used in other '*.mod’ files:

<l--
This file contains entities and elements that are common
across multiple DTD modules. In particular, several elements
here are common across both notes and measures.

-—=>

For example, note.mod defines the '<backup>’ and <forward>" markups this way:

Listing 1: '<backup>’ and '<forward>’ definition

<l--
The backup and forward elements are required to coordinate
multiple voices in one part, including music on multiple
staves. The forward element is generally used within voices
and staves, while the backup element is generally used to
move between voices and staves. Thus the backup element
does not include voice or staff elements. Duration values
should always be positive, and should not cross measure
boundaries or mid-measure changes in the divisions value.

-=>

<!'ELEMENT backup (duration, %editorial;)>

<VELEMENT forward
(duration, %editorial-voice;, staff?)>

An example of their use is:

Listing 2: '<backup>’ and <forward>’ example

<forward>
<duration>4</duration>
<voice>2</voice>
<staff>1</staff>

</forward>

<backup>
<duration>8</duration>

</backup>

In DTDs, sub-elements can be followed by one of these characters, which mean, as is usual
in computer science:

e '?”: 0 or 1 occurence, i.e. optional;
e 'x’: () or more occurrences;
e ’'+’: 1 or more occurrences.

One can see in the definition of the '<forward>’ element that the '<duration>’ element is
mandatory, while the ’<staff>’ element is optional. The text in the DTD tells that staff 1 in
implied if it not specified.

In a DTD, ’CDATA’ means Character Data. Such data is not analyzed by the software that
reads the MusicXML data, it is merely passed over verbatim to whoever asked the data to be
read in.

In the same vein, 'PCDATA’ means Parsed Character Data, that is, mixed content XML data
that are analyzed by software tools.

The current version of the MusicXML DTD is 3.1, and there are discussions about version 3.2.

The syntactical aspects of MusicXML are quite simple and regular, which makes it easy to
handle MusicXML data with algorithms.

3/40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/dtds/3.1/schema
https://github.com/grame-cncm/libmusicxml/tree/lilypond/dtds/3.1/schema/common.mod
https://github.com/grame-cncm/libmusicxml/tree/lilypond/dtds/3.1/schema/note.mod

2.4 Markups

MusicXML data is made of so-called markups (the "M’ in "XML’), delimited by an start-tag and
a stop-tag.

The start-tag is introduced by a ’<’ and closed by a '>’, as in '<part-1list>’. The stop-tag
is introduced by a </’ and closed by a ’>’, as in '</part-list>’.

Markups go by pairs, as in:

1 <duration>4</duration>

The spaces and end of lines between markups are ignored.

It is possible to contract an element that contains nothing between its start-tag and stop-tag,
such as:

1 <dot></dot>

which can be written:

1 <dot />

We shall call sub-element and element nested into another one. ’<part-name>’ is thus a
sub-element of element ’<score-part’ above.

The values of attributes can be double-quoted characters strings and integer or floating point
numbers.
Some attributes are mandatory such as ’id’ in '<score-part>’, while others are optional.

Comments can be used in MusicXML data. They start with a '<!--’ start-tag and end with
a '=->’ stop-tag, as in:

<measure number="1">
<!-- A very minimal MusicXML example, part P1, measure 1 -->

W N

Comments can span several lines.

MusicXML is a representation of HOW TO DRAW a score, which has
b implications on the kind of markups available, in particular ’<forward>’ and
’<backup>’, which are presented at section 16, page 30.

The syntax of MusicXML data quite regular and simple, and it is easy to program lexi-
cal/syntactical analyzers for it.

2.5 Overall structure of MusicXML data
MusicXML data consists of:

e a '<7xml>’ element indicating the characters encoding used;
e a '<!DOCTYPE>’ element telling that the contents is in ’score-partwise’ mode;

e a '<score-partwise>’ element indicating the MusicXML DTD number that the forth-
coming data complies to, and that contains:
e a score header containing:
— an optional <work>’ element, containing sub-elements such as ’<work-number>’,
<work-title>’ and '<opus>’;
— optional '<movement-number>’, ’<movement-title>’, '<identification>’ and
’<defaults>’ sub-elements;
— 0 or more <credit>’ elements;
— a '}<part-list>’ element containing the various '<score-part>’s in the score;
e a sequence of '<part>’ elements in the order they appear in the score, each one containing
the measures in the given part, in order.

4/40

Here is how the score header is actually defined in score.mod:

<!--
The score-header entity contains basic score metadata
about the work and movement, score-wide defaults for
layout and fonts, credits that appear on the first page,
and the part 1list.

-=>

<!ENTITY % score-header
"(work?, movement-number?, movement-title?,

identification?, defaults?, credit*, part-list)">

2.6 What is the semantics of MusicXML data?

We have seen in section section 2.3, page 2, that not specifying the staff number in a ’<forward>’
element implies a value of one.

It is very difficult to define the semantics — the meaning of the sentences — of an artifi-
cial language in a complete and consistent way, i.e. without omitting anything and without
contradictions.

MusicXML is no exception to this rule: there are things unsaid in the DTD, which leaves
room to interpretation by the various applications that create or handle MusicXML data.

For example, clefs are defined in attributes.mod, starting with:

<l--
Clefs are represented by the sign, line, and
clef -octave-change elements. Sign values include G, F, C,
percussion, TAB, jianpu, and none. Line numbers are
counted from the bottom of the staff. Standard values are

What is a 'none’ clef? Is the clef currently in use still to be used from now on, merely
hiding the 'none’ clef, or should an implicit, default treble clef be used? As it turns out,
various applications don’t agree on the answer to this question, see the next-to-last measure of
clefs/Clefs.xml.

This author has found MusicXML files that contain ’PERCUSSION’: is this to be accepted and
handled as 'percussion’? This point is not mentioned in the DTD either.

3 A complete example

As is usual in computer science, this minimal example is named basic/HelloWorld.xml. It is
displayed below, together with the resulting graphic score.

The first line specifies the character encoding of the contents below, here UTF-8. Then the
"IDOCTYPE’ element at lines 2 to 4 tells us that this file contains partwise data conforming to
DTD 3.0.

Then the '<part-list>’ element at lines 7 to 11 contains a list of '<score-part>’s with
their ’id’ attribute, here 'P1’ alone.

After this, we find the sequence of ’part’s with their ’id’ attribute, here 'P1’ alone, and,
inside it, the single ’<measure>’ sub-element whose attribute 'number’ contains '1’.

The nesting of elements, such as '<key>’ containing a ’<fifths>’ element, leads the structure
of a MusicXML representation to be a tree. The way the specification is written conforms to
the computer science habit of drawing trees with their root at the top and their leaves at the
bottom.

5,40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/dtds/3.1/schema/score.mod
https://github.com/grame-cncm/libmusicxml/tree/lilypond/dtds/3.1/schema/attributes.mod
https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/clefs/Clefs.xml
https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/basic/HelloWorld.xml

Hello World!

=

() =

Listing 3: HelloWorld.xml

N

<?xml version="1.0" encoding="UTF-8" standalone="no"?7>
<I!DOCTYPE score-partwise PUBLIC
"-//Recordare//DTD MusicXML 3.0 Partwise//EN"
"http://www.musicxml.org/dtds/partwise.dtd">
<score-partwise version="3.0">
<work>
<work-title>Hello World!</work-title>
</work>
<!-- A very minimal MusicXML example -->
<part-1list>
<score-part id="P1">
<part-name>Music</part-name>
</score-part>
</part-list>
<part id="P1">

<measure number="1">
<!-- A very minimal MusicXML example, part P1l, measure 1 -->
<attributes>
<divisions>1</divisions>
<key>
<fifths>0</fifths>
</key>
<time>
<beats>4</beats>
<beat -type>4</beat-type>
</time>
<clef>
<sign>G</sign>
<line>2</line>
</clef>
</attributes>
<I-- A very minimal MusicXML example, part P1l, measure 1, before
first note -->
<note>
<pitch>
<step>C</step>
<octave>4</octave>
</pitch>
<duration>4</duration>
<type>whole</type>
</note>
</measure>

</part>
</score-partwise>

6,40

10

4 Measurements

4.1 Geometrical lengths

MusicXML represents lengths by 10*" of an interline space, i.e. the distance between lines in
staves. This relative measure unit has the advantage that it allows all lengths to be represented
independantly of the actual size of the score.

In common.mod we find:

Listing 4: Relative lengths

<t--
The tenths entity is a number representing tenths of
interline space (positive or negative) for use in
attributes. The layout-tenths entity is the same for
use in elements. Both integer and decimal values are
allowed, such as 5 for a half space and 2.5 for a
quarter space. Interline space is measured from the
middle of a staff line.

-=>

<VENTITY 7% tenths "CDATA">

<IENTITY % layout-tenths " (#PCDATA)">

In order to obtain absolute lengths for drawing, MusicXML specifies how many tenths are
equal to how many millimeters in the '<scaling>’ element, defined in layout.mod:

Listing 5: Abolute lengths

<P--
Version 1.1 of the MusicXML format added layout information
for pages, systems, staffs, and measures. These layout
elements joined the print and sound elements in providing
formatting data as elements rather than attributes.

Everything is measured in tenths of staff space. Tenths are
then scaled to millimeters within the scaling element, used
in the defaults element at the start of a score. Individual
staves can apply a scaling factor to adjust staff size.
When a MusicXML element or attribute refers to tenths,

it means the global tenths defined by the scaling element,
not the local tenths as adjusted by the staff-size element.

-=>

<l--
Margins , page sizes, and distances are all measured in
tenths to keep MusicXML data in a consistent coordinate
system as much as possible. The translation to absolute
units is domne in the scaling element, which specifies
how many millimeters are equal to how many tenths. For
a staff height of 7 mm, millimeters would be set to 7
while tenths is set to 40. The ability to set a formula
rather than a single scaling factor helps avoid roundoff
errors.

| -->

<!ELEMENT scaling (millimeters, tenths)>
<!ELEMENT millimeters (\#PCDATA)>
<!ELEMENT tenths %layout-tenths;>

7/40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/dtds/3.1/schema/common.mod
https://github.com/grame-cncm/libmusicxml/tree/lilypond/dtds/3.1/schema/layout.mod

w N

This leads for example to:

Listing 6: Scaling example

<scaling>
<millimeters>7.05556</millimeters>
<tenths>40</tenths>

</scaling>

4.2 Notes durations

MusicXML uses a quantization of the duration with the '<divisions>’ element, which tells how
many divisions there are in a quarter note:

<divisions>2</divisions>

This example means that there are ’2’ divisions in a quarter note, i.e. the duration measure
unit is an eigth note. Let’s borrow from physics and MIDI terminology and call this a quantum.

Any multiple of this quantum can be used in the MusicXML data after that specification,
but there’s no way to express a duration less than an eigth node.

The quantum value has to be computed from the shortest note in the music that follows this
element, taking tuplets into account, see section section 13, page 24.

Is it possible to set the quantum to other values in multiple places in the MusicXML data at
will if needed? The DTD doesn’t mentions that, and in practice, all applications support this
feature.

Notes prolongation dots are specified with as many '<dot>’ elements as needed:

<l--
One dot element is used for each dot of prolongation.
The placement element is used to specify whether the
dot should appear above or below the staff line. It is
ignored for notes that appear on a staff space.

| -=>

<!ELEMENT dot EMPTY>

<IATTLIST dot
%print-style;
%placement;

4.3 Graphics and sound

MusicXML has to account for the possible difference between the drawn head note and the
duration of that note, as is the case in tuplets.

In a tuplet containing 3 sixteenth notes, the duration of each such note is one third of that
of an eigth note, but the drawn head note’s graphical duration is half of that of the latter. See
section section 13, page 24, for an example of how this is represented.

Some elements in MusicXML data are specifically meant for MIDI support: they refer to
the sound durations only.

5 Measures

The <measure>’ elements can contain many other elements, depending on the music.

Full measures are usually numbered from ’1’ up, but these numbers are actually character
strings, not integers: this allows for special measure numbers such as 'X1’, for example, in the
case of cue staves.

8,40

Anacruses are best specified ”the purist way”, with 0" as their number and the ’implicit’
attribute set to ’yes’, which specifies that this measure number should not be printed. One sees
cases where the number is ’1’ for anacruses, though:

<measure number="0" implicit="yes" width="129.48">

Measures can be irregular, i.e. with less total duration as the current time signature, or
much longer that the usual time signatures, see section 15, page 28, for an example.

6 Elements attachment decisions

The MusicXML designers had to decide what element a given element should be attached to.
Should a '<dynamics>’ element or '<metronome>’ element be attached to a note or be placed at
the '<measure>’ level? Is so, should it occur in the data before or after the note over or below
which it should be displayed?

MusicXML defines a direction as a musical indication that is not necessarily attached to a
specific note. Two or more directions may be combined to indicate the start and stop of wedges,
dashes, and so on.

For example, '<dynamics>’ elements are placed outside of '<note>’ elements in a '<direction>’
element, at the measure level:

<direction placement="below">
<direction-type>
<dynamics>
<ffff/>
</dynamics>
</direction-type>
<staff>1</staff>
</direction>

The elements attached to notes are placed inside a '<notations>’ element, itself placed
inside a '<note>’ element. Notations are defined in note.mod:

Listing 7: Notations definition

<l--
Notations are musical notations, not XML notations. Multiple
notations are allowed in order to represent multiple editorial
levels. The print-object attribute, added in Version 3.0,
allows notations to represent details of performance technique,
such as fingerings, without having them appear in the score.
-=>
<IELEMENT notations
(%heditorial;,
(tied | slur | tuplet | glissando | slide |

ornaments | technical | articulations | dynamics |
fermata | arpeggiate | non-arpeggiate |
accidental -mark | other-notation)*)>

<I'ATTLIST notations
%print-object;
%optional -unique-id;

9/40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/dtds/3.1/schema/note.mod

7 Score description structure

MusicXML data contains a mix of legal informations, score geometry and musical contents.
Some aspects of this are presented in this section.

7.1 Identification, rights and credits

The ’<identification>’ element is defined in identity.mod:

<l--
Identification contains basic metadata about the score.
It includes the information in MuseData headers that
may apply at a score-wide, movement-wide, or part-wide
level. The creator, rights, source, and relation elements
are based on Dublin Core.

-=>

<VELEMENT identification (creatorx*, rights*, encoding?,
source?, relation*, miscellaneous?)>

For example, xmlsamples3.1/ActorPreludeSample.xml contains:

Listing 8: Identification and rights example

<identification>
<creator type="composer">Lee Actor</creator>
<rights>c 2004 Polygames. A1l Rights Reserved.</rights>
<encoding>
<software>Finale v25 for Mac</software>
<encoding-date>2017-12-12</encoding-date>
<supports attribute="new-system" element="print" type="yes" value
="yes"/>
<supports attribute="new-page" element="print" type="yes" value="
yes"/>
<supports element="accidental" type="yes"/>
<supports element="beam" type="yes"/>
<supports element="stem" type="yes"/>
</encoding>
</identification>

The ’<credit>’ element, defined in score.mod, represents various legal informations about
the score. It contains placement indication such as page number and alignment, as well as fonts
information.

For example, one finds in xmlsamples3.1/ActorPreludeSample.xml:

Listing 9: Credits example

<credit page="1">
<credit-type>title</credit-type>
<credit-words default-x="1447" default-y="3477" font-size="19.5"
justify="center" valign="top">Prelude to a Tragedy</credit-words>
</credit>
<credit page="1">
<credit-type>composer</credit-type>
<credit-words default-x="2718" default-y="3387" font-size="7.8"
justify="right" valign="top">Lee Actor (2003)</credit-words>
</credit>
<credit page="1">
<credit-type>rights</credit-type>
<credit-words default-x="1447" default-y="45" font-size="7.8"
justify="center" valign="bottom" xml:space="preserve"Xc 2004
Polygames. A1l Rights Reserved.</credit-words>
</credit>
<credit page="2">

10/40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/dtds/3.1/schema/identity.mod
https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/xmlsamples3.1/ActorPreludeSample.xml
https://github.com/grame-cncm/libmusicxml/tree/lilypond/dtds/3.1/schema/score.mod
https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/xmlsamples3.1/ActorPreludeSample.xml

24

<credit-type>page number</credit-type>
<credit-words default-x="1412" default-y="45" font-size="7.8"
halign="center" valign="bottom">- 2 -</credit-words>

</credit>

<credit page="3">
<credit-type>page number</credit-type>
<credit-words default-x="1447" default-y="45" font-size="7.8"
halign="center" valign="bottom">- 3 -</credit-words>

</credit>

<credit page="4">
<credit-type>page number</credit-type>
<credit-words default-x="1412" default-y="45" font-size="7.8"
halign="center" valign="bottom">- 4 -</credit-words>

</credit>

We see the '<credit-words>’ element in the example above. In MusicXML, 'words’ means

text, as defined in direction.mod:

<l--

The words element specifies a standard text direction.
Left justification is assumed if not specified.
Language is Italian ("it") by default. Enclosure

is none by default.

| -=>

<!ELEMENT words (#PCDATA)>

<I'ATTLIST words

%text-formatting;

%optional ~unique-id;

7.2 Score geometry

The dimensions and margins of the graphics score can be specified with the <page-layout>’

element, as in basic/ClefKeyTime.xml:

Listing 10: Page layout example

<defaults>
<scaling>
<millimeters>7.05556</millimeters>
<tenths>40</tenths>
</scaling>
<page-layout>
<page-height>1683.36</page-height>
<page-width>1190.88</page-width>
<page-margins type="even'">
<left-margin>56.6929</left-margin>
<right-margin>56.6929</right -margin>
<top-margin>56.6929</top-margin>
<bottom-margin>113.386</bottom-margin>
</page-margins>
<page-margins type="odd">
<left-margin>56.6929</left -margin>
<right-margin>56.6929</right-margin>
<top-margin>56.6929</top-margin>
<bottom-margin>113.386</bottom-margin>
</page-margins>
</page-layout>
<word-font font-family="FreeSerif" font-size="10"/>
<lyric-font font-family="FreeSerif" font-size="11"/>
</defaults>

11/40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/dtds/3.1/schema/direction.mod
https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/basic/ClefKeyTime.xml

7.3 Part groups and parts

Part groups are used to structure complex scores, mimicking the way large orchestras are orga-
nized. For example, there can be a winds group, containing several groups such as flutes, oboes,
horns and bassoons.

A ’<part-group>’ element has a ’type’ attribute, whose value can be ’start’ or 'stop’.
A part group is thus delimited by a pair of <part-group>’ elements, the first one of type
‘start’, and the second one of type ’stop’.

The ’id’ attribute of the '<score-part>’ element is used to reference the part later in the
MusicXML data. Often, is has the form 'Pn’, where 'n’ is a number.

Part groups can be nested, leading to a hierarchy of groups. This is done with the 'number’
attribute of the '<part-group>’ element, which indicates how ’start’ and ’stop’ attributes are
paired together.

For example, partgroups/NestedPartGroups.xml contains:

Nested part groups

n 2 3

Violin %’L{:c o i'ﬂ
f)
) 4

Flute '\’.L"D E— <F =
[
f

Oboe I :@ C— Ty =
[
/]
x

Ohboe 11 i —
AN L&]
[
f

English horn w_!—'_-_ﬂ

U |] I

Listing 11: Nested part groups example

<part-1list>

<score-part id="P1">
<part-name>Violin</part-name>

</score-part>

<part-group number="1" type="start">
<group-symbol>line</group-symbol>
<group-barline>yes</group-barline>

</part-group>

<score-part id="P2">
<part-name>Flute</part-name>

</score-part>

<part-group number="2" type="start">
<group-symbol>bracket</group-symbol>
<group-barline>yes</group-barline>

</part-group>

<score-part id="P3">
<part-name>0boe I</part-name>

</score-part>

<score-part id="P4">
<part-name>0boe II</part-name>

</score-part>

<part-group number="2" type="stop"/>

<part-group number="1" type="stop"/>

<score-part id="P5">
<part-name>English horn</part-name>

</score-part>

</part-list>

12/40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/partgroups/NestedPartGroups.xml

The MusicXML DTD states that part groups may overlap. This author suspects that this
is only because Finale™ doesn’t create MusicXML markups in a strict first-in, last-out order.

Various applications handle shouldfail/OverlappingPartGroups.xml their own way. xml121ly
rejects such data for the time being, with this message:

Listing 12: Overlapping groups xm121y error message

MusicXML ERROR ### shouldfail/OverlappingPartGroups.xml:39:
There are overlapping part groups, namely:

1’ -=> PartGroup_2 (’1’, partGroupName "Part group 1"), lines 15..39
and

’2? -=> PartGroup_3 (’2’, partGroupName "Part group 2"), lines 27..43
Please contact the maintainers of libmusicxml2 (see option ’

contact’):

either you found a bug in the xml2ly tramnslator,

or this MusicXML data is the first-ever real-world case

of a score exhibiting overlapping part groups.
Abort trap: 6 (core dumped)

-c, -

7.4 Staves and voices

In MusicXML, a part is composed of one or more staves, each composed of one or more voices.
There are no structured staves nor voices as such in MusicXML however — that is, not the way
parts and measures are. The ’<stave>’ and 'voice’ element only contain a number.

To be more precise:
e stave numbers start at 1’ in every part, which refers to the top-most staff in the part;

e a staff number of ’1’ is implied by default, i.e. when an optional '<stave>’ element is
missing, as can happen in notes descriptions;

e voice numbers start at ’1’ in every staff, and a voice number of '1’ is implied by default,
i.e. when an optional '<voice>’ element is missing;

A given voice can change staff and come back to the former one, for example in keyboard
scores.

This author has found MusicXML files in which the voice numbers are not contiguous,
such as '1’, ’6” and ’'9’. The DTD doesn’t preclude this, and the applications handle example
multistaff/NonContiguousVoiceNumbers.xml their own way.

7.5 Clefs, keys and time signatures
MusicXML offers elements to describe the common cases:
e traditional keys are described by a '<fifths>’ element;
e simple clefs are described by <sign>’ and '<1ine>’ elements;

e simple time signatures are desribed by '<beats>’ and '<beat-type>’ elements.

13/40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/shouldfail/OverlappingPartGroups.xml
https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/multistaff/NonContiguousVoiceNumbers.xml

An example is found in basic/ClefKeyTime.xml:

Clef Key Time

A 2

H
F 1 ¥F -y J] |
Fil t_l- e _‘_I" L o el -l
g

Listing 13: Clef, key and time signature example

<attributes>

<divisions>2</divisions>

<key>

<fifths>-1</fifths>

</key>
<time>

<beats>2</beats>

<beat -type>4</beat-type>

</time>
<clef>
<sign>G</sign>
<line>2</line>
</clef>
</attributes>
<l-- ..
<attributes>
<key>

<fifths>1</fifths>

</key>
<time>

<beats>3</beats>

<beat -type>4</beat-type>

</time>
<clef>
<sign>F</sign>
<line>4</line>
</clef>
</attributes>

In this example, the various sub-elements are:

Fragment

Meaning

<fifths>-1</fifths>’
’<beats>2</beats>’
'<beat-type>4</beat-type>’
'<sign>G</sign>’

’<1ine>2</line>’

Composite time signatures such as '2/4 + 3/8" and ’3+2/8’ can be specified, as well as

’<senza-misura>’ for cadenzas.

the number of fitths. A negative number is the number of
flats, 0 means C major or A minor, and a positive value is
the number of sharps

the number of beats per measure

the beat type, i.e. the duration of each beat expressed as a
fraction of a whole note

the clef sign to be displayed. Sign values include 'G’, 'F’,
'C’, 'percussion’, 'TAB’, jianpu’, and 'none’

the number of the line at which the clef is placed

14/40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/basic/ClefKeyTime.xml

MusicXML also supports non-traditional keys the Humdrum/Scot way. For example, the
time signature at the beginning of measure 2 in keys/HumdrumScotKeys.xml is described by:

Humdrum/Scot Keys

Listing 14: Humdrum/Scot non-traditional key example

1 <key>

2 <key-step>C</key-step>

3 <key-alter>-2</key-alter>

4 <key-step>G</key-step>

5 <key-alter>2</key-alter>

6 <key-step>D</key-step>

7 <key-alter>-1</key-alter>

8 <key-step>B</key-step>

9 <key-alter>1</key-alter>

10 <key-step>F</key-step>

11 <key-alter>0</key-alter>

12 <key-octave number="1">2</key-octave>
13 <key-octave number="2">3</key-octave>
14 <key-octave number="3">4</key-octave>

15 <key-octave number="4">5</key-octave>
16 <key-octave number="5">6</key-octave>
17 </key>

This is another example handled diffently by some applications.

7.6 Metromone and tempo

MusicXML has rich support for metronome specifications. Example tempos/SwingTempo.xml
contains:

Swing Tempo

rq

" Swing (Jl:h= J j} @

Y, =) '

¢

L 1

Listing 15: Swing tempo example

1 <direction placement="above">

2 <direction-type>

3 <words>Swing</words>

</direction-type>

5 <direction-type>

6 <metronome parentheses="yes" default-y="30" halign="left"
relative-x="26">

7 <metronome -note>

8 <metronome-type>eighth</metronome-type>

9 <metronome -beam number="1">begin</metronome-beam>
10 </metronome -note>

11 <metronome -note>

12 <metronome -type>eighth</metronome -type>

13 <metronome -beam number="1">end</metronome-beam>

15/40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/keys/HumdrumScotKeys.xml
https://github.com/grame-cncm/libmusicxml/tree/lilypond/dtds/3.1/schema/tempos/SwingTempo.xml

N =

</metronome -note>
<metronome-relation>equals</metronome-relation>
<metronome -note>
<metronome -type>quarter</metronome-type>
<metronome-tuplet bracket="yes" show-number="actual"
="start">
<actual-notes>3</actual -notes>
<normal -notes>2</normal -notes>
<normal-type>eighth</normal -type>
</metronome -tuplet>
</metronome -note>
<metronome-note>
<metronome -type>eighth</metronome-type>
<metronome -tuplet type="stop">
<actual-notes>3</actual -notes>
<normal -notes>2</normal -notes>
<normal-type>eighth</normal -type>
</metronome-tuplet>
</metronome -note>
</metronome>
</direction-type>
</direction>

type

8 Notes

A note is described by a 'note’ element, defined in note.mod:

Listing 16: Note definition

<l--
Notes are the most common type of MusicXML data. The
MusicXML format keeps the MuseData distinction between
elements used for sound information and elements used for
notation information (e.g., tie is used for sound, tied for
notation). Thus grace notes do not have a duration element.
Cue notes have a duration element, as do forward elements,
but no tie elements. Having these two types of information
available can make interchange considerably easier, as
some programs handle one type of information much more
readily than the other.

-=>

;| <VELEMENT note

(((grace, ((%full-note;, (tie, tie?)?) | (cue, %full-note;))) |

(cue, %full-note;, duration) |
(%full-note;, duration, (tie, tie?)7?)),
instrument?, Y%editorial-voice;, type?, dotx,

accidental?, time-modification?, stem?, notehead?,
notehead-text?, staff?, beam*, notations*, lyric*, play?)>

Consider basic/MinimalScore.xml:

Minimal score

X

16/40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/dtds/3.1/schema/note.mod
https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/basic/MinimalScore.xml

The first note in measure 2 in this example is described by:

Listing 17: Minimal score example

<divisions>8</divisions>
L e e

<clef>
<sign>G</sign>
<line>2</1line>

<clef -octave-change>-1</clef-octave-change>

</clef>

Kl-—= .. L0 L Las Lo T

<note>
<pitch>
<step>E</step>
<alter>-1</alter>
<octave>4</octave>
</pitch>
<duration>28</duration>
<voice>1</voice>
<type>half</type>
<dot />
<dot />
<accidental>flat</accidental>
</note>

In this example, the various sub-elements are:

Fragment Meaning
'<step>E</step>’ the diatonic pitch of the note, from A to G
'<alter>-1</alter>’ the chromatic alteration in number of semitones (e.g., -1

for flat, 1 for sharp)

<octave>4</octave>’ the absolute octave of the note, 0 to 9, where 4 indicates
the octave started by middle C

'<duration>28</duration>’ the sounding duration of the note, 28 quanta, which is a
double dotted half note with 4 quanta per quarter note

(16+8+4)
'<voice>1</voice>’ the voice number of the note, 1
'<type>half</type>’ the display duration of the note, a half note, which deter-

mines the note head

Middle C is the one between the left hand and right hand staves in a typical score. Note here:
octave numbers are absolute, and the treble clef is octaviated by a '<clef-octave-change>’
element!

Voice and staff numbers are optional, in which case the default value is 1.

Having both a sounding and display duration specification is necessary because they do not
coincide in the case of dotted notes and tuplets members, see section 13, page 24, for the latter.

17/40

10

11

12

oo

10

11

12

Note elements can have '<stem>’ and ’<beam>’ sub-elements attached to them, as in the
following example. See section 8.6, page 20 for a score containing some:

<note>
<pitch>
<step>A</step>
<octave>2</octave>
</pitch>
<voice>3</voice>
<type>16th</type>
<stem>up</stem>
<staff>2</staff>
<beam number="1">begin</beam>
<beam number="2">begin</beam>
</note>

Before showing an example, we shall look into more detail in the elements that are attached
to notes in the forthcoming sections.

8.1 Accidentals

<l--
Actual notated accidentals. Valid values include: sharp,
natural, flat, double-sharp, sharp-sharp, flat-flat,
natural -sharp, natural-flat, quarter-flat, quarter-sharp,
three-quarters-flat, three-quarters-sharp, sharp-down,
sharp-up, natural-down, natural-up, flat-down, flat-up,
double -sharp-down, double-sharp-up, flat-flat-down,
flat-flat-up, arrow-down, arrow-up, triple-sharp,
triple-flat, slash-quarter-sharp, slash-sharp, slash-flat,
double-slash-flat, sharp-1, sharp-2, sharp-3, sharp-5,
flat-1, flat-2, flat-3, flat-4, sori, koron, and other.

-->
<!ELEMENT accidental (#PCDATA)>
<VATTLIST accidental
cautionary %yes-no; #IMPLIED
editorial Yyes-no; #IMPLIED
%level-display;
%print-style;
Y%smufl;

8.2 Articulations

The MusicXML articulation elementss are:

<l--
Articulations and accents are grouped together here.
-->
<IELEMENT articulations
(Caccent | strong-accent | staccato | tenuto |
detached-legato | staccatissimo | spiccato |
scoop | plop | doit | falloff | breath-mark |
caesura | stress | unstress | soft-accent |
other-articulation)*)>
<IVATTLIST articulations
%optional ~unique-id;

18/40

N

N

8.3 Ornaments

Ornaments are defined in note.mod:

<!ELEMENT ornaments
(((trill-mark | turn | delayed-turn | inverted-turn
delayed-inverted-turn | vertical-turn |
inverted-vertical-turn | shake | wavy-line |
mordent | inverted-mordent | schleifer | tremolo |
haydn | other-ornament), accidental -mark*)*)>
<!'ATTLIST ornaments
%optional ~unique-id;
>
<!VELEMENT trill-mark EMPTY>
KIVATTLIST trill-mark
%print-style;
%placement ;
%trill -sound;

8.4 Dynamics

MusicXML dynamics are defined in common.mod:

<!ELEMENT dynamics ((p | pp | ppp | pppp | pppPp | ppPPPP |
£ | £ff | £ff | ffff | fffff | ffffff | mp | mf | sf |
sfp | sfpp | fp | rf | rfz | sfz | sffz | fz |
n | pf | sfzp | other-dynamics)*)>
<VATTLIST dynamics
%print-style-align;
%placement;
%text-decoration;
%enclosure;
%optional ~unique-id;

Other dynamics can also be specified:

The other-dynamics element
allows other dynamic marks that are not covered here, but
many of those should perhaps be included in a more general
musical direction element. Dynamics may also be combined as
in <sf/><mp/>.

8.5 An example of articulations and dynamics

The reader can see various such in articulations/ArticulationsAndOrnaments.xml:

Articulations and ornaments

Moderato # =80

A b rit. 3
Soprano saxophone ‘ o — : ! 1& -
B R
f sempre forte

19/40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/dtds/3.1/schema/note.mod
https://github.com/grame-cncm/libmusicxml/tree/lilypond/dtds/3.1/schema/common.mod
https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/articulations/ArticulationsAndOrnaments.xml

8.6 Grace notes

The ’<grace>’ element is defined in note.mod:

1| <1=--

2 The grace element indicates the presence of a grace note.

3 The slash attribute for a grace note is yes for slashed

4 eighth notes. The other grace note attributes come from

5 MuseData sound suggestions. The steal-time-previous attribute
6 indicates the percentage of time to steal from the previous
7 note for the grace note. The steal-time-following attribute
8 indicates the percentage of time to steal from the following
9 note for the grace note, as for appoggiaturas. The make-time
10 attribute indicates to make time, not steal time; the units
11 are in real-time divisions for the grace note.

12 ==>

13| <'ELEMENT grace EMPTY>

14| <VATTLIST grace

15 steal-time-previous CDATA #IMPLIED

16 steal-time-following CDATA #IMPLIED

17 make-time CDATA #IMPLIED

18 slash Yyes-no; #IMPLIED

For example, in gracenotes/LilyPondIssue34.xml, the three grace notes at the beginning
of the lower staff are described by:

Piano Sonata in A Major

Wolfgang Amadeus Mozart
K. 331

e

Piano

Listing 18: Grace notes example

1 <note>

2 <grace/>

3 <pitch>

4 <step>A</step>

5 <octave>2</octave>

6 </pitch>

7 <voice>3</voice>

8 <type>16th</type>

9 <stem>up</stem>

10 <staff>2</staff>

11 <beam number="1">begin</beam>
12 <beam number="2">begin</beam>
13 <notations>

14 <slur type="start" placement="above" number="1"/>
15 </notations>

16 </note>

17 <note>

18 <grace/>

19 <pitch>

20 <step>C</step>

21 <alter>1</alter>
22 <octave>3</octave>
23 </pitch>

24 <voice>3</voice>

20/40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/dtds/3.1/schema/note.mod
https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/gracenotes/LilyPondIssue34.xml

<type>16th</type>
<stem>up</stem>
<staff>2</staff>
<beam number="1">continue</beam>
<beam number="2">continue</beam>
</note>
<note>
<grace/>
<pitch>
<step>E</step>
<octave>3</octave>
</pitch>
<voice>3</voice>
<type>16th</type>
<stem>up</stem>
<staff>2</staff>
<beam number="1">end</beam>
<beam number="2">end</beam>
</note>

9 Ties

MusicXML makes the distinction between graphics and sound, and this applied to ties: the
'<tie>’ element indicates sound, and the '<tied>’ element indicates notation. In a '<tie>’, the
‘start’ and ’stop’ values in the 'type’ attribute are used to indicate the beginning and end of

¥

the tie.

These two elements are defined in note.mod:

<VELEMENT tie EMPTY>

KVATTLIST tie
type %start-stop; #REQUIRED
%time-only;

<!'ELEMENT tied EMPTY>
<IATTLIST tied
type %tied-type; #REQUIRED
number Y%number-level; #IMPLIED
%line-type;
%dashed-formatting;
%position;
%placement;
%orientation;
%bezier;
Y%color;
%optional ~unique-id;

10 Slurs

The ’<slur>’ element is placed inside a '<notations>’ element, itself placed inside a ’<note>’

element. It is defined in note.mod:

<!ELEMENT slur EMPTY>

<VATTLIST slur
type %start-stop-continue; #REQUIRED
number Y%number-level; "1"
%line-type;
%dashed-formatting;
%position;

21/40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/dtds/3.1/schema/note.mod
https://github.com/grame-cncm/libmusicxml/tree/lilypond/dtds/3.1/schema/note.mod

N

%placement;
%orientation;
%bezier;

Y%color;

%optional ~unique-id;

11 Tie and slur example

This example is in basic/TieAndSlur.xml:

T

g1 ¥ | A L
| T

Tie and Slur

I

Listing 19: Tie and slur example

<note>
<pitch>
<step>A</step>
<octave>3</octave>
</pitch>
<duration>2</duration>
<type>quarter</type>
<voice>1</voice>
</note>
<note>
<pitch>
<step>B</step>
<alter>-1</alter>
<octave>3</octave>
</pitch>
<duration>1</duration>
<type>eighth</type>
<voice>1</voice>
<accidental>flat</accidental>
<tie type="start" />
<notations>
<tied type="start" />
</notations>
</note>
<note>
<pitch>
<step>B</step>
<alter>-1</alter>
<octave>3</octave>
</pitch>
<duration>1</duration>
<type>eighth</type>
<voice>1</voice>
<accidental>flat</accidental>
<tie type="stop" />
<notations>
<tied type="stop" />
<slur number="1" type="start"
</notations>
</note>
<note>
<pitch>
<step>C</step>

/>

22/40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/basic/TieAndSlur.xml

<octave>4</octave>
</pitch>
<duration>1</duration>
<type>eighth</type>
<voice>1</voice>
</note>
<note>
<pitch>
<step>B</step>
<octave>3</octave>
</pitch>
<duration>1</duration>
<type>eighth</type>
<voice>1</voice>
<notations>
<slur number="1" type="stop" />
</notations>
</note>

12 Chords

Chords are not evidenced as such in MusicXML data. Instead, the '<chord>’ element means
that the given note is part of a chord after the first note in the chord has be met. Remem-
ber: MusicXML is about drawing scores. Put it another way, you know there is a chord only
upon its second note.

The code for the last three note chord in chords/Chords.xml is shown below.

Chords

Listing 20: Chord example

<note>
<pitch>
<step>B</step>
<octave>4</octave>
</pitch>
<duration>4</duration>
<voice>1</voice>
<type>half</type>
<notations>
<articulations>
<staccato />
<detached-legato />
</articulations>
</notations>
</note>
<note>
<chord />
<pitch>
<step>D</step>
<octave>5</octave>
</pitch>
<duration>4</duration>
<voice>1</voice>
<type>half</type>
</note>

23/40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/chords/Chords.xml

00w oW N N NN
- © © w = o

w N

w N

<note>
<chord />
<pitch>
<step>F</step>
<octave>5</octave>
</pitch>
<duration>4</duration>
<voice>1</voice>
<type>half</type>
</note>

13 Tuplets

The situation for tuplets is different than that of the chords: there is a '<tuplet>’ element,
with a 'type’ attribute to indicate the note upon which it starts and stops:

<notations>
<tuplet number="1" type="start" />
</notations>

The 'number’ attribute can be used to describe nested tuplets:
The contents, i.e. the notes in the tuplet, are not nested in the latter: there are placed in
sequence between the two '<tuplet>’ elements that delimitate the tuplet.

Each note in the tuplet has a '<time-modification>’ element, from the first one on. This
element contains two elements:

<time-modification>
<actual-notes>3</actual -notes>
<normal -notes>2</normal —-notes>

</time-modification>

One should play '<actual-notes>’ within the time taken by only <normal-notes>’. The
example above is thus that of a triplet.

In the case of tuplets/Tuplets.xml, shown below, the duration of the tuplets member is 20
quanta, i.e. 2/3 of a quarter note, whose duration is 30, and the ’display’ duration is a quarter
note. The duration of the triplet as a whole is that of a half note, i.e. 60 quanta.

Tuplets

» 5
. e 1
f) | 2 & ﬁJﬁLT"T'T
o I ¥ P P
[] [F r T
[l |
ST
P L 5 1
L3 5

Listing 21: Tuplet example

<divisions>30</divisions>
L e e

<note>
<pitch>
<step>B</step>
<octave>4</octave>
</pitch>
<duration>20</duration>
<voice>1</voice>
<type>quarter</type>
<time-modification>
<actual -notes>3</actual -notes>
<normal -notes>2</normal -notes>

24,40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/tuplets/Tuplets.xml

</time-modification>
<notations>
<tuplet number="1" type="start" />
</notations>
</note>
<note>
<rest />
<duration>20</duration>
<voice>1</voice>
<type>quarter</type>
<time-modification>
<actual -notes>3</actual -notes>
<normal -notes>2</normal —-notes>
</time-modification>
</note>
<note>
<pitch>
<step>D</step>
<octave>5</octave>
</pitch>
<duration>20</duration>
<voice>1</voice>
<type>quarter</type>
<time-modification>
<actual -notes>3</actual -notes>
<normal -notes>2</normal -notes>
</time-modification>
<notations>
<tuplet number="1" type="stop" />
</notations>
</note>

14 Barlines and repeats

Repeats are not described by high-level elements in MusicXML. Instead, specific barlines con-
taining a ’<repeat>’ element are used to draw the necessary delimiters.

14.1 Simple barlines
The ’<barline>’ element is defined in barline.mod. It has two main attributes:

Attribute Meaning

bar-style Bar-style contains style information. Choices are
'regular’, ’'dotted’, ’dashed’, ’heavy’, ’light-light’,
'light-heavy’, ’heavy-light’, ’heavy-heavy’, ’tick’ (a
short stroke through the top line), ’short’ (a partial barline
between the 2nd and 4th lines), and 'none’.
Barlines can occur within measures, as in dotted barlines
that subdivide measures in complex meters;

location If location is 'left’, it should be the first element in the
measure, aside from the ’print’, ’bookmark’, and ’link’
elements.
If location is 'right’, it should be the last element, again
with the possible exception of the 'print’, ’bookmark’, and
"1link’ elements.
The value can be 'right’, 'left’ or ‘'middle’. If no location
is specified, the default value is 'right’.

In the '<bar-style>’ element, '1ight’ is a thin vertical line, and heavy’is a thick line. The
final barline of a piece is thus represented by:

25/40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/dtds/3.1/schema/barline.mod

N

N

Listing 22: Final barline

<barline location="right">
<bar-style>light -heavy</bar-style>
</barline>

One can see the various simple barlines in barlines/SimpleBarlines.xml:

Simple barlines

2 b 7
ﬂ I I | | IT Il |
FA W) L_ 1 L_ I L_ O L_ L_ [| L_ il Il |
[fan Y I I [| il |
L I I | il |
v
B ! : :
A a9 10 11I 12 13
" | 11 1 1] T]
7 L_ 1] L_ n L L_ I L_ I |
[FanY 1] n I I |
S 1]] | 1 I 1
()

14.2 Repeats

The ’<repeat>’ element in barline can contains these attributes, also defined in barline.mod:

Attribute Meaning

direction ’forward’ is used at the start of a repeat, and ’backward’
is used at the end of it;

times indicates how many times the repeated section as to be
played;
winged indicates whether has winged extensions that appear above

and below the barline, to make them easier to see;

The ’straight’ and ’curved’ values represent single wings,
while the ’double-straight’ and ’double-curved’ values
represent double wings. The 'none’ value indicates no wings
and is the default.

<barline location="right">
<bar-style>light-heavy</bar-style>
<repeat direction="backward" times="5"/>
</barline>

<barline location="right">
<bar-style>light-heavy</bar-style>
<repeat direction="backward" winged="none"/>
</barline>

14.3 A repeat example

Here is a simple example in repeats/SimpleRepeatWithAnacrusis.xml:

Simple Repeat With Anacrusis

1 (1) 2

-
i A—o— 1~}
Piano :E g I 1 ¥ i =
e/ o< v
Kl-—= .. .0 Lo Lo Lo mD
<measure number="0" implicit="yes" width="144.60">
<t-- .. B e

<attributes>
<divisions>1</divisions>
D e

26/40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/barlines/SimpleBarlines.xml
https://github.com/grame-cncm/libmusicxml/tree/lilypond/dtds/3.1/schema/barline.mod
https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/repeats/SimpleRepeatWithAnacrusis.xml

38
39
40

41

</attributes>
<note default-x="73.07" default-y="-50.00">
<pitch>
<step>C</step>
<octave>4</octave>
</pitch>
<duration>1</duration>
<voice>1</voice>
<type>quarter</type>
<stem>down</stem>
</note>
</measure>

<measure number="1" width="162.29">
<note default-x="10.00" default-y="-45.00">
<pitch>
<step>D</step>
<octave>4</octave>
</pitch>
<duration>1</duration>
<voice>1</voice>
<type>quarter</type>
<stem>up</stem>
</note>
<note default-x="76.96" default-y="-40.00">
<pitch>
<step>E</step>
<octave>4</octave>
</pitch>
<duration>1</duration>
<voice>1</voice>
<type>quarter</type>
<stem>up</stem>
</note>
<barline location="right">
<bar-style>light-heavy</bar-style>
<repeat direction="backward"/>
</barline>
</measure>

<measure number="2" width="96.76">
<note default-x="10.00" default-y="-35.00">
<pitch>
<step>F</step>
<octave>4</octave>
</pitch>
<duration>1</duration>
<voice>1</voice>
<type>quarter</type>
<stem>up</stem>
</note>
</measure>

<measure number="3" width="143.60">
<note default-x="10.00" default-y="-30.00">
<pitch>
<step>G</step>
<octave>4</octave>
</pitch>
<duration>2</duration>
<voice>1</voice>
<type>half</type>
<stem>up</stem>

27/40

N

-

N

</note>

<barline location="right">
<bar-style>light-heavy</bar-style>
</barline>

</measure>

15 Lyrics

15.1 The ’<1lyric>’ element

In MusicXML the '<1yrics>’ elements are sub-elements of the '<note>’ elements. The defini-
tion is in note.mod:

<IELEMENT 1lyric
((((syllabic?, text),
(elision?, syllabic?, text)*, extend?) |
extend | laughing | humming),
end-line?, end-paragraph?, %editorial;)>
<VATTLIST 1lyric
number NMTOKEN #IMPLIED
name CDATA #IMPLIED
%justify;
%position;
%placement;
Y%color;
%print-object;
%time-only;
%optional ~unique-id;

In lyrics:

e word extensions are represented using the ’<extend>’ element;

e hyphenation is indicated by the '<syllabic>’ element, which can be '<single>’, '<begin>’,
<end>’, or '<middle>’. These represent single-syllable words, word-beginning syllables,
word-ending syllables, and mid-word syllables, respectively;

e multiple syllables on a single note are separated by ’<elision>’ elements. A hyphen in
the text element should only be used for an actual hyphenated word;

e two text elements that are not separated by an ’<elision>’ element are part of the same
syllable, but may have different text formatting.

The '<text>’ sub-element contains the text to be sung. It can have attributes controlling
the way it is displayed:

<VELEMENT text (#PCDATA)>
<IATTLIST text
%font;
Y%color;
%text-decoration;
%text-rotation;
%letter -spacing;
xml:lang NMTOKEN #IMPLIED
%text-direction;
>
<VELEMENT syllabic (#PCDATA)>

28/40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/dtds/3.1/schema/note.mod

For example, the first note of QuemQueritis.xml contains the single word 'Quem’:

Quem queritis

p Angelus dicit: . . e | L
i | I | I i I 1 I | I 1 [~ | | | | 1 | | I = | |
-~ T . o ' o ‘
Quemque - ri - tisin sepul - chro, 0o Chri -sti - colae?
<note>
<pitch>
<step>G</step>
<octave>4</octave>
</pitch>

<duration>2</duration>
<voice>1</voice>
<type>quarter</type>
<stem>up</stem>
<notations>
<slur type="start" number="1"/>
</notations>
<lyric number="1">
<syllabic>single</syllabic>
<text>Quem</text>
</lyric>
</note>

15.2 Stanzas

Stanzas are not represented in MusicXML per se, but implicitly: the 'number’ attribute of the
'<1lyric>’ element is used to specify the stanza number.

Forexanuﬂe,hl1yrics/Multip1eStanzas.xml,theﬁrﬁ;noua(Eb)ofthefhstchomiinthe
upper staff contains the lyrics for the first syllable of all the successive stanzas, preceded by the
stanza number and a dot:

Multiple stanzas

 ———! | —
Violins 1] I
1. Sing out all your prais-es
2. For the Son has ris -en
3. No more let the voice of
4. For your guilt is nailed un
H. Deathand all his min-ions
6. Je - sus Christis ris-en
Ly o B] A N
Violoncellos FERh—#— — |||
NS S I '

Listing 23: Multiple stanzas example

<note default-x="129.06" default-y="-40.00">
<pitch>
<step>E</step>
<alter>-1</alter>
<octave>4</octave>
</pitch>
<duration>1</duration>
<voice>1</voice>
<type>eighth</type>
<stem>up</stem>
<beam number="1">begin</beam>
<lyric number="1">

29/40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/QuemQueritis.xml
https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/lyrics/MultipleStanzas.xml

<syllabic>single</syllabic>
<text>1. Sing</text>
</lyric>

<lyric number="2">
<syllabic>single</syllabic>
<text>2. For</text>
</lyric>

<lyric number="3">
<syllabic>single</syllabic>
<text>3. No</text>
</lyric>

<lyric number="4">
<syllabic>single</syllabic>
<text>4. For</text>
</lyric>

<lyric number="5">
<syllabic>single</syllabic>
<text>5. Death</text>
</lyric>

<lyric number="6">
<syllabic>begin</syllabic>
<text>6. Je</text>
</lyric>

</note>

<note default-x="129.06" default-y="-30.00">

<chord/>

<pitch>
<step>G</step>
<octave>4</octave>
</pitch>

<duration>1</duration>

<voice>1</voice>

<type>eighth</type>

<stem>up</stem>

</note>

16 Multiple voices

Let’s look in some detail at the score specified in multistaff/MultipleVoicesPerPart.xml:

Multiple Voices Per Part

Piano l

The first voice in upper staff ’1” has number ’1’. The '<forward>’ element is used because
there no note in this voice upon the first beat, whose duration is '96’ divisions. This element
allows drawing to continue a bit further in the voice, without drawing rests in-between.:

<forward>
<duration>96</duration>
<voice>1</voice>
<staff>1</staff>

</forward>
<note default-x="154">
<pitch>
<step>B</step>

30,/40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/multistaff/MultipleVoicesPerPart.xml

<alter>-1</alter>
<octave>4</octave>
</pitch>
<duration>144</duration>
<voice>1</voice>
<type>quarter</type>
<dot/>
<stem default-y="15.5">up</stem>
<staff>1</staff>

</note>
<note default-x="225">
<pitch>
<step>C</step>
<octave>5</octave>
</pitch>

<duration>48</duration>
<voice>1</voice>
<type>eighth</type>
<stem default-y="18">up</stem>
<staff>1</staff>

</note>

The notes in voice '2’ in staff ’1’ can now be described, but only after a <backup>’ element
that places the ”drawing position” back to the beginning of the measure:

<backup>
<duration>288</duration>
</backup>
<note default-x="108">
<pitch>
<step>D</step>
<octave>4</octave>
</pitch>

<duration>96</duration>
<voice>2</voice>
<type>quarter</type>

<stem default-y="0.5">up</stem>
<staff>1</staff>

</note>
<note default-x="154">
<pitch>
<step>F</step>
<octave>4</octave>
</pitch>

<duration>96</duration>
<voice>2</voice>
<type>quarter</type>
<stem default-y="-63">down</stem>
<staff>1</staff>
</note>
<note default-x="201">
<pitch>
<step>G</step>
<octave>4</octave>
</pitch>
<duration>96</duration>
<voice>2</voice>
<type>quarter</type>
<stem default-y="-60.5">down</stem>
<staff>1</staff>
</note>

31,40

Then comes the specification of voice ’3’ in staff ’2’, again after a '<backup>’ element to

place the drawing position at the beginning of the measure:

<backup>
<duration>288</duration>
</backup>
<note default-x="108">
<pitch>
<step>B</step>

<alter>-1</alter>
<octave>1</octave>
</pitch>
<duration>96</duration>
<voice>3</voice>
<type>quarter</type>
<stem default-y="5.5">up</stem>
<staff>2</staff>

</note>
<note default-x="154">
<pitch>
<step>D</step>
<octave>3</octave>
</pitch>

<duration>96</duration>
<voice>3</voice>
<type>quarter</type>
<stem default-y="-55.5">down</stem>
<staff>2</staff>
</note>
<note default-x="201">
<pitch>
<step>E</step>
<alter>-1</alter>
<octave>3</octave>
</pitch>
<duration>96</duration>
<voice>3</voice>
<type>quarter</type>
<stem default-y="-50.5">down</stem>
<staff>2</staff>
</note>

17 Creating MusicXML data

This can be done in various ways:

e by hand, using a text editor: possible, but unrealistic for usual scores;
e by exporting the score as an MusicXML text file with a GUI music score editor;

e by scanning a graphics files containing a ready-to-print score, with tools such as PhotoScore
Ultimate™;

e by programming an application that outputs MusicXML text.

This author has performed manual text editing on some of the samples supplied with
libmusicxml? in order to perform tests and debug xm121ly, but this is a particular case.

Exporting to MusicXML is probably the most frequent way, and there are applications that
do a good job at that. If an application supports say strings instruments scordaturas in scores,
then creating a ’<scordatura>’ element is not very difficult.

32/40

N

Scanning graphical scores is a tough problem: how do you tell lyrics from annotations such
as ‘cresc.’ or tempos such as ’Allegro’? One usually has to manually fix scanning errors and
the category of some text fragments after scanning to get good results. And, of course, the
scanning application should create quality MusicXML data.

Creating MusicXML by an application is a matter of computer programming, and requires
software development skills. As an example, 1ibmusicxml2 supplies the necessary tools, and

one can obtain:

<attributes>
<key>
<fifths>-1</fifths>
</key>
</attributes>

with C++ code such as:

Listing 24: Creating a '<key>’ element in an application

0N

Sxmlelement attributes = factory::instance().create(k_attributes);

Sxmlelement key = factory::instance().create(k_key);
key->push (newElement (k_fifths, "1"));
attributes ->push (key);

Here is a score containing random 3-note chords created by RandomChords.cpp, a C++
small program provided as a example of using libmusicxml2 to create MusicXML data:

Random 3-note Chords

2 3 . 4
ros | | L
Part name I 4 I 5
LE— =

I I I < |

18 Importing MusicXML data

Many GUI applications provide a way to import MusicXML data, often with some limitations.

We show some of them below.
It is worth noting that MuseScore 3.3.4 does a good job at issuing warnings if the MusicXML

data is not well-formed according to the DTD.

18.1 Small element, big effect

The '<harmony>’ element can contain an '<inversion>’ sub-element to indicate the number of
the chord inversion. Some applications ignore this element when importing MusicXML data,
because it takes full knowledge of chords structures to compute the bass note of inverted chords.

Here is how xm121y handlles the second inversion of the chord in harmonies/Inversion.xml:

Harmony inversion

o FHCH

===

33/40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/samples/RandomChords.cpp
https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/harmonies/Inversion.xml

Listing 25: Harmony inversion

<harmony>
<root>
<root-step>F</root-step>
<root-alter>1</root-alter>
</root>
<kind>major</kind>
<inversion>2</inversion>
</harmony>

18.2 Elements handled in different ways

Multi-measure rests are specified in MusicXML with the '<multiple-rest>’ element. All mea-
sures in the sequence have to be explicitly present in the MusicXML data.

For example, the first two measures of rests/MultiMeasureRests.xml are a multi-measure
rest, described by:

<part id="P1">
<measure number="1">
<attributes>
<divisions>1</divisions>
<key>
<fifths>0</fifths>
<mode>major</mode>
</key>
<time symbol="common">
<beats>4</beats>
<beat -type>4</beat-type>
</time>
<clef>
<sign>G</sign>
<line>2</1line>
</clef>
<measure-style>
<multiple-rest>2</multiple-rest>
</measure-style>
</attributes>
<note>
<rest/>
<duration>4</duration>
<voice>1</voice>
</note>
</measure>

<measure number="2">
<note>
<rest/>
<duration>4</duration>
<voice>1</voice>
</note>
</measure>

This file is handled differently by various applications, as can be seen below.

34,40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/rests/MultiMeasureRests.xml

MuseScore 3.3.4 displays it this way:

Multi-measure rests

bt

B
1
1

musicxml2ly produces:

0 2 4 3
!:? T |

Sibelius™ 7.1.3 produces:

Multi-measure rests

Je, SN
P

Finale™ 2014 produces:

Score

Multi-measure rests

Composer

=N
ar

xml121y is still experimental, and currently produces:

Multi-measure rests
92 3 4 5 3 8 9 9 11

35,/40

18.3 Elements often not well handled

There are elements that are not displayed in a ”standard” way by the usual music score editors.
One of them is the '<beat-repeat>’, found for example in repeats/BeatRepeat.xml.

MuseScore 3.3.4, musicxml2ly, xm121y and Sibelius™ 7.1.3 produce the following, i.e. they
ignore the beat repeat altogether:

Beat repeat

Finale™ 2014 produces:

Score
Beat repeat
Composer
- , '
Music oy 7 7 7 ; |
[o

And if one exports that score from Finale™ 2014 to MusicXML, the beat repeat information
is lost, see repeats/BeatRepeatExportedFromFinale.xml.

18.4 Elements usually not handled

There are elements that are not displayed by the usual music score editors, because there is no
"standard” way to do so. One of them is the scordatura used on string instrument.

For example, the scordatura in strings/Scordatura.xml is the case where the sixth string
of the guitar is tuned a tone down to D, which can be described by:

Scordatura example

Scordatura

I

!

'

L'_@'r"ﬁ}
q

...
Scord.

Listing 26: Scordatura example

<scordatura>

<accord string="6">
<tuning-step>D</tuning-step>
<tuning-alter>0</tuning-alter>
<tuning-octave>3</tuning-octave>

</accord>

<accord string="5">
<tuning-step>A</tuning-step>
<tuning-alter>0</tuning-alter>
<tuning-octave>3</tuning-octave>

</accord>

<accord string="4">

36,/40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/repeats/BeatRepeat.xml
https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/repeats/BeatRepeatExportedFromFinale.xml
https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/strings/Scordatura.xml

1

N

NN NN NN N NN

9

)

N =

o 9 o oA W

L=

<tuning-step>D</tuning-step>
<tuning-alter>0</tuning-alter>
<tuning-octave>4</tuning-octave>

</accord>

<accord string="3">
<tuning-step>G</tuning-step>
<tuning-alter>0</tuning-alter>
<tuning-octave>4</tuning-octave>

</accord>

<accord string="2">
<tuning-step>B</tuning-step>
<tuning-alter>0</tuning-alter>
<tuning-octave>4</tuning-octave>

</accord>

<accord string="1">
<tuning-step>E</tuning-step>
<tuning-alter>0</tuning-alter>
<tuning-octave>5</tuning-octave>

</accord>

</scordatura>

18.5 A real challenge

The file challenging/BeethovenNinthSymphony.xml is over 66 megabytes large — it contains
the whole score for this symphony.

The interested reader is urged to try and import this file into their favorite score editing
sofware. This author’s experience is that:

e Sibelius™ 7.1.3 handles it alright;
e Finale™ 2014 finds it well-formed, but too big to be opened;
e MuseScore 3.3.4 opens it, but then working on the file is extremely slow;

e musicxml2ly converts it to LilyPond syntax as of 2.19.83, and the result has some issues
that should be fixed rather easily;

e xml121y converts it to LilyPond alright, but the issues in the LilyPond code generated show
that this converter is still experimental. . .

19 Conclusion

MusicXML supports other score elements such as harmonies and figured bass, as well as nested
repeats. There is a lot of information about MusicXML on the Internet. And of course, plenty
of targeted, ready-to-use examples can be found in files/samples/musicxml.

MusicXML has become a de facto standard for music scores data interchange between ap-
plications. The way it is exported and imported by the various applications is quite diverse
though, and manual editing of the result is to be expected after import.

MusicXML is not the whole story, though. The W3C Music Notation Community Group
is working on MNX (https://w3c.github.io/mnx), as a successor to MusicXML. One part
of it is MNX-Common, which aims at being less verbose and more semantics-oriented than
MusicXML.

For example, consider:

<score-partwise version="3.1">
<part-1list>
<score-part id="P1">
<part-name>Music</part-name>
</score-part>
</part-1list>

37/40

https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml/challenging/BeethovenNinthSymphony.xml
https://github.com/grame-cncm/libmusicxml/tree/lilypond/files/samples/musicxml
https://w3c.github.io/mnx

<part id="P1">
<measure number="1">
<attributes>
<divisions>1</divisions>
<key>
<fifths>0</fifths>
</key>
<time>
<beats>4</beats>
<beat-type>4</beat-type>
</time>
<clef>
<sign>G</sign>
<line>2</line>
</clef>
</attributes>
<note>
<pitch>
<step>C</step>
<octave>4</octave>
</pitch>
<duration>4</duration>
<type>whole</type>
</note>
</measure>
</part>
</score-partwise>

In MNX-Common, this can be written in a more concise way:

Listing 27: MNX-Common example

<mnx>
<score>
<mnx-common profile="standard">
<global>
<measure>
<directions>
<time signature="4/4"/>
</directions>
</measure>
</global>
<part>
<part-name>Music</part-name>
<measure barline="regular">
<sequence>
<directions>
<clef sign="G" line="2"/>
</directions>
<event value="/1">
<note pitch="C4"/>
</event>
</sequence>
</measure>
</part>
</mnx-common >
</score>
</mnx>

Let’s conclude with a tribute to the manual score engravers, whose skills have produced so
many beautiful scores for centuries! Reaching the quality of their work is still a challenge for

current music scoring software.

38,/40

Listings

1 '<backup>’ and <forward>’ definition oo
2 <backup>’ and <forward> example
3 HelloWorld.xml o v v vt e i ettt e e
4 Relative lengths o
5 Abolute lengths
6 Scaling example L
7 Notations definition L Lo
8 Identification and rights example oL
9 Credits example
10 Page layout example L
11 Nested part groups example
12 Overlapping groups xml121y error mMeSSAZE « « « v v v v v v e e
13 Clef, key and time signature example
14 Humdrum/Scot non-traditional key example
15 Swing tempo example L
16 Note definition L e
17 Minimal score example Lo Lo
18 Grace notes example L
19 Tieand slur example L
20 Chord example e
21 Tuplet example L
22 Final barline e
23 Multiple stanzas example Lo
24 Creating a '<key>’ element in an application
25 Harmony inversion i e e e
26 Scordatura example L. L
27 MNX-Common example L

Contents

1 Software tools used

2 Overview of MusicXML
2.1 What is MusicXML? o
2.2 Part-wise vs. measure-wise descriptionso Lo
2.3 MusicXML’s formal definition oL oo
2.4 Markupso
2.5 Overall structure of MusicXML data
2.6 What is the semantics of MusicXML data?

3 A complete example

4 Measurements
4.1 Geometrical lengths L o
4.2 Notes durations L L
4.3 Graphics and sound

5 Measures

6 Elements attachment decisions

39/40

7 Score description structure

7.1 Identification, rights and credits
7.2 Score geometry
7.3 Part groups and parts Lo
7.4 Staves and voices
7.5 Clefs, keys and time signatures
7.6 Metromone and tempoo

8 Notes
8.1 Accidentals
8.2 Articulations
8.3 Ornaments
8.4 Dynamics o e
8.5 An example of articulations and dynamics
8.6 Gracemnotes

9 Ties

10 Slurs

11 Tie and slur example
12 Chords
13 Tuplets

14 Barlines and repeats

14.1 Simple barlines Lo o
14.2 Repeats
14.3 Arepeatexample L.

15 Lyrics

15.1 The <1lyric>’element
15.2 Stanzas

16 Multiple voices
17 Creating MusicXML data

18 Importing MusicXML data

18.1 Small element, bigeffect 0.
18.2 Elements handled in different ways
18.3 Elements often not well handled
18.4 Elements usually not handled
18.5 Areal challengeo

19 Conclusion

10
10
11
12
13
13
15

16
18
18
19
19
19
20

21

21

22

23

24

25
25
26
26

28
28
29

30

32

33
33
34
36
36
37

37

40/40

	Software tools used
	Overview of MusicXML
	What is MusicXML?
	Part-wise vs. measure-wise descriptions
	MusicXML's formal definition
	Markups
	Overall structure of MusicXML data
	What is the semantics of MusicXML data?

	A complete example
	Measurements
	Geometrical lengths
	Notes durations
	Graphics and sound

	Measures
	Elements attachment decisions
	Score description structure
	Identification, rights and credits
	Score geometry
	Part groups and parts
	Staves and voices
	Clefs, keys and time signatures
	Metromone and tempo

	Notes
	Accidentals
	Articulations
	Ornaments
	Dynamics
	An example of articulations and dynamics
	Grace notes

	Ties
	Slurs
	Tie and slur example
	Chords
	Tuplets
	Barlines and repeats
	Simple barlines
	Repeats
	A repeat example

	Lyrics
	The '<lyric>' element
	Stanzas

	Multiple voices
	Creating MusicXML data
	Importing MusicXML data
	Small element, big effect
	Elements handled in different ways
	Elements often not well handled
	Elements usually not handled
	A real challenge

	Conclusion

