
Counterpoint Systems Foundry, Inc
Microsoft Corporation

March 18, 1999

Version 1.2

IrDA Object Exchange Protocol

IrOBEX

Object Exchange Protocol Version 1.2

2

Authors:
Pat Megowan, Dave Suvak, Doug Kogan (Counterpoint Systems Foundry)

Contributors:
Wassef Haroun, Bei-jing Guo, Cliff Strom (Microsoft)
Kerry Lynn (Apple)
Brian McBride, Stuart Williams (Hewlett Packard)
Petri Nykanen (Nokia)
Deepak Amin (Indicus)

Editors:
Doug Kogan

Document Status: Version 1.2
Major changes from Version 1.1 draft to 1.2:
• Incorporate the OBEX Errata approved at the January 1999 IrDA meeting.
• Incorporate the OBEX Errata approved in March of 1999.

Major changes from Version 1.0 to 1.1 draft:
• Incorporate the “OBEX Errata v.3” approved at the July 1997 IrDA meeting.
• Incorporate the OBEX Errata approved at the October 1997 IrDA meeting.
• Incorporate the “IrOBEX Test Guidelines” approved at the October 1998 IrDA meeting.

Object Exchange Protocol Version 1.2

3

INFRARED DATA ASSOCIATION (IrDA) - NOTICE TO THE TRADE -

SUMMARY:

Following is the notice of conditions and understandings upon which this document is made available to members
and non-members of the Infrared Data Association.

• Availability of Publications, Updates and Notices
• Full Copyright Claims Must be Honored
• Controlled Distribution Privileges for IrDA Members Only
• Trademarks of IrDA - Prohibitions and Authorized Use
• No Representation of Third Party Rights
• Limitation of Liability
• Disclaimer of Warranty
• Certification of Products Requires Specific Authorization from IrDA after Product Testing for IrDA Specification

Conformance

IrDA PUBLICATIONS and UPDATES:

IrDA publications, including notifications, updates, and revisions, are accessed electronically by IrDA members in
good standing during the course of each year as a benefit of annual IrDA membership. Electronic copies are
available to the public on the IrDA web site located at irda.org. IrDA publications are available to non-IrDA
members for a pre-paid fee. Requests for publications, membership applications or more information should be
addressed to: Infrared Data Association, P.O. Box 3883, Walnut Creek, California, U.S.A. 94598; or e-mail
address: info@irda.org; or by calling John LaRoche at (510) 943-6546 or faxing requests to (510) 934-5600.

COPYRIGHT:

1. Prohibitions: IrDA claims copyright in all IrDA publications. Any unauthorized reproduction, distribution, display or
modification, in whole or in part, is strictly prohibited.

2. Authorized Use: Any authorized use of IrDA publications (in whole or in part) is under NONEXCLUSIVE USE LICENSE
ONLY. No rights to sublicense, assign or transfer the license are granted and any attempt to do so is void.

DISTRIBUTION PRIVILEGES for IrDA MEMBERS ONLY:

IrDA Members Limited Reproduction and Distribution Privilege: A limited privilege of reproduction and distribution of
IrDA copyrighted publications is granted to IrDA members in good standing and for sole purpose of reasonable
reproduction and distribution to non-IrDA members who are engaged by contract with an IrDA member for the
development of IrDA certified products. Reproduction and distribution by the non-IrDA member is strictly prohibited.

TRANSACTION NOTICE to IrDA MEMBERS ONLY:

Each and every copy made for distribution under the limited reproduction and distribution privilege shall be
conspicuously marked with the name of the IrDA member and the name of the receiving party. Upon reproduction
for distribution, the distributing IrDA member shall promptly notify IrDA (in writing or by e-mail) of the identity of the
receiving party.

A failure to comply with the notification requirement to IrDA shall render the reproduction and distribution
unauthorized and IrDA may take appropriate action to enforce its copyright, including but not limited to, the
termination of the limited reproduction and distribution privilege and IrDA membership of the non-complying
member.

TRADEMARKS:

Object Exchange Protocol Version 1.2

4

1. Prohibitions: IrDA claims exclusive rights in its trade names, trademarks, service marks, collective membership marks and
certification marks (hereinafter collectively "trademarks"), including but not limited to the following trademarks: INFRARED
DATA ASSOCIATION (wordmark alone and with IR logo), IrDA (acronym mark alone and with IR logo), IR logo, IR DATA
CERTIFIED (composite mark), and MEMBER IrDA (wordmark alone and with IR logo). Any unauthorized use of IrDA
trademarks is strictly prohibited.

2. Authorized Use: Any authorized use of a IrDA collective membership mark or certification mark is by NONEXCLUSIVE
USE LICENSE ONLY. No rights to sublicense, assign or transfer the license are granted and any attempt to do so is void.

NO REPRESENTATION of THIRD PARTY RIGHTS:

IrDA makes no representation or warranty whatsoever with regard to IrDA member or third party ownership,
licensing or infringement/non-infringement of intellectual property rights. Each recipient of IrDA publications,
whether or not an IrDA member, should seek the independent advice of legal counsel with regard to any possible
violation of third party rights arising out of the use, attempted use, reproduction, distribution or public display of
IrDA publications.

IrDA assumes no obligation or responsibility whatsoever to advise its members or non-members who receive or are
about to receive IrDA publications of the chance of infringement or violation of any right of an IrDA member or third
party arising out of the use, attempted use, reproduction, distribution or display of IrDA publications.

LIMITATION of LIABILITY:

BY ANY ACTUAL OR ATTEMPTED USE, REPRODUCTION, DISTRIBUTION OR PUBLIC DISPLAY OF ANY IrDA
PUBLICATION, ANY PARTICIPANT IN SUCH REAL OR ATTEMPTED ACTS, WHETHER OR NOT A MEMBER
OF IrDA, AGREES TO ASSUME ANY AND ALL RISK ASSOCIATED WITH SUCH ACTS, INCLUDING BUT NOT
LIMITED TO LOST PROFITS, LOST SAVINGS, OR OTHER CONSEQUENTIAL, SPECIAL, INCIDENTAL OR
PUNITIVE DAMAGES. IrDA SHALL HAVE NO LIABILITY WHATSOEVER FOR SUCH ACTS NOR FOR THE
CONTENT, ACCURACY OR LEVEL OF ISSUE OF AN IrDA PUBLICATION.

DISCLAIMER of WARRANTY:

All IrDA publications are provided "AS IS" and without warranty of any kind. IrDA (and each of its members, wholly
and collectively, hereinafter "IrDA") EXPRESSLY DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE AND WARRANTY OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS.
IrDA DOES NOT WARRANT THAT ITS PUBLICATIONS WILL MEET YOUR REQUIREMENTS OR THAT ANY
USE OF A PUBLICATION WILL BE UN-INTERRUPTED OR ERROR FREE, OR THAT DEFECTS WILL BE
CORRECTED. FURTHERMORE, IrDA DOES NOT WARRANT OR MAKE ANY REPRESENTATIONS
REGARDING USE OR THE RESULTS OR THE USE OF IrDA PUBLICATIONS IN TERMS OF THEIR
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NO ORAL OR WRITTEN PUBLICATION OR
ADVICE OF A REPRESENTATIVE (OR MEMBER) OF IrDA SHALL CREATE A WARRANTY OR IN ANY WAY
INCREASE THE SCOPE OF THIS WARRANTY.

LIMITED MEDIA WARRANTY:

IrDA warrants ONLY the media upon which any publication is recorded to be free from defects in materials and
workmanship under normal use for a period of ninety (90) days from the date of distribution as evidenced by the
distribution records of IrDA. IrDA's entire liability and recipient's exclusive remedy will be replacement of the media
not meeting this limited warranty and which is returned to IrDA. IrDA shall have no responsibility to replace media
damaged by accident, abuse or misapplication. ANY IMPLIED WARRANTIES ON THE MEDIA, INCLUDING THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED
IN DURATION TO NINETY (90) DAYS FROM THE DATE OF DELIVERY. THIS WARRANTY GIVES YOU
SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY FROM PLACE TO
PLACE.

CERTIFICATION and GENERAL:

Object Exchange Protocol Version 1.2

5

Membership in IrDA or use of IrDA publications does NOT constitute IrDA compliance. It is the sole responsibility of
each manufacturer, whether or not an IrDA member, to obtain product compliance in accordance with IrDA rules for
compliance.

All rights, prohibitions of right, agreements and terms and conditions regarding use of IrDA publications and IrDA
rules for compliance of products are governed by the laws and regulations of the United States. However, each
manufacturer is solely responsible for compliance with the import/export laws of the countries in which they conduct
business. The information contained in this document is provided as is and is subject to change without notice.

Object Exchange Protocol Version 1.2

6

Contents
1. INTRODUCTION .. 9

1.1 Tasks, Platforms, and Goals ... 9
1.2 OBEX components... 10

1.2.1 OBEX Session Protocol... 10
1.2.2 OBEX Application Framework ... 11

1.3 Relation to other IrDA protocols ... 12
1.4 Specification versus Implementation ... 12

1.4.1 Mapping OBEX packets to TinyTP/IrLMP packets ... 12
1.5 References.. 13

2. OBEX OBJECT MODEL... 14

2.1 OBEX Headers.. 14
2.2 Header descriptions... 15

2.2.1 Count .. 15
2.2.2 Name .. 15
2.2.3 Type.. 16
2.2.4 Length... 16
2.2.5 Time.. 16
2.2.6 Description .. 16
2.2.7 Target ... 17
2.2.8 HTTP .. 17
2.2.9 Body, End-of-Body .. 17
2.2.10 Who .. 17
2.2.11 Connection Identifier ... 18
2.2.12 Application Request-Response Parameters... 18
2.2.13 Authenticate Challenge ... 19
2.2.14 Authenticate Response.. 19
2.2.15 Object Class.. 19
2.2.16 User Defined Headers ... 19

3. SESSION PROTOCOL... 20

3.1 Request format... 21
3.2 Response format.. 21

3.2.1 Response Code values.. 22
3.3 OBEX Operations and Opcode definitions... 23

3.3.1 Connect... 23
3.3.2 Disconnect .. 26
3.3.3 Put .. 27
3.3.4 Get.. 29
3.3.5 Abort ... 30
3.3.6 SetPath ... 30

3.4 Packet Timeouts... 31
3.5 Authentication Procedure.. 31

3.5.1 Digest Challenge... 32
3.5.2 Digest Response ... 34
3.5.3 Hashing Function .. 35
3.5.4 Authentication Examples... 35

3.6 Multiplexing with OBEX... 37
3.6.1 Connections multiplexed at the OBEX Command level ... 37
3.6.2 Connections multiplexed at the OBEX Transport layer .. 38

4. OBEX APPLICATION FRAMEWORK .. 39

Object Exchange Protocol Version 1.2

7

4.1 The Default OBEX Server... 39
4.2 The Inbox Service .. 39
4.3 Inbox Connection... 40
4.4 Capability Service .. 40
4.5 Custom OBEX applications... 40
4.6 Directed Operations and Connections ... 41

4.6.1 Directed Connection Mechanics .. 41
4.6.2 Target Header Processing... 41

4.7 OBEX Access Methods .. 42
4.7.1 File Access.. 42
4.7.2 Database Access... 42
4.7.3 Process / RPC... 42

5. USING OBEX OVER IRDA ULTRA-LITE (CONNECTIONLESS USE) 43

6. IRDA OBEX IAS ENTRIES, SERVICE HINT BIT AND TCP PORT NUMBER 44

6.1 IAS entry ... 44
6.1.1 IrDA:TinyTP:LsapSel... 44

6.2 Service Hint bits ... 44
6.3 TCP port number.. 44

7. OBEX EXAMPLES ... 45

7.1 Simple Put - file/note/ecard transfer ... 45
7.2 Simple Get - field data collection .. 46
7.3 Example Get of the Capability Object ... 47
7.4 Connect using Target, Who and Connection Id headers... 48
7.5 Combined Get and Put - paying for the groceries ... 49

8. OBEX SERVICES AND PROCEDURES... 51

8.1 Folder Browsing Service ... 51
8.1.1 Exchanging Folder Listings.. 51
8.1.2 Navigating Folders .. 52
8.1.3 Security... 52

8.2 Simple OBEX Put file transfer (+ SetPath).. 53
8.3 Telecom/IrMC Synchronization Service.. 53
8.4 OBEX Get Default Object... 53

8.4.1 Get default vCard example ... 54
8.5 Capability Service .. 54

8.5.1 The Capability Object/Database .. 55
8.5.2 The Object Profile Database ... 55
8.5.3 Locating the Capability Service ... 55

9. OBEX OBJECTS.. 58

9.1 The Folder Listing Object.. 58
9.1.1 Element Specification.. 58
9.1.2 Folder Listing Details... 61
9.1.3 Encoding Folder Listing Objects .. 62
9.1.4 XML Document Definition.. 63

9.2 Generic File Object .. 64
9.2.1 Introduction ... 64
9.2.2 Commonly Used Headers.. 64
9.2.3 Response Codes Commonly Used in File Exchange ... 64
9.2.4 Example Put Exchange... 65

9.3 The Capability Object .. 65

Object Exchange Protocol Version 1.2

8

9.3.1 General Information Section.. 66
9.4 The Object Profile Object .. 68

9.4.1 Creating an Object Profile ... 68
9.4.2 Object Profiles... 69
9.4.3 Object Profile Example ... 69

10. TEST GUIDELINES .. 71

10.1 Introduction.. 71
10.1.1 Objective... 71
10.1.2 Scope.. 71

10.2 The Compliance Statement ... 71
10.2.1 Test Results .. 71
10.2.2 Required Behaviors... 72
10.2.3 Client Questions.. 72
10.2.4 Server Questions .. 73
10.2.5 Test Numbering System.. 73

10.3 Test Environment... 74
10.3.1 Physical Setup .. 74
10.3.2 Electromagnetic Interference Sources ... 74
10.3.3 Test Personnel .. 74

10.4 Connected Tests .. 74
10.4.1 Connect Operation .. 74
10.4.2 Disconnect Operation .. 75
10.4.3 Put Operation.. 75
10.4.4 Get Operation ... 75
10.4.5 Abort Operation... 76
10.4.6 SetPath Operation... 77
10.4.7 Server Rejection Responses ... 77
10.4.8 Miscellaneous Tests .. 77

10.5 Non-Connected Tests .. 77
10.5.1 Ultra Put Tests .. 77
10.5.2 IAS Tests .. 78
10.5.3 Tiny TP Connection Tests ... 78

10.6 Header Tests .. 79
10.6.1 Split Header Tests... 79
10.6.2 Header Type Tests .. 79

11. APPENDICES ... 80

11.1 Minimum level of service... 80
11.2 Extending OBEX .. 80
11.3 Proposed Additions to OBEX.. 80
11.4 Known Target Identifiers ... 80
11.5 MD5 Algorithm for Authentication .. 80

Object Exchange Protocol Version 1.2

9

1. Introduction

1.1 Tasks, Platforms, and Goals

One of the most basic and desirable uses of the IrDA infrared communication protocols is simply to send
an arbitrary “thing”, or data object, from one device to another, and to make it easy for both application
developers and users to do so. We refer to this as object exchange (un-capitalized), and it is the subject
of the protocol described in this document.

This document describes the current status of the protocol IrOBEX (for IrDA Object Exchange, OBEX for
short). OBEX is a compact, efficient, binary protocol that enables a wide range of devices to exchange
data in a simple and spontaneous manner. OBEX is being defined by members of the Infrared Data
Association to interconnect the full range of devices that support IrDA protocols. It is not, however,
limited to use in an IrDA environment.

OBEX performs a function similar to HTTP, a major protocol underlying the World Wide Web. However,
OBEX works for the many very useful devices that cannot afford the substantial resources required for
an HTTP server, and it also targets devices with different usage models from the Web. OBEX is enough
like HTTP to serve as a compact final hop to a device “not quite” on the Web.

A major use of OBEX is a “Push” or “Pull” application, allowing rapid and ubiquitous communications
among portable devices or in dynamic environments. For instance, a laptop user pushes a file to another
laptop or PDA; an industrial computer pulls status and diagnostic information from a piece of factory floor
machinery; a digital camera pushes its pictures into a film development kiosk, or if lost can be queried
(pulled) for the electronic business card of its owner. However, OBEX is not limited to quick connect-
transfer-disconnect scenarios - it also allows sessions in which transfers take place over a period of time,
maintaining the connection even when it is idle.

PCs, pagers, PDAs, phones, printers, cameras, auto-tellers, information kiosks, calculators, data
collection devices, watches, home electronics, industrial machinery, medical instruments, automobiles,
and office equipment are all candidates for using OBEX. To support this wide variety of platforms, OBEX
is designed to transfer flexibly defined “objects”; for example, files, diagnostic information, electronic
business cards, bank account balances, electrocardiogram strips, or itemized receipts at the grocery
store. “Object” has no lofty technical meaning here; it is intended to convey flexibility in what information
can be transferred. OBEX can also be used for Command and Control functions - directives to TVs,
VCRs, overhead projectors, computers, and machinery. Finally, OBEX can be used to perform complex
tasks such as database transactions and synchronization.

OBEX is designed to fulfill the following major goals:

1. Application friendly - provide the key tools for rapid development of applications.
2. Compact - minimum strain on resources of small devices.
3. Cross platform.
4. Flexible data handling, including data typing and support for standardized types - this will allow

devices to be simpler to use via more intelligent handling of data inside.
5. Maps easily into Internet data transfer protocols.
6. Extensible - provide growth path to future needs like security, compression, and other extended

features without burdening more constrained implementations.
7. Testable and Debuggable.

Object Exchange Protocol Version 1.2

10

1.2 OBEX components

The OBEX specification consists of two major parts: a protocol and an application framework. The OBEX
protocol is a session level protocol that specifies the structure for the conversation between devices. It
also contains a model for representing objects. The OBEX application framework is built on top of the
OBEX protocol. Its main purpose is to facilitate interoperability between devices using the OBEX
protocol. Both of these are discussed in more detail below.

1.2.1 OBEX Session Protocol

The OBEX protocol consists of two major elements: a model for representing objects (and information
that describes the objects), and a session protocol to provide a structure for the “conversation” between
devices. OBEX is a protocol for sending or exchanging objects and control information. In its simplest
form, it is quite compact and requires a small amount of code to implement. It can reside on top of any
reliable transport, such as that provided by IrDA Tiny TP [IRDATTP] (including IrDA Lite
implementations), or TCP/IP stream sockets. OBEX consists of the following pieces:

• An object model that carries information about the objects being sent, as well as containing the
objects themselves. The object model is built entirely with parsable headers, similar in concept to the
headers in HTTP.

• A session protocol, which structures the dialogue between two devices. The session protocol uses a

binary packet-based client/server request-response model.

• An IAS definition and hint bits for the service.

Object Exchange Protocol Version 1.2

11

1.2.2 OBEX Application Framework

The OBEX application framework is necessary to ensure interoperability between devices using OBEX. It
puts a structure on top of the OBEX protocol. The application framework is the foundation for a set of
standard OBEX services that satisfy many object exchange requirements. OBEX implementations are
not required to follow the conventions specified by the application framework but doing so will ensure
interoperability with other devices. The table below outlines the elements of the OBEX application
framework.

Element Description
OBEX Client An OBEX Client is the entity that initiates the underlying transport

connection to an OBEX server and initiates OBEX operations.

OBEX Server An OBEX Server is the entity that responds to OBEX operations. The OBEX
server waits for the OBEX client to initiate the underlying transport
connection.

Default OBEX Server The Default OBEX server is the server that resides at the LSAP-Sel
specified in the OBEX IAS definition. Other OBEX servers can exist but the
Default OBEX server is the “well known” server. This is analogous to the
HTTP server located at TCP port number 80.

OBEX Connection An OBEX Connection is a virtual binding between two applications or
services. An OBEX connection is initiated by sending an OBEX CONNECT
packet. Once a connection is established all operations sent over the
connection are interpreted in a continuous context.

Directed Connection A directed connection is one where the OBEX CONNECT packet contains
targeting information which the OBEX protocol uses to connect the client to
its intended service or application.

The Inbox Connection The inbox connection is the OBEX connection made to the default OBEX
server, where the OBEX CONNECT packet does not contain targeting
information. A number of services can be accessed via the inbox
connection. These services are described later.

Inbox The inbox is the intended recipient of a client push operation over the Inbox
Connection. The inbox does not have to be an actual storage location. It is
really a method for encapsulating the concept that the client pushes an
object to a recipient without the need to understand the details of how the
recipient stores the object.

Application An OBEX application communicates using a proprietary method known only
by the manufacturer. Such applications can only expect to be understood by
exact peers. Alternatively, an application may be a service with proprietary
extensions. In this case the application must know if it is communicating
with a service or application peer.

Service An OBEX service communicates using procedures specified in a publicly
available standard. Such as in IrMC or this specification.

Capability Service The capability service is used to find information about the OBEX server
including device information, types of objects supported, object profiles and
supported applications.

Object Exchange Protocol Version 1.2

12

1.3 Relation to other IrDA protocols

The following figure illustrates where OBEX fits into the overall scheme of IrDA software.

IrLAP

Tiny TP / Ultra Transports

IrLMP LM-MUX

IAS
Service

The Wide World
of Applications

OBEX Application
Framework

OBEX Applications
and Services

OBEX Session Protocol

Figure 1. OBEX in the IrDA architecture

The above figure places OBEX within the IrDA protocol hierarchy, but it could just as well appear above
some other transport layer that provides reliable flow-controlled connections. Connection oriented
operation over IrDA protocols uses Tiny TP flow control to allow for multiple logical connections,
including simultaneous OBEX client/server sessions in both directions.

1.4 Specification versus Implementation

This description does not specify any implementation of the protocol; only the requirements that the
implementation must embody. In particular, this specification does not specify APIs at either the top or
bottom boundaries. The primary OBEX context assumes a lower protocol layer that supports reliable
data interchange with other devices (as provided by [IRDATTP]).

1.4.1 Mapping OBEX packets to TinyTP/IrLMP packets

There is no requirement on the alignment of OBEX packets within TinyTP or IrLMP PDUs (packets).
Except that all OBEX data shall be carried in data packets, not in TinyTP/IrLMP Connect or Disconnect
packets.

OBEX specifically does not use Tiny TP segmentation and reassembly. There is no relationship between
OBEX packets and TTP-SDUs. Therefore, the TinyTP Connect packet should not use the MaxSduSize
parameter.

Object Exchange Protocol Version 1.2

13

1.5 References

IRDALAP Serial Infrared Link Access Protocol, IrLAP, Version 1.1, Infrared Data Association

IRDALMP Link Management Protocol, IrLMP, Version 1.1, Infrared Data Association

IRDACOM Serial and parallel port emulation, IrCOMM, Version 1.0, Infrared Data Association

IRDATTP Tiny Transport Protocol, TinyTP, Version 1.1, Infrared Data Association

IRDAIAS IrLMP Hint Bit Assignments and Known IAS Definitions, Ver 1.0, IrDA

HTTP1.1 HTTP v1.1, HTTP 1.1 working group

IANAREG IANA media type registry

MIME Multipurpose Internet Mail Extensions

IRMC Infrared Data Association Specifications for Ir Mobile Communications (IrMC)
Version 1.1

Object Exchange Protocol Version 1.2

14

2. OBEX Object Model

The object model addresses the question of how objects are represented by OBEX. The model must deal
with both the object being transferred and information about the object. It does this by putting the pieces
together in a sequence of headers. A header is an entity that describes some aspect of the object, such
as name, length, descriptive text, or the object body itself. For instance, headers for the file jumar.txt
might contain the name, a type identifier of “text”, a description saying “How to use jumars to grow better
tomatoes”, the file length, and the file itself.

2.1 OBEX Headers

Headers have the general form:

<HI, the header ID>
<HV, the header value>

HI, the header ID, is an unsigned one-byte quantity that identifies what the header contains and how it is
formatted. HV consists of one or more bytes in the format and meaning specified by HI. All headers are
optional - depending on the type of device and the nature of the transaction, you may use all of the
headers, some, or none at all. IDs make headers parseable and order independent, and allow
unrecognized headers to be skipped easily. Unrecognized headers should be skipped by the receiving
device.

OBEX defines a set of headers that are used quite frequently and therefore benefit from a compact
representation. It also provides a mechanism to use any HTTP header, as well as user defined headers.
This small set will serve the needs of file transfer on PCs as well as the needs of many other devices,
while facilitating a clean mapping to HTTP when OBEX is used as a compact final hop in a web
communication.

The low order 6 bits of the header identifier are used to indicate the meaning of the header, while the
upper 2 bits are used to indicate the header encoding. This encoding provides a way to interpret
unrecognized headers just well enough to discard them cleanly. The length prefixed header encodings
send the length in network byte order, and the length includes the 3 bytes of the identifier and length. For
Unicode text, the length field (immediately following the header ID) includes the 2 bytes of the null
terminator (0x00, 0x00). Therefore the length of the string ”Jumar” would be 12 bytes; 5 visible
characters plus the null terminator, each two bytes in length.

The 2 high order bits of HI have the following meanings (shown both as bits and as a byte value):

Bits 8 and 7 of HI Interpretation
00 (0X00) null terminated Unicode text, length prefixed with 2 byte unsigned integer
01 (0X40) byte sequence, length prefixed with 2 byte unsigned integer
10 (0X80) 1 byte quantity
11 (0XC0) 4 byte quantity – transmitted in network byte order (high byte first)

Object Exchange Protocol Version 1.2

15

The Header identifiers are:

HI - identifier header name Description
0xC0 Count Number of objects (used by Connect)
0x01 Name name of the object (often a file name)
0x42 Type type of object - e.g. text, html, binary, manufacturer specific
0xC3 Length the length of the object in bytes
0x44
0xC4

Time date/time stamp – ISO 8601 version - preferred
date/time stamp – 4 byte version (for compatibility only)

0x05 Description text description of the object
0x46 Target name of service that operation is targeted to
0x47 HTTP an HTTP 1.x header
0x48
0x49

Body
End of Body

a chunk of the object body.
the final chunk of the object body

0x4A Who identifies the OBEX application, used to tell if talking to a peer
0xCB Connection Id an identifier used for OBEX connection multiplexing
0x4C App. Parameters extended application request & response information
0x4D Auth. Challenge authentication digest-challenge
0x4E Auth. Response authentication digest-response
0x4F Object Class OBEX Object class of object
0x10to 0x2F reserved this range includes all combinations of the upper 2 bits
0x30 to 0x3F user defined this range includes all combinations of the upper 2 bits

All allowable headers and formats thereof are listed by this table. Applications must not change the upper
bits on OBEX defined headers and expect anyone else to recognize them. Note that the header
identifiers are numbered in order, starting with zero. The high order bits which specify the encoding
obscure this linear sequence of header numbering.

Certain headers like Body are expected to be present repeatedly, however headers like Name and Time
do not necessarily make sense when sent multiple times. The behavior by the recipient of multiple non-
Body headers is not defined by the protocol.

2.2 Header descriptions

2.2.1 Count

Count is a four byte unsigned integer to indicate the number of objects involved in the operation.

2.2.2 Name

Name is a null terminated Unicode text string describing the name of the object.

Example: JUMAR.TXT

Though the Name header is very useful for operations like file transfer, it is optional - the receiving
application may know what to do with the object based on context, Type, or other factors. If the object is
being sent to a general purpose device such as a PC or PDA, this will normally be used as the filename
of the received object, so act accordingly. Receivers that interpret this header as a file name must be
prepared to handle Names that are not legitimate filenames on their system. In some cases an empty
Name header is used to specify a particular behavior; see the GET and SETPATH Operations. An empty
Name header is defined as a Name header of length 3 (one byte opcode + two byte length).

Object Exchange Protocol Version 1.2

16

2.2.3 Type

Type is a byte sequence consisting of null terminated ASCII text describing the type of the object, such
as text, binary, or vCard. Type is used by the receiving side to aid in intelligent handling of the object.
This header corresponds to the content-type header in HTTP.

Whenever possible, OBEX (like HTTP) uses IANA registered media types to promote interoperability
based on open standards. When a registered type is used, the HTTP canonical form for the object body
must also be used. In other words, if you say a thing is of type “text/html”, it must meet all the rules for
representing items of type “text/html”. OBEX follows RFC 1521 which defines the media type format and
handles Type header values are case insensitive values. See the following URL for a list of MIME
defined media types: http://www.isi.edu/in-notes/iana/assignments/media-types.

If no Type is specified, the assumed type is binary, and it is up to the receiving software to deal with it as
best it can. This may involve simply storing it without modification of any kind under the stated name,
and/or trying to recognize it by the extension on the name. For instance, a Microsoft Word file could be
sent with no type, and the receiving software, seeing the .doc suffix could choose to interpret it as a
Word file.

Though the Type header is very useful for transfer of non-file object types, it is optional - the receiving
application may know what to do with the object based on context, name, or other factors.

2.2.4 Length

Length is a four byte unsigned integer quantity giving the total length in bytes of the object. If the Length
is known in advance, this header should be used. This allows the receiver to quickly terminate transfers
requiring too much space, and also makes progress reporting easier.

If a single object exceeds 4 gigabytes - 1 in length, its size cannot be represented by this header. Instead
an HTTP content-length header should be used, which is ASCII encoded decimal and can represent
arbitrarily large values. However, implementations that cannot handle such large objects are not required
to recognize the HTTP header.

The Length header is optional, because in some cases, the length is not known in advance, and the
End-of-Body header will signal when the end of the object is reached.

2.2.5 Time

Time is a byte sequence that gives the object’s UTC date/time of last modification in ISO 8601 format.
Local times should be represented in the format YYYYMMDDTHHMMSS and UTC time in the format
YYYYMMDDTHHMMSSZ. The letter “T” delimits the date from the time. UTC time is identified by
concatenating a “Z” to the end of the sequence. When possible UTC times should be used. The
Date/Time header is optional.

Note: One notable OBEX application was released before the standard became final, and uses an
unsigned 4 byte integer giving the date/time of the object’s last modification in seconds since January 1,
1970. Implementers may wish to accept or send both formats for backward compatibility, but it is not
required. The preferred ISO 8601 format and this format can be distinguished by the high two bits of the
Header Identifier—ISO 8601 uses the text HI encoding 0x44, while this one uses the 4 byte integer HI
encoding 0xC4.

2.2.6 Description

Description is a null terminated Unicode text string used to provide additional description of the object
or operation. The Description header is optional. The Description header is not limited to describing

Object Exchange Protocol Version 1.2

17

objects. For example, it may accompany a response code to provide additional information about the
response.

2.2.7 Target

Target is a byte sequence that identifies the intended target of the operation. On the receiving end,
object name and type information provide one way of performing dispatching - this header offers an
alternate way of directing an operation to the intended recipient.

The Target headers most common use, is when sent in an OBEX CONNECT packet to initiate a directed
connection to an OBEX server (see section 4.6). A list of well-known Target header values is contained
in the appendix of this specification. The Target header is commonly used in conjunction with the Who
and Connection Id headers when establishing a directed connection.

When used with the PUT operation, it allows for behavior analogous to the HTTP POST operation.
Wherein the Target specifies the service that should process the object contained in the PUT request.

The sending device must provide this header in a form meaningful to the destination device. If this
header is received but not recognized, it is up to the implementation to decide whether to accept or reject
the accompanying object. When used, the Target header must be the first header in the operation.

To work effectively in a broad application environment it is necessary that the Target header identify a
universally unique service or client. It is recommended that 128-bit UUID’s be used to fulfill this
requirement. Since the Target header is a binary header type, values are compared in a case sensitive
manner. Therefore, care must be taken to maintain the proper case when using ASCII values.

It is illegal to send a Connection Id and a Target header in the same operation.

2.2.8 HTTP

HTTP is a byte sequence containing an HTTP 1.x header. This can be used to include many advanced
features already defined in HTTP without re-inventing the wheel. HTTP terminates lines using CRLF,
which will be preserved in this header so it can be passed directly to standard HTTP parsing routines.
This header is optional.

2.2.9 Body, End-of-Body

The body of an object (the contents of a file being transferred, for instance) is sent in one or more Body
headers. A “chunked” encoding helps make abort handling easier, allows for operations to be interleaved,
and handles situations where the length is not known in advance, as with process generated data and on-
the-fly encoding.

A Body header consists of the HI (identifying it as an object body), a two byte header length, and all or
part of the contents of the object itself.

A distinct HI value (End-of-Body) is used to identify the last chunk of the object body. In some cases,
the object body data is generated on the fly and the end cannot be anticipated, so it is legal to send a
zero length End-of-Body header. The End-of-Body header signals the end of an object, and must be
the final header of any type associated with that object.

2.2.10 Who

Who is a length prefixed byte sequence used so that peer applications may identify each other, typically
to allow special additional capabilities unique to that application or class of device to come into play.

Object Exchange Protocol Version 1.2

18

The Who header is typically used in an OBEX CONNECT response packet to indicate the UUID of the
service which has accepted the directed connection. The value of the Who header matches the value of
the Target header sent in the CONNECT command.

To work effectively in a broad application environment it is necessary that the Who header identify a
universally unique service or client. It is recommended that 128-bit UUID’s be used to fulfill this
requirement.

2.2.11 Connection Identifier

Connection Id is a byte sequence that tells the recipient of the request which OBEX connection this
request belongs to. The Connection Id header is optional. When in use, the Connection Id header
must be the first header in the request.

When it is desirable to provide concurrent access to multiple OBEX services over the same TinyTP
connection, the Connection Id is used to differentiate between multiple clients. This is often the case
when multiple services are accessed via the default OBEX server. The server can identify the need for a
connection to be assigned, by the presence of a Target header in the OBEX CONNECT packet. The
connection identifier is returned to the client in the OBEX CONNECT response packet. This connection
identifier must be unique so that services can be uniquely identified. Once a logical OBEX Connection
has been established, all further client requests to that service must include the Connection Id header.
Only the first packet in the request needs to contain the Connection Id header. As a result, only one
request can be processed at a time.

If a Connection Id header is received with an invalid connection identifier, it is recommended that the
operation be rejected with the response code (0xD3) “Service Unavailable”. Since not all servers will
parse this header, there is no guarantee that this response code will be returned in all such cases. For
convenience the connection identifier value 0xFFFFFFFF is reserved and is considered invalid.

It does not make sense to send a Connection Id header in an OBEX CONNECT operation and is
therefore forbidden. It is also illegal to send a Connection Id and a Target header in the same
operation.

2.2.12 Application Request-Response Parameters

The Application Parameters header is used by applications (and protocols) layered above OBEX to
convey additional information in a request or response packet. In a request, this header conveys request
parameters or modifiers. In a response, it is used in cases where the simple pass/fail status returned by
OBEX is insufficient. In order to support an unbounded set of values, from integer values to whole
structures (used in RPC style requests) the Application Parameter header is based on the OBEX Byte-
Sequence Header format.

A Tag-Length-Value encoding scheme is used to support a variety of request/response types and levels.
An application parameters header may contain more than one tag-length-value triplet. The header format
is shown below:

Parameter Triplet 1 Parameter Triplet 2 Parameter Triplet . . .
Tag1 Length Value Tag2 Length Value Tag Length Value

The tag and length fields are each one byte in length. The value field can be from zero to n bytes long.
The value n is constrained by the maximum size of an OBEX header, the length field maximum of 255
bytes and the size of other TLV-triplets encoded in the header.

TAG values are defined by the applications or upper protocol layer that uses them and only need to be
unique within the scope of the application or protocol layer.

Object Exchange Protocol Version 1.2

19

2.2.13 Authenticate Challenge

The Authenticate Challenge header is used by both clients and servers to initiate the authentication of
the remote device. This header carries the digest-challenge string. See the Authentication chapter for a
detailed explanation of the authentication procedure.

A Tag-Length-Value encoding scheme is used to support the variety of options available for
authentication. An Authenticate Challenge header may contain more than one tag-length-value triplet.
The header format is shown below:

Authentication Triplet 1 Authentication Triplet 2 Authentication Triplet . . .
Tag1 Length Value Tag2 Length Value Tag Length Value

The tag and length fields are each one byte in length. The value field can be from zero to n bytes long.
The value n is constrained by the maximum size of an OBEX header, the length field maximum of 255
bytes and the size of other TLV-triplets encoded in the header.

2.2.14 Authenticate Response

The Authenticate Response header is used by both clients and servers to respond to an authentication
request. This header carries the digest-response string. See the Authentication chapter for a detailed
explanation of the authentication procedure.

A Tag-Length-Value encoding scheme is used to support the variety of options available for
authentication. An Authenticate Response header may contain more than one tag-length-value triplet.
The tag format is the same as that defined for the Authenticate Challenge header shown above.

2.2.15 Object Class

The Object Class header is used to reference the object class and properties. It is based on the byte
sequence header type. At its lowest level the Object Class header works similarly to the OBEX Type
header except that its namespace is that of OBEX not MIME. For sub-object level access, the header
can be detailed enough to express specific fields or subsets of the objects’ contents. The values used in
Object Class headers are limited in scope to the application or services that define them. However, the
sharing of Object Classes is encouraged.

2.2.16 User Defined Headers

User defined headers allow complete flexibility for the application developer. Observe the use of the high
order two bits to specify encoding, so that implementations can skip unrecognized headers. Obviously
you cannot count on user defined headers being interpreted correctly except by strict peers of your
application. So exercise due care at connect time before relying on these - the Who header can be used
at connect time to identify strict peers.

Object Exchange Protocol Version 1.2

20

3. Session Protocol

The session protocol describes the basic structure of an OBEX conversation. It consists of a format for
the “conversation” between devices and a set of opcodes that define specific actions. The OBEX
conversation occurs within the context of an OBEX connection. The connection oriented session allows
capabilities information to be exchanged just once at the start of the connection, and allows state
information to be kept (such as a target path for PUT or GET operations).

OBEX follows a client/server request-response paradigm for the conversation format. The terms client
and server refer to the originator/receiver of the OBEX connection, not necessarily who originated the
low level IrLAP connection. Requests are issued by the client (the party that initiates the OBEX
connection). Once a request is issued, the client waits for a response from the server before issuing
another request. The request/response pair is referred to as an operation.

In order to maintain good synchronization and make implementation simpler, requests and responses
may be broken into multiple OBEX packets that are limited to a size specified at connection time. Each
request packet is acknowledged by the server with a response packet. Therefore, an operation normally
looks like a sequence of request/response packet pairs, with the final pair specially marked. In general,
an operation should not be broken into multiple packets unless it will not fit into a single OBEX packet.

Each Request packet consists of an opcode (such as PUT or GET), a packet length, and one or more
headers, as defined in the object model chapter. A header must entirely fit within a packet - it may not be
split over multiple packets. It is strongly recommended that headers containing the information
describing the object (name, length, date, etc.) be sent before the object body itself. For instance, if a file
is being sent, the file name should be sent first so that the file can be created and the receiver can be
ready to store the contents as soon as they show up.

However, This does not mean that all descriptive headers must precede any Body header. Description
headers could come at any time with information to be presented in the user interface, and in the future
intermediate headers may be used to distinguish among multiple parts in the object body.

The orderly sequence of request (from a client) followed by response (from a server) has one
exception. An ABORT operation may come in the middle of a request/response sequence. It cancels the
current operation.

Each side of a communication link may have both client and server if desired, and thereby create a peer
to peer relationship between applications by using a pair of OBEX sessions, one in each direction.
However, it is not a requirement that a device have a both client and server, or that more than one
session be possible at once. For example, a data collection device (say a gas meter on a house) might
be a server only, and support only the GET operation, allowing the device to deliver its information (the
meter reading) on demand. A simple file send applet on a PC might support only PUT.

Object Exchange Protocol Version 1.2

21

3.1 Request format

Requests consist of one or more packets, each packet consisting of a one byte opcode, a two byte
packet length, and required or optional data depending on the operation. Each request packet must be
acknowledged by a response. Each opcode is discussed in detail later in this chapter, including the
number and composition of packets used in the operation. The general form of a request packet is:

Byte 0 Bytes 1, 2 Bytes 3 to n
opcode packet length headers or request data

Every request packet in an operation has the opcode of that operation. The high order bit of the opcode
is called the Final bit. It is set to indicate the last packet for the request. For example, a PUT operation
sending a multi-megabyte object will typically require many PUT packets to complete, but only the last
packet will have the Final bit set in the PUT opcode.

If the operation requires multiple response packets to complete after the Final bit is set in the request (as
in the case of a GET operation returning an object that is too big to fit in one response packet). The
server will signal this with the “Continue” response code, telling the client that it should ask for more. The
client (requestor) should send another request packet with the same opcode, Final bit set, and no
headers if it wishes to continue receiving the object. If the client does not want to continue the operation,
it should send an ABORT packet.

As with header lengths, the packet length is transmitted in network byte order (high order byte first), and
represents the entire length of the packet including the opcode and length bytes. The maximum packet
length is 64K bytes - 1.

3.2 Response format

Responses consist of one or more packets - one per request packet in the operation. Each packet
consists of a one byte response code, a two byte packet length, and required or optional data depending
on the operation. Each response code is listed later in this chapter, and commonly used codes are
discussed in the individual opcode sections. The general form of a request packet is:

Byte 0 Bytes 1,2 Bytes 3 to n
response code response length response data

The high order bit of the response code is called the Final bit. In OBEX 1.0 it is always set for response
packets. Its meaning is slightly different from the request packet final bit—the response packet final bit
tells the other side (the client) that it is once again the client’s turn to send a packet. If the response
packet carries a success or failure response code, the client is free to begin a new operation. However, if
the response code is “Continue” as is often the case in a lengthy GET operation, then the client next
issues a continuation of the GET request. See the GET operation description below for examples.

As with header and request lengths, the response length is transmitted in network byte order (high order
byte first), and represents the entire length of the packet including the opcode and length bytes. The
maximum response packet length is 64K bytes - 1, and the actual length in a connection is subject to the
limitations negotiated in the OBEX CONNECT operation.

The (optional) response data may include objects and headers, or other data specific to the request that
was made. If a Description header follows the response code before any headers with object specific
information, it is interpreted as descriptive text expanding on the meaning of the response code. Detailed
responses are discussed in the opcode sections below.

Object Exchange Protocol Version 1.2

22

The response code contains the HTTP status code (a 3 digit ASCII encoded positive integer) encoded in
the low order 7 bits as an unsigned integer (the code in parentheses has the Final bit set). See the HTTP
document for complete descriptions of each of these codes. The most commonly used response codes
are 0x90 (0x10 Continue with Final bit set, used in responding to non-final request packets), and 0xA0
(0x20 Success w/Final bit set, used at end of successful operation).

3.2.1 Response Code values

OBEX response code HTTP status code Definition
0x00 to 0x0F None reserved

0x10 (0x90) 100 Continue
0x20 (0xA0) 200 OK, Success
0x21 (0xA1) 201 Created
0x22 (0xA2) 202 Accepted
0x23 (0xA3) 203 Non-Authoritative Information
0x24 (0xA4) 204 No Content
0x25 (0xA5) 205 Reset Content
0x26 (0xA6) 206 Partial Content

0x30 (0xB0) 300 Multiple Choices
0x31 (0xB1) 301 Moved Permanently
0x32 (0xB2) 302 Moved temporarily
0x33 (0xB3) 303 See Other
0x34 (0xB4) 304 Not modified
0x35 (0xB5) 305 Use Proxy

0x40 (0xC0) 400 Bad Request - server couldn’t understand request
0x41 (0xC1) 401 Unauthorized
0x42 (0xC2) 402 Payment required
0x43 (0xC3) 403 Forbidden - operation is understood but refused
0x44 (0xC4) 404 Not Found
0x45 (0xC5) 405 Method not allowed
0x46 (0xC6) 406 Not Acceptable
0x47 (0xC7) 407 Proxy Authentication required
0x48 (0xC8) 408 Request Time Out
0x49 (0xC9) 409 Conflict
0x4A (0xCA) 410 Gone
0x4B (0xCB) 411 Length Required
0x4C (0xCC) 412 Precondition failed
0x4D (0xCD) 413 Requested entity too large
0x4E (0xCE) 414 Request URL too large
0x4F (0xCF) 415 Unsupported media type

0x50 (0xD0) 500 Internal Server Error
0x51 (0xD1) 501 Not Implemented
0x52 (0xD2) 502 Bad Gateway
0x53 (0xD3) 503 Service Unavailable
0x54 (0xD4) 504 Gateway Timeout
0x55 (0xD5) 505 HTTP version not supported

0x60 (0xE0) - - - Database Full
0x61 (0xE1) - - - Database Locked

Object Exchange Protocol Version 1.2

23

3.3 OBEX Operations and Opcode definitions

OBEX operations consist of the following:

Opcode (w/high bit set) Definition Meaning
0x80 *high bit always set Connect choose your partner, negotiate capabilities
0x81 *high bit always set Disconnect signal the end of the session
0x02 (0x82) Put send an object
0x03 (0x83) Get get an object
0x04 (0x84) Reserved
0x85 *high bit always set SetPath modifies the current path on the receiving side
0xFF *high bit always set Abort abort the current operation.

0x06 to 0x0F Reserved not to be used w/out extension to this specification
0x10 to 0x1F User definable use as you please with peer application

Bits 5 and 6 are reserved and should be set to zero.
Bit 7 of the opcode means Final packet of request.

The high bit of the opcode is used as a Final bit, described in the previous sections of this chapter. Bits 5
and 6 of the opcode are reserved for future use and should be set to zero by sender and ignored by
receiver. However, one notable exemption from this rule is the ABORT opcode, which currently sets bits
5 and 6.

If a server receives an unrecognized opcode, it should return 0xD1 response code (Not Implemented,
with Final bit set) and ignore the operation. It may send the request to the bit bucket, save it for later
analysis, or whatever it chooses.

Each operation is described in detail in the following sections.

3.3.1 Connect

This operation initiates the connection and sets up the basic expectations of each side of the link. The
request format is:

Byte 0 Bytes 1 and 2 Byte 3 Byte 4 Bytes 5 and 6 Byte 7 to n
0x80 connect packet

length
OBEX version

number
flags maximum OBEX

packet length
optional
headers

The response format is:

Byte 0 Bytes 1 and 2 Byte 3 Byte 4 Bytes 5 and 6 Byte 7 to n
response code connect response

packet length
OBEX version

number
flags maximum OBEX

packet length
optional
headers

The CONNECT request and response must each fit in a single packet. Implementations are not required
to recognize more than the first 7 bytes of these packets, though this may restrict their usage.

3.3.1.1 OBEX version number

The version number is the version of the OBEX protocol encoded with the major number in the high
order 4 bits, and the minor version in the low order 4 bits. The protocol version is not always the same as
the specification version. The current protocol version is 1.0. See the example later in this section.

Object Exchange Protocol Version 1.2

24

3.3.1.2 Connect flags

The flags have the following meanings:

bit Meaning
0 Response: Indicates support for multiple IrLMP connections to the same LSAP-SEL.

Request: reserved
1 Reserved
2 Reserved
3 Reserved
4 Reserved
5 Reserved
6 Reserved
7 Reserved

All request flags except bit 0 are currently reserved, and must be set to zero on the sending side and
ignored by the receiving side. All reserved response bits must also be set to zero and ignored by the
receiving side.

In a CONNECT Response packet bit 0 is used to indicate the ability of the OBEX server’s transport to
accept multiple IrLMP connections to the same LSAP-SEL. This capability, usually found in more robust
IrDA stacks, allows the server to use the LM-MUX for multiplexing multiple simultaneous client requests.
Conveying this information is necessary because the IrDA Lite specification does not support this type of
multiplexing and attempts to connect to an already connected LSAP-SEL will result in an IrLAP
disconnect.

Bit 0 should be used by the receiving client to decide how to multiplex operations to the server (should it
desire to do so). If the bit is 0 the client should serialize the operations over a single TTP connection. If
the bit is set the client is free to establish multiple TTP connections to the server and concurrently
exchange its objects.

3.3.1.3 Maximum OBEX Packet Length

The maximum OBEX packet length is a two byte unsigned integer that indicates the maximum size
OBEX packet that the device can receive. The largest acceptable value at this time is 64K bytes -1.
However, even if a large packet size is negotiated, it is not required that large packets be sent - this just
represents the maximum allowed by each participant. The client and server may have different
maximum lengths.

This is one of the most important features of the CONNECT packet because it permits the application to
increase the OBEX packet size used during an exchange. The default OBEX packet size of 255 bytes is
inefficient for large object transfers and will impede transfer rates. Larger OBEX packet sizes such as 8k
to 32k allow large amounts of data to be sent without acknowledgement. However, packet sizes should
be intelligently limited on slower links to reduce abort request latency.

3.3.1.4 Minimum OBEX Packet Length

The minimum size of the OBEX Maximum packet length allowed for negotiation is 255 bytes. This is in
order to provide a greater likelihood of meeting the requirement for single packet requests and responses
in a broad range of cases. In addition, since an OBEX header must fit completely within one OBEX
packet it is advantageous to mandate a minimum that allows for reasonable header sizes. Note that
OBEX does not exchange Minimum Packet Length values. This value is the minimum acceptable value
for the OBEX Maximum Packet Length parameter exchanged in the CONNECT Operation.

Object Exchange Protocol Version 1.2

25

3.3.1.5 Using Count and Length headers in Connect

The Count and Length headers, defined in the Object Model chapter, can be used in CONNECT. Count
is used to indicate the number of objects that will be sent during this connection. Length is used to
express the approximate total length of the bodies of all the objects in the transaction.

When used in the CONNECT Operation, the Length header contains the length in bytes of the bodies of
all the objects that the sender plans to send. Note that this length cannot be guaranteed correct, so while
the value may be useful for status indicators and resource reservations, the receiver should not die if the
length is not exact. The receiver can depend on Body headers to accurately indicate the size of an
object as it is delivered and the End-of-Body header to indicate when an object is complete.

3.3.1.6 Using Who and Target headers in Connect

Target and Who are used to hold a unique identifier, which allows applications to tell whether they are
talking to a strict peer, or not. Typically, this is used to enable additional capabilities supplied only by an
exact peer. If a Who header is used, it should be sent before any body headers.

On full-featured [PC] platforms, multiple OBEX applications may exist concurrently. This leads to the
need for the client to be able to uniquely identify which server it wants to handle its request. The server is
therefore identified with the OBEX Target header. If necessary, the client can also identify itself, using
the OBEX Who header. The following text describes the exact uses of these headers.

To target a specific application with OBEX commands the client must set-up a connection to the
application by using the OBEX Target header in a CONNECT request. This type of connection is called
a directed connection and provides a virtual binding between the client and server. The Target header
should specify the UUID of the desired application. The Who header can also be used when it is
necessary to identify the client initiating the exchange. The Who header should be used in cases where
the target server application supports different client applications and may care which one it is
connecting to. It is unnecessary to send a Who header in the request if its only logical value is the same
as the Target header.

The response to the targeted connect operation should contain a Who with the same UUID as sent in the
request’s matching Target header. If the Who header was present in the request, a Target header
identifying the same client should be sent in the response. In addition, a unique connection identifier
must be sent in a Connection Id header. This connection identifier is used by the client in all future
operations. If the response does not contain the correct headers then it should be assumed that the
connection has not been made to the specific application but to the inbox service. This will be the
response when sending a directed connect to a system that does not parse these (Target) headers. In the
event that a connection is made to the inbox service, it is the responsibility of the client application to
determine whether to continue the exchange or disconnect.

3.3.1.7 Using Description headers in Connect

The CONNECT request or response may include a Description header with information about the
device or service. It is recommended this information be presented through the user interface on the
receiving side if possible.

3.3.1.8 The Connect response

The successful response to CONNECT is 0xA0 (Success, with the high bit set) in the response code,
followed immediately by the required fields described above, and optionally by other OBEX headers as
defined above. Any other response code indicates a failure to make an OBEX connection. A fail
response still includes the version, flags, and packet size information, and may include a Description
header to expand on the meaning of the response code value.

Object Exchange Protocol Version 1.2

26

3.3.1.9 Example

The following example shows a CONNECT request and response with comments explaining each
component. The CONNECT sends two optional headers describing the number of objects and total
length of the proposed transfer during the connection.

Client Request: bytes Meaning
Opcode 0x80 CONNECT, Final bit set

0x0011 packet length = 17
0x10 version 1.0 of OBEX
0x00 flags, all zero for this version of OBEX
0x2000 8K is the max OBEX packet size client can accept
0xC0 HI for Count header (optional header)
0x00000004 four objects being sent
0xC3 HI for Length header (optional header)
0x0000F483 total length of hex F483 bytes

Server Response:
response code 0xA0 SUCCESS, Final bit set

0x0007 packet length of 7
0x10 version 1.0 of OBEX
0x00 Flags
0x0400 1K max packet size

3.3.1.10 OBEX Operations without Connect

It is highly recommended that implementations assume default values for connection parameters
(currently just a minimum OBEX packet size of 255 bytes) and accept operations such as PUT and GET
without first requiring a CONNECT operation.

3.3.2 Disconnect

This opcode signals the end of the OBEX session. It may include a Description header for additional
user readable information. The DISCONNECT request and response must each fit in one OBEX packet
and have their Final bits set.

Byte 0 Bytes 1, 2 Bytes 3 to n
0x81 packet length optional headers

The response to DISCONNECT is 0xA0 (Success), optionally followed with a Description header. A
DISCONNECT may not be refused. However, if the disconnect packet contains invalid information, such
as an invalid Connection Id header the response code may be “Service Unavailable” (0xD3). Server
side handling of this case is not required.

Byte 0 Bytes 1, 2 Bytes 3 to n
0xA0 or 0xD3 response packet length optional response headers

It is permissible for a connection to be terminated by closing the transport connection without issuing the
OBEX DISCONNECT operation. Though, this precludes any opportunity to include descriptive
information about the disconnection. Currently, this is common practice and DISCONNECT is
infrequently used. However, it is good practice to send an OBEX DISCONNECT for each OBEX
CONNECT sent but few applications track or care about such details.

Object Exchange Protocol Version 1.2

27

3.3.3 Put

The PUT operation sends one object from the client to the server. The request will normally have at least
the following headers: Name and Length. For files or other objects that may have several dated
versions, the Date/Time header is also recommended, while the Type is very desirable for non-file
object types. However, any of these may be omitted if the receiver can be expected to know the
information by some other means. For instance, if the target device is so simple that it accepts only one
object and prevents connections from unsuitable parties, all the headers may be omitted without harm.
However, if a PC, PDA, or any other general-purpose device is the intended recipient, the headers are
highly recommended.

A PUT request consists of one or more request packets, the last of which has the Final bit set in the
opcode. The implementer may choose whether to include an object Body header in the first packet, or
wait until the response to the initial packet is received before sending any object body chunks.

Byte 0 Bytes 1, 2 Bytes 3 to n
0x02

(0x82 when Final bit set)
packet length sequence of headers

Each packet is acknowledged by a response from the server as described in the general session model
discussion above.

Byte 0 Bytes 1,2 Bytes 3 to n
Response code
typical values:

0x90 for Continue
0xA0 for Success

Response packet
length

optional response headers

3.3.3.1 Headers used in Put

Any of the headers defined in the Object model chapter can be used with PUT. These might include
Name, Type, Description, Length, Connection Id, HTTP or other headers specifying compression,
languages, character sets, and so on. It is strongly recommended that headers describing the object
body precede the object Body headers for efficient handling on the receive side. If Name or Type
headers are used, they must precede all object Body headers.

3.3.3.2 Put Response

The response for successfully received intermediate packets (request packets without the Final bit set) is
0x90 (Continue, with Final bit sent). The successful final response is 0xA0 (Success, with Final bit set).
The response to any individual request packet must itself consist of just one packet with its Final bit set -
multi-packet responses to PUT are not permitted.

Any other response code indicates failure. If the length field of the response is > 3 (the length of the
response code and length bytes themselves), the response includes headers, such as a Description
header to expand on the meaning of the response code value.

Here is a typical Final response:

Server Response: Bytes Meaning
response code 0xA0 SUCCESS, Final bit set

0x0003 length of response packet

Object Exchange Protocol Version 1.2

28

3.3.3.3 Put Example

For example, here is a PUT operation broken out with each component (opcode or header) on a separate
line. We are sending a file called jumar.txt, and for ease of reading, the example file is 4K in length and
is sent in 1K chunks.

Client Request: Bytes Meaning
opcode 0x02 PUT, Final bit not set

0x0422 1058 bytes is length of packet
0x01 HI for Name header
0x0017 Length of Name header (Unicode is 2 bytes per char)
JUMAR.TXT name of object, null terminated Unicode
0xC3 HI for Length header
0x00001000 Length of object is 4K bytes
0x48 HI for Object Body chunk header
0x0403 Length of Body header (1K) plus HI and header length
0x.......... 1K bytes of body

Server Response:
response code 0x90 CONTINUE, Final bit set

0x0003 length of response packet

Client Request:
opcode 0x02 PUT, Final bit not set

0x0406 1030 bytes is length of packet
0x48 HI for Object Body chunk
0x0403 Length of Body header (1K) plus HI and header length
0x.......... next 1K bytes of body

Server Response:
response code 0x90 CONTINUE, Final bit set

0x0003 length of response packet

Another packet containing the next chunk of body is sent, and finally we arrive at the last packet, which
has the Final bit set.

Client Request:
opcode 0x82 PUT, Final bit set

0x0406 1030 bytes is length of packet
0x49 HI for End-of-Body chunk
0x0403 Length of header (1K) plus HI and header length
0x.......... last 1K bytes of body

Server Response:
response code 0xA0 SUCCESS, Final bit sent

0x0003 length of response packet

3.3.3.4 Server side handling of Put objects

Servers may do whatever they wish with an incoming object - the IrOBEX protocol does not require any
particular treatment. The client may “suggest” a treatment for the object through the use of the Target
and Type Headers, but this is not binding on the server. Some devices may wish to control the path at
which the object is stored (i.e. specify directory information such as C:\bin\pizza.txt rather than just
pizza.txt). Path information is transferred using the SETPATH operation, but again, this is not binding on

Object Exchange Protocol Version 1.2

29

the server. It is important that clients, who have a particular purpose in mind when transferring an object,
connect to a specific service that it knows can perform the desired behavior.

3.3.3.5 Sending objects that may have read errors

When sending the last portion of an object in an End-of-Body header, ambiguity arises if there is any
chance that there are read errors in this last portion. This is because the End-of-Body normally triggers
the receiving side to close the received object and indicate successful completion. If an ABORT packet
subsequently arrives, it is “too late”.

The recommended approach when sending objects which may have such errors is to send the End-of-
Body header only when the sender knows that the entire object has been safely read, even if this means
sending an empty End-of-Body header at the end of the object. This applies to both GET and PUT
operations.

3.3.3.6 Put-Delete and Create-Empty Methods

A PUT operation with NO Body or End-of-Body headers whatsoever should be treated as a delete
request. Similarly, a PUT operation with an empty End-of-Body header requests the recipient to create
an empty object. This definition may not make sense or apply to every implementation (in other words
devices are not required to support delete operations or empty objects),

3.3.4 Get

The GET operation requests that the server return an object to the client. The request is normally
formatted as follows:

Byte 0 Bytes 1, 2 Bytes 3 to n
0x03 Packet length sequence of headers

The Name header can be omitted if the server knows what to deliver, as with a simple device that has
only one object (e.g. a maintenance record for a machine). If the server has more than one object that
fits the request, the behavior is system dependent, but it is recommended that the server return Success
with the “default object” which should contain information of general interest about the device.

The final bit is used in a GET request to identify the last packet containing headers describing the item
being requested, and the request phase of the GET is complete. Thus signaling the server to start
sending the object back. Once a GET is sent with the final bit, all subsequent GET request packets must
set the final bit until the operation is complete.

A successful response for an object that fits entirely in one response packet is 0xA0 (Success, with Final
bit set) in the response code, followed by the object body. If the response is large enough to require
multiple GET requests, only the last response is 0xA0, and the others are all 0x90 (Continue). The object
is returned as a sequence of headers just as with PUT. Any other response code indicates failure.
Common non-success responses include 0xC0 bad request, and 0xC3 forbidden. The response may
include a Description header (before the returned object, if any) to expand on the meaning inherent in
the response code value.

Byte 0 Bytes 1,2 Bytes 3 to n
response code Response packet

length
optional response headers

A typical multi-step GET operation proceeds as follows: the client sends a GET request that may include
a Name header; server responds with 0x90 (Continue) and headers describing the name and size of the
object to be returned. Seeing the Continue response code, the client sends another GET request (with

Object Exchange Protocol Version 1.2

30

final bit set and no new headers) asking for additional data, and the server responds with a response
packet containing more headers (probably Body Headers) along with another Continue response code.
As long as the response is Continue, The client continues to issue GET requests until the final body
information (in an End-of-Body header) arrives, along with the response code 0xA0 Success.

3.3.4.1 The default GET object

Refer to chapter 8.4 OBEX Get Default Object for more information on providing default objects. This
chapter defines a mechanism by which the client can request a specific type of default object. Such as
the default business card or web page.

3.3.5 Abort

The ABORT request is used when the client decides to terminate a multi-packet operation (such as PUT)
before it would normally end. The ABORT request and response each always fit in one OBEX packet
and have the Final bit set. An ABORT operation may include headers for additional information, such as
a Description header giving the reason for the abort.

Byte 0 Bytes 1, 2 Bytes 3 to n
0xFF Packet length optional headers

The response to ABORT is 0xA0 (success), indicating that the abort was received and the server is now
resynchronized with the client. If anything else is returned, the client should disconnect.

Byte 0 Bytes 1,2 Bytes 3 to n
0xA0 Response packet

length
optional response headers

3.3.6 SetPath

The SETPATH operation is used to set the “current directory” on the receiving side in order to enable
transfers that need additional path information. For instance, when a nested set of directories is sent
between two machines, SETPATH is used to create the directory structure on the receiving side. The
Path name is contained in a Name header. The SETPATH request and response each always fit in one
OBEX packet and have the Final bit set.

Byte 0 Bytes 1, 2 Byte 3 Byte 4 Byte 5 to n
0x85 Packet length flags constants optional headers

Byte 0 Bytes 1, 2 Bytes 3 to n
response code Response packet

length
optional response headers

Servers are not required to store objects according to SETPATH request, though it is certainly useful on
general-purpose devices such as PCs or PDAs. If they do not implement SETPATH, they may return C0
(Bad Request) or C3 (Forbidden), and the client may decide whether it wishes to proceed.

When a new OBEX or TinyTP connection is established, the OBEX server’s current folder should be its
root folder. In this manner a device may retrieve (or serve) objects from the root folder without requiring
the client to perform a SETPATH to the root first.

Object Exchange Protocol Version 1.2

31

3.3.6.1 Flags

The flags have the following meanings:

bit Meaning
0 backup a level before applying name (equivalent to ../ on many systems)
1 Don’t create directory if it does not exist, return an error instead.
2 Reserved
3 Reserved
4 Reserved
5 Reserved
6 Reserved
7 Reserved

The unused flag bits must be set to zero by sender and ignored by receiver.

3.3.6.2 Constants

The constants byte is entirely reserved at this time, and must be set to zero by sender and ignored by
receiver.

3.3.6.3 Name header

Allowable values for the Name header are:

• <name> - go down one level into this directory name, relative to the current directory
• <empty> - reset to the default directory

In addition, the Name header may be omitted when flags or constants indicate the entire operation being
requested (for example, back up one level, equivalent to “cd ..” on some systems.

The receiving side starts out in a root directory. When sending a directory, the client will start by sending
a SETPATH request containing the name of the directory. For example, if the full path for the directory
on a PC is C:\notes, the client will send “notes” as the Name header of a SETPATH operation. A PC
server would create or switch to the “notes” directory relative to the root directory (or perhaps create a
mangled name if “notes” already exists and that was the preferred behavior). As subdirectories of “notes”
are encountered by the sending routine, additional SETPATH requests with the subdirectory names will
be sent. As directories are completed (all objects in the directory sent), the client will send a SETPATH
(generally with no Name header) and the “back up a level” flag set.

3.4 Packet Timeouts

IrOBEX does not impose any timeouts between OBEX packets. Deciding whether to continue or cancel a
session is normally left to user control, since waiting for user action is often what creates long periods
between packets. In devices with reasonable user interface capabilities, timeouts are not recommended.
However this specification does not prohibit the use of timeouts. Some devices may find timeouts useful
or even necessary, particularly when sufficient user interface to understand and/or control the reason for
delay is not available.

3.5 Authentication Procedure

The OBEX authentication procedure is based on two OBEX headers, the Authenticate Challenge and
Authenticate Response headers. It is assumed that the client and the server both share a secret such
as a password or pin number. This value is not sent over OBEX during the authentication process.

Object Exchange Protocol Version 1.2

32

The client authenticates the server by sending an OBEX command with an Authenticate Challenge
header. This header will contain the digest-challenge, which is described later. To be authenticated, the
server’s response packet must contain the SUCCESS response code and an Authenticate Response
header. The content of the Authenticate Response header contains the digest-response string, which is
described later. The client verifies the server by generating its own request-digest string and comparing it
to the one sent as part of the digest-response. If the server is not authenticated the client can simply
disconnect from the server.

The server authenticates the client using the same basic algorithm. When a client attempts an operation
to the server which requires authentication, the server sends an Authenticate Challenge header along
with an UNAUTHORIZED response code in a response packet. When the client receives this response, it
must re-send the command packet with an Authenticate Response header. The server verifies the
client by generating its own request-digest and comparing it to the one sent in the digest-response by the
client. If they are the same, the client is authenticated. If the client is not authenticated, the server will
simply respond to all operations, including the current one, with the UNAUTHORIZED response code.

The algorithm used by the client to authenticate a server is straightforward. The client will normally
authenticate the server as part of the OBEX CONNECT procedure. The server can authenticate the
client for any operation including the CONNECT operation and individual PUT and GET operations.
When the server authenticates the client for an OBEX connection the server will send the Authenticate
Challenge header in the response to the CONNECT command with a response code of
UNAUTHORIZED. When the client receives a response to the CONNECT command containing an
Authenticate Challenge header and the UNAUTHORIZED response code, it should repeat the
CONNECT command and include an Authenticate Response header. If the original CONNECT
command also contained an Authenticate Challenge and/or Target header, these headers must also be
present in the second CONNECT command.

When the server wants to authenticate an individual operation, it will reject the first attempt by the client
with an OBEX response containing the UNAUTHORIZED response code and an Authenticate
Challenge header. The client must retry the operation this time including an Authenticate Response
header. If every operation requires authentication then it probably makes sense to authenticate the
CONNECT operation and not perform individual operation authentication.

Multiple Authenticate Challenge headers can be sent in one OBEX packet. This is done for a number of
reasons:

• In the future, there may be different types of challenge algorithms or hashing functions used. Each
challenge will represent a possible algorithm to use.

• There may be different passwords for full access versus read only access. Two headers are used,
one for each access method.

When more than one Authenticate Challenge header exists in an OBEX packet, the nonce must be
different for each one. Devices are not required to deal with multiple Authenticate Challenge headers
so some devices may only process the first one. Therefore, it is important that the most general or
common challenge be sent in the first header. When multiple Authenticate Challenge headers are sent,
the sender will use the nonce in the digest-response to determine which nonce to use when generating
the request-digest. If a nonce does not exist in the digest-response then the nonce sent in the first
Authenticate Challenge header is used.

3.5.1 Digest Challenge

The OBEX digest-challenge is a simplified version of the HTTP digest-challenge. One of the limitations
of OBEX is that the response to a PUT or CONNECT command must fit in a single OBEX packet. Some
devices only support a maximum size OBEX packet of 255 bytes so this limits the amount of data that
can fit in a response and therefore, limits the size of the digest-challenge and digest-response.

Object Exchange Protocol Version 1.2

33

The HTTP challenge contains a number of fields including a string that identifies the challenge as basic
or digest. Within a digest challenge the digest-challenge can specify the hashing algorithm to use, the
realm, the domain, a nonce, and option fields. The main element is the nonce. The nonce is the random
string, which is combined with the secret to produce the main portion of the digest-response. The OBEX
authentication algorithm needs to be simple yet flexible. The minimal challenge should only contain a
nonce but there may be cases where a userid/username is needed to determine which password to use.
Some OBEX servers may support multiple different users each with their own passwords. Therefore, the
server must be able tell the client that a userid is needed.

The default hashing function in HTTP is MD5 and OBEX will use this algorithm. In the future, other
algorithms may be introduced but at this time, only MD5 is supported.

The OBEX digest-challenge string can contain multiple fields. The HTTP digest-challenge is based on
ASCII strings. To keep the size small, the OBEX digest-challenge will use a tag-length-value encoding
scheme. Both the tag and value length fields, are one byte in length. The table below shows the OBEX
digest-challenge fields.

Tag Name Value Len Value Description Default Value
0x0
0 Nonce 16 String of bytes representing the nonce.

0x0
1 Options 1 Optional Challenge Information 0

0x0
2 Realm n

A displayable string indicating which userid and/or
password to use. The first byte of the string is the
character set to use. The character set uses the
same values as those defined in IrLMP for the
nickname.

Each field is described in more detail below.

3.5.1.1 Nonce

The nonce is required. It is important that the nonce be different each time it is sent. An example nonce,
based on the example given in the HTTP authentication document, is as follows:

H(time-stamp “:” private-key)

Where time-stamp is a sender-generated time or other non-repeating value and private-key is data
known only to the sender. The MD5 hashing algorithm is applied to the time-stamp string to produce a
128 bit (16 byte) binary string. This resulting string is the nonce.

3.5.1.2 Options

The option field is optional. If an option field is not sent the assumed value for it is 0. Two options are
defined. The first controls the sending of a userid. If this option is set then the entity receiving the
challenge must respond with a userid in the digest response string. The second option indicates the
access mode being offered by the sender of the challenge. The two access modes are full access (both
read and write) and read only.

bit Meaning
0 When set, the User Id must be sent in the authenticate response.
1 Access mode: Read Only when set, otherwise Full access is permitted.
2 Reserved
3 Reserved

Object Exchange Protocol Version 1.2

34

4 Reserved
5 Reserved
6 Reserved
7 Reserved

The unused options bits must be set to zero by sender and ignored by receiver.

3.5.1.3 Realm

The realm field is optional. The realm is intended to be displayed to users so they know which userid and
password to use. The first byte of the string is the character set of the string. The table below shows the
different values for character set.

Char Set Code Meaning
0 ASCII
1 ISO-8859-1
2 ISO-8859-2
3 ISO-8859-3
4 ISO-8859-4
5 ISO-8859-5
6 ISO-8859-6
7 ISO-8859-7
8 ISO-8859-8
9 ISO-8859-9
0xFF = 255 UNICODE

3.5.2 Digest Response

The digest-response string can contain multiple fields and uses a tag-length-value encoding scheme.
The digest-response fields are shown below.

Tag Name Value Len Value Description Default Value

0x00 Request
-digest 16 String of bytes representing the request digest.

0x01 User Id N User ID string of length n. Max size is 20 bytes.

0x02 Nonce 16 The nonce sent in the digest challenge string.

Each field is described in more detail below.

3.5.2.1 Request-digest

The request-digest is required and is calculated as follows:

H(nonce ":" password)

The nonce is the string sent in the digest-challenge. The password is the secret known by both the client
and server. The MD5 hashing function is applied to the nonce/password string to produce a 128-bit (16
byte) string. This resulting string is the request-digest

3.5.2.2 Userid

Object Exchange Protocol Version 1.2

35

The userid is required if the digest-challenge contains an options field with the userid bit set to 1. The
userid is used to identify the proper password.

3.5.2.3 Nonce

The nonce is optional. When multiple Authenticate Challenge headers are sent, the nonce is used to
indicate to which header the request-digest is responding. The nonce is the same value as sent in the
digest-challenge. If a nonce is not sent in the digest-response then it is assumed that the digest-response
is a response to the first Authenticate Challenge header. This allows devices that do not parse multiple
Authenticate Challenge headers to work with devices that send multiple headers.

3.5.3 Hashing Function

The default hashing function used in OBEX is MD5. The following paragraph briefly describes the MD5
algorithm. Refer to RFC 1321 at http://info.internet.isi.edu:80/in-notes/rfc/files/rfc1321.txt for more
detailed information, including example source code. Additional MD5 source code can be found in
Appendix 11.5 MD5 Algorithm for Authentication at the end of this specification.

The MD5 algorithm takes as input a message of arbitrary length and produces as output a 128-bit
"fingerprint" or "message digest" of the input. It is conjectured that it is computationally infeasible to
produce two messages having the same message digest, or to produce any message having a given
prespecified target message digest. The MD5 algorithm is intended for digital signature applications,
where a large file must be "compressed" in a secure manner before being encrypted with a private
(secret) key under a public-key cryptosystem such as RSA.

The MD5 algorithm is designed to be quite fast on 32-bit machines. In addition, the MD5 algorithm does
not require any large substitution tables; the algorithm can be coded quite compactly.

3.5.4 Authentication Examples

Example 1: Client and Server Connection Authentication (no userid)

Object Exchange Protocol Version 1.2

36

Opcode or Response
plus Headers

Final
bit

Header Data Header
Length

Request CONNECT
→ Authenticate

Challenge
0x00, 0x10, <nonce>, 0x01, 0x01,
0x00

24

Target <target-UUID> 19

Response UNAUTHORIZED 4
← Authenticate

Challenge
0x00, 0x10, <nonce>, 0x01, 0x01,
0x01

24

Request CONNECT
→ Authenticate

Challenge
0x00, 0x10, <nonce>, 0x01, 0x01,
0x00

24

Authenticate
Response

0x00, 0x10, <request-digest> 21

Target <target-UUID> 19

Response SUCCESS 4
← Connection Id 0x00000001 5

Who <target-UUID> 19
Authenticate
Response

0x00, 0x10, <request-digest> 21

Object Exchange Protocol Version 1.2

37

Example 2: Server Authenticates Get operation (userid required)

Opcode or Response
plus Headers

Final
bit

Header Data Header
Length

Request GET 4
→ Name “Test File Object” 37

Response UNAUTHORIZED 4
← Authenticate

Challenge
0x00, 0x10, <nonce>, 0x01, 0x01,
0x01

24

Request GET 4
← Name “Test File Object” 37

Authenticate
Response

0x00, 0x10, <request-digest>,
0x01, 0x08, <userid>

31

Response CONTINUE 4
← Length “2000”

Time “0x41a50016”
Body “… start of file data….” 499

3.6 Multiplexing with OBEX

It is sometimes necessary for different clients to perform operations in a manner that appears to the user
to be simultaneous. In addition, some connections may be very long lived while others come and go
quickly. This creates the need for a mechanism that allows multiple clients to access OBEX services
concurrently. The following sections cover two methods recommended for multiplexing commands over
OBEX. The first method is geared toward use with applications that run under the umbrella of the default
OBEX server.

OBEX Server Parser

IrMC
Service

Other
Services

Inbox
Service

Tiny TP Connection

Target Header
Specifies Service

One Transport
Connection

Figure 3.6.1: OBEX Command Level Multiplexing

3.6.1 Connections multiplexed at the OBEX Command level

The OBEX protocol layer provides this form of multiplexing. Multiple OBEX connections (using the
Connection Id header) are allowed at one time but only one command can be executed at a given time.
This type of multiplexing only requires one OBEX parser because the multiplexing occurs above the
parser. This type of multiplexing is necessary because most services are accessed through the default
OBEX server and hence over a single transport connection.

Object Exchange Protocol Version 1.2

38

OBEX Server
Parser

Inbox
Service

Multiple
Transport

Connections

OBEX Server
Parser

IrXfer
Server

IAS Name
Specifies Service

Tiny TP
Connection to
“OBEX” IAS

Entry

Tiny TP
Connection to
“OBEX:IrXfer”

IAS Entry

OBEX Server
Parser

Application
Server

Tiny TP
Connection to

Applications IAS
Entry

Each Application
has its own

OBEX Parser

Figure 3.6.2: OBEX Transport Layer Multiplexing

3.6.2 Connections multiplexed at the OBEX Transport layer

This type of multiplexing is external to OBEX and relies on the multiplexing capabilities of the underlying
transport layer. Multiple OBEX servers exist, one for each different application. In turn each of these
OBEX servers may themselves offer the connection and multiplexing types described above. In IrDA for
example, the LM-MUX provides this form of multiplexing. Multiplexing at the transport layer is most
useful when neither side of the application are constrained or limited by resources. It also allows for a
finer grained multiplexing which may be important for some applications.

Object Exchange Protocol Version 1.2

39

4. OBEX Application Framework

The OBEX application framework is a set of conventions and services designed for the purpose of
creating interoperable devices. OBEX is a very flexible protocol and the application framework tightens
up the usage of OBEX while creating a set of standard services that satisfy many object exchange
needs. The foundation of the OBEX application framework is the Default OBEX Server.

4.1 The Default OBEX Server

The Default OBEX Server is the server that resides at the LSAP-Sel specified by the IAS entry with class
name “OBEX” (see section 6.1 IAS entry for details on this IAS entry). The Default OBEX server is the
“Well Known” OBEX server. All the standard services along with many applications are accessed via this
server including IrMC applications. For general device to device interoperability the default OBEX server
is used. There can only be one entity registered to be the default OBEX server. If more than one exists it
will be impossible for another device to distinguish between the two.

The default OBEX server can be used to access file systems, databases, services and applications.
OBEX provides conventions for distinguishing the types of accesses. The Name, Type, Target and
Connect Id headers can be used for this purpose. The most basic service accessed via the default
OBEX server is the inbox service.

4.2 The Inbox Service

The most basic form of object exchange is pushing a file/object to another device. The sending device
(client) is only responsible for making sure the object is transferred correctly. The client does not know or
care what happens to the object after it has been received. The receiver (server) is responsible for
placing the object in the correct location. This basic from of file transfer is accomplished with the OBEX
PUT operation. The client does not need knowledge of the server’s object store or folder hierarchy. The
client initiates the operation by sending the object to the default OBEX server. When pushing an object,
a Name header is used to name the object and a Type header may be used to identify the type. Other
headers such as Length and Time can be also sent.

In this simple form of object transfer, the object is pushed into the server’s “inbox”. Inboxes come in
many forms. A PC based application could have a directory in the PC’s file system, which represents the
inbox. But, an inbox does not necessarily have to be a fixed directory or location. It is also possible to
dispatch the object based on the Type header or the extension in the Name header to a more
appropriate location such as an application or database. Products, which do not have a file system, can
operate in this way. The structure of the inbox is an issue strictly for the server. The client simply pushes
objects to the “inbox”. What happens after that is up to the server. The push model works best for single
objects. It can also be used for moving whole folder/directory hierarchies.

It is important to note that what may be an application specific object for one device is just a file in
another device. Thus, it is important that all devices standardize on using the default OBEX server for
performing this simple operation. In this way, interoperability is more likely to occur. The capability
service is also used to help increase the interoperability for simple object pushing. Refer to chapter 8.2
Simple OBEX Put file transfer (+ SetPath) for more information on the Inbox model.

The Inbox service also enables a device to GET certain objects from another device without
understanding the semantics of the service or database that contains the object. This is called the default
GET and is intended for use with a narrow band of object types that have a default object. A vCard is a
good example of an object type that has a default object.

Object Exchange Protocol Version 1.2

40

4.3 Inbox Connection

The inbox is accessed via an OBEX connection called the “inbox” connection. This connection is made
to the default OBEX server by sending a CONNECT command with no Target headers. Objects sent
using Ultra are placed in the inbox but in this case the CONNECT command is not used. Other services
are also accessed via the inbox connection. These services all have specific characteristics that allow an
implementation to distinguish between the different service requests. The table below gives the complete
list of services available via the inbox connection along with the distinguishing characteristics.

Service type Service description
Capability Service The capability object is accessed by using a GET command with a

Type header containing the MIME type of the capability object, “x-
obex/capability”.

IrMC Level 2 and 3 Level 2 and 3 services of the IrMC application are accessed using
PUT and GET commands with a Name header in which the first part
the name contains “telecom/”.

Pushing objects into the inbox Objects are pushed into the inbox by using the PUT command with
a Name header. The string in the Name header should not contain
any path characters such as ‘:’, ‘/’ or ‘\’. Objects with improperly
formed names should be rejected.

Pulling objects from the inbox Default objects are pulled from the inbox by using the GET
command with a Type header containing the MIME type of the
desired object. Name headers are not allowed.

4.4 Capability Service

The OBEX capability service is designed to provide a general-purpose method for accessing service
information with OBEX. The capability service lists the type of objects supported and details about the
fields or formats of specific types. A client may be able to render an object into multiple formats. By
reading the server’s capability object the client can determine the best format to send the object. The
client can also determine if it makes sense to even send an object at all.

The capability service is based upon two OBEX objects, the capability object and the object profile
object. The capability object contains general-purpose information about the device, including the
services and applications that are supported. The object profile object contains information specific to the
objects that the device supports. The details of the capability service and its objects can be found in
sections 8.5 Capability Service, 9.3 The Capability Object and 9.4 The Object Profile Object.

4.5 Custom OBEX applications

OBEX can also be used as a protocol within custom applications, providing the basic structure for the
communication. In this case, the application may set the OBEX IAS hint bit, but it must not use the
OBEX IAS entry. Instead, the custom application should define its own unique IAS entry.

While a custom application will (by definition) work best when connected to a strict peer, there are cases
where it may be useful to connect to the default OBEX server. In particular, if a custom application can
send any objects of general interest but cannot find a peer application, it could send the data to a default
OBEX server inbox, perhaps modifying the sending format to be a common computer format such as
text, GIF, JPEG, or such.

For instance, a digital camera could look for digital film development kiosks, but also want to share
photos from last summer’s camping trip with any PC, PDA, or smart TV. A pager might delete messages

Object Exchange Protocol Version 1.2

41

automatically after sending them to its peer application (knowing they are completely taken care of), but
send them as text objects to any OBEX enabled device just for easy viewing or sharing. Any IR device
whatsoever might offer its “business card”, describing who and what it is.

4.6 Directed Operations and Connections

A directed operation is an operation that is sent toward a specific service. An OBEX Target header is
used to identify the designated service. If the receiving side has a matching service, all packets in the
request are forwarded (or re-directed) to that service. In addition, a Who header is sent in the response
to indicate that the request is being serviced by the requested service. If a matching service cannot be
located, the server is encouraged to accept the request if at all possible. This allows the client to make
the final decision on whether to continue the operation or abort. In this case a Who header is not
returned in the response. When the operation is complete, the association is dissolved. If the client
wishes to direct another operation to the service it must again include the Target header. This is where
directed connections come in handy.

Directed connections enable a client and server to establish a virtual connection based on the principles
of directed operations. They exist for clients that need to perform multiple operations to a specific
service. Once a directed connection is established, the client can direct operations to the same service
by simply including the Connection Id header in each request. A directed connection is initiated when a
client sends an OBEX CONNECT packet with a Target header containing the UUID of the service it
wishes to connect to. A successful match is indicated with a Who header in the response packet as well
as a Connection Id header. The Connection Id header contains the identifier of the connection that the
client will use in future requests as shorthand for a Target header.

4.6.1 Directed Connection Mechanics

Directed connections do not follow the usual paradigms one would associate with a “connection”. It is
recommended that directed connections always be “open”. Therefore, it is unnecessary to close a
connection with an OBEX DISCONNECT operation. In essence, a directed connection provides a
shortcut so the client doesn’t have to specify a Target header in every operation. As well as providing
insurance that the designated service will receive the clients requests.

It is not necessary to track the open or closed status of directed connections. Therefore OBEX
CONNECT operations should not be reference counted and matched with OBEX DISCONNECT
operations.

It may or may not be necessary for a server to differentiate an operation that arrives with a Connection
Id from one that arrives with a Target header for the same service (other than making sure to respond
with the Who header). This is unlikely to be an issue in normal implementations but it should be noted
that the acceptance of a directed connection by a service, does not guarantee that another operation
sent with a Target header to the same service will be accepted by that service.

It is anticipated that CONNECT operations that are intended to establish directed connections will
contain the same flags, OBEX packet size and protocol versions as did all previous CONNECT
operations. Handling of CONNECT options that differ from original or previous values is implementation
dependent.

4.6.2 Target Header Processing

In some cases, more than one Target header may be present in a request. The server should match the
headers in the order received and ignore any Target headers encountered after a match is made. The
matching header is then sent in the response Who header.

Object Exchange Protocol Version 1.2

42

4.7 OBEX Access Methods

Since not all objects are the same, there arises the need to define methods for accessing different types
of objects. This section defines sets of standard procedures or templates for each type of access. Three
basic forms of access have been identified: File, Database and Process. Interoperability will become
easier when, for example, accessing a database all clients follow the same basic procedures. Of course,
the values in the headers and such will differ for each database but the basic procedure should be the
same.

4.7.1 File Access

File level access is the lowest level of object access provided by OBEX. Using file level access an object
can be retrieved and stored only as a whole. It relies on addressing an object by providing a Name and
optionally a Type header. The Name header identifies the instance of the object. This is often sufficient
when sending an object. The Type header is used to refine the objects identification when multiple
objects may exist with the same name.

4.7.2 Database Access

A database is different from a file system. The objects manipulated in a file system tend to be course
blobs. While the items in a database are more refined. Often, the individual fields and records can be
manipulated in a database. Whereas many different types of objects are stored in a file system,
databases tend to store or organize objects of a similar nature.

OBEX database level access allows for finer granularity access to objects. Objects accessed using
database level headers can be manipulated by part. In other words pieces of a database object can be
requested and stored instead of having to exchange the entire object.

Database access relies on a Name header to identify the instance of the database object. In addition,
OBEX has an Object Class header, which is designed for use with database objects.

4.7.3 Process / RPC

In interacting with a process, the actual information transferred is generated and consumed on the fly.
The best example is the Synchronization command interpreter in the IrMC specification. The items being
PUT are often commands and not objects.

Object Exchange Protocol Version 1.2

43

5. Using OBEX over IrDA Ultra-Lite (Connectionless use)

OBEX is constructed to take advantage of the benefits of a connection-oriented transport, for instance by
exchanging capabilities and version information just once in the CONNECT packet. However, some
devices support only connectionless operations, such as those described by the IrDA Ultra proposal.

Ultra refers to communications carried out over connectionless data services of IrLAP, as described in
“Guidelines for Ultra Protocols”. The Ultra protocol is not reliable and does not guarantee ordered
delivery, so the request/response model of a full OBEX implementation is not appropriate. However, for
delivery of small objects, the simple structure of OBEX requests and the header based object wrapper
are still useful. A number of issues arise and are discussed in the following paragraphs.

Ultra does not assure reliable ordered delivery. However, it does use IrLAP framing, which has a CRC,
so it is possible to tell if an individual packet arrived intact. It also uses a segmentation-reassembly
(SAR) counter in each packet header, and a maximum time constraint between consecutive packets
using SAR. The count allows up to 15 packets to be reassembled. The CRC and SAR acting together put
a maximum upper bound on the size of an Ultra OBEX packet of 15 times the max packet size permitted
by the link speed of either 2400 or 9600 bps. Connectionless IrLAP packets are limited to 64 bytes, of
which 2 bytes are used by IrLMP and 2 bytes are used by the PID and SAR fields. Thus leaving 15
packets of 60 bytes (900 bytes total) for use by Ultra OBEX. In practice, transfers of 15 packets will take
too long, and Ultra OBEX is best suited for very small objects that will fit in one (or a few) packets. A
typical well-suited operation would be beaming a single name and phone number between two devices.

Ultra OBEX uses only the OBEX PUT command and all object data and headers must be sent in one
OBEX packet. The packet must have the final-bit set and all object data is contained in a single End-of-
Body header. Minimum implementations of Ultra OBEX need only support the default OBEX packet size
of 255 bytes. Legal implementations can however, support up to the maximum Ultra OBEX packet size
of 900 bytes. For compatibility, it is recommended that devices do not send more than 255 bytes over
Ultra.

To guarantee a successful transfer of data over Ultra, the exchange should be kept to 255 bytes or less .
This includes all headers. The data should be contained in one OBEX packet. Meaning the first and only
frame contains the PUT+FINAL opcode.

NOTE: Implementations are not required to receive OBEX packets larger than 255 bytes. Possible ways
that implementations can deal with Ultra OBEX packets larger than 255 bytes is as follows:

1. Ignore the packet completely
2. Only accept the first 255 bytes
3. Accept the whole packet.

The OBEX CONNECT, DISCONNECT, ABORT and SETPATH operations are not used in Ultra OBEX,
because Ultra OBEX does not have any notion of a session with multiple operations. Each operation is
completely distinct from every other, and each operation must fit within the SAR constraint described
above. Therefore, any version or capability information must be included as headers in the operation
being performed.

Ultra OBEX does not use any response packets. All feedback as to the success or failure of the operation
is performed by some out-of-band means such as a beep or visual indication to the user that the
operation was successful. For this reason, the OBEX GET operation is also not used in Ultra OBEX.

Object Exchange Protocol Version 1.2

44

6. IrDA OBEX IAS entries, service hint bit and TCP Port number

6.1 IAS entry

The default IrDA OBEX server application must have an IAS entry with the following attribute.

Class OBEX {
Integer IrDA:TinyTP:LsapSel IrLMP LSAP selector, legal values from Ox00 to 0x6F

}

There should be only one such entry on a system, or it may be impossible for an incoming connection to
decide who to connect to except by flipping a coin.

The OBEX class name should be used only by implementations that are intended as default OBEX
servers, and in particular have some provision for dealing with multiple object types and services.
Special purpose programs (custom applications) that use this protocol should define unique IAS class
names that they alone will use. Alternatively, special purpose applications can be accessed via the
default OBEX server by utilizing a directed connection as discussed in this specification. There is one
very common subset of object exchange application - applications that are strictly for file exchange.
They should use a class name of OBEX:IrXfer.

A general purpose OBEX implementation should look first for an OBEX IAS object, and if not found then
look for an OBEX:IrXfer entry if the object can reasonably be represented as a file. Similarly, a special
purpose program using OBEX should look first for a strict peer using whatever class name the peer
normally uses, and if not found should look for the default OBEX server to accept the transfer.

6.1.1 IrDA:TinyTP:LsapSel

This attribute contains the TinyTP/IrLMP MUX channel number for the service. This attribute must be
present for connection oriented use, whatever the class name is.

6.2 Service Hint bits

The OBEX IrLMP service hint bit has a value of 0x20 in the second hint byte. See section 3.4.1.1 in
[IRDALMP] specification for the definition of service hint bits and [IRDAIAS] for the complete listing of
service hint bits. Setting the OBEX hint bit is required. Many OBEX clients will not even attempt a
connection unless the OBEX hint bit is set.

6.3 TCP port number

IANA has assigned the port number 650 to the OBEX protocol. This port number should be used when
transporting OBEX protocol data over a TCP network. More specifically, it represents the location of the
default OBEX server in the TCP network. As with TinyTP, there is no requirement on the alignment of
OBEX packets with TCP PDUs. Except that all OBEX data shall be carried in data packets, not in TCP
Connect or Disconnect packets.

Object Exchange Protocol Version 1.2

45

7. OBEX Examples

The following examples are provided to round out the readers understanding of the procedures used in
OBEX.

7.1 Simple Put - file/note/ecard transfer

This example describes a simple PUT operation, a scenario with many applications. It illustrates the
basic request/response cycle, the exchange of version and capability information at the start of the
connection, and the use of the Name and Length headers in the PUT operation.

Ms. Manager worked up an outline for a presentation last night on her laptop, and needs to give it to a
staffer to expand on. She sets her laptop down next to an infrared adapter attached to the staffer’s
desktop machine, drags the Word document containing the outline to her OBEX app, and ...

A connection is made after her OBEX client queries staffer’s IAS to find the required LSAP of the
staffer’s OBEX application. In the first two examples, we will show the transaction byte by byte. For ease
of reading, the file and packet sizes are kept simple - file data is sent 1K at a time.

Client Request: bytes Meaning
opcode 0x80 CONNECT, Final bit set

0x0007 7 bytes is length of packet
0x10 version 1.0 of OBEX
0x00 no connect flags
0x2000 8K max packet size

Server Response:
response code 0xA0 SUCCESS, Final bit set

0x0007 packet length of 7
0x10 version 1.0 of OBEX
0x00 no connect flags
0x0800 2K max packet size

Client Request: bytes Meaning
opcode 0x02 PUT, Final bit not set

0x0422 1058 bytes is length of packet
0x01 HI for Name
0x0017 Length of Name header
THING.DOC name of object, null terminated
0xC3 HI for Length
0x00006000 Length of object is 0x6000 bytes
0x48 HI for Object Body chunk
0x0403 Length of Body header (1K) plus HI and header length
0x.......... 1K bytes of body

Server Response:
response code 0x90 CONTINUE, Final bit set

0x0003 length of response packet

Client Request:
opcode 0x02 PUT, Final bit not set

0x0406 1030 bytes is length of packet

Object Exchange Protocol Version 1.2

46

0x48 HI for Object Body chunk
0x0403 Length of Body header (1K) plus HI and header length
0x.......... next 1K bytes of body

Server Response:
response code 0x90 CONTINUE, Final bit set

0x0003 length of response packet

A number of packets containing chunk of file body are sent, and finally we arrive at the last packet, which
has the Final bit set.

Client Request:
opcode 0x82 PUT, Final bit set

0x0406 1030 bytes is length of packet
0x49 HI for End-of-Body chunk
0x0403 Length of header (1K) plus HI and header length
0x.......... next 1K bytes of body

Server Response:
response code 0xA0 SUCCESS, Final bit sent

0x0003 length of response packet

The transaction is complete, so the OBEX client disconnects. 3 seconds have passed, and Ms. Manager
heads down the hall to a meeting. No Type header was used, so the server assumes a binary file and
stores it exactly as is.

7.2 Simple Get - field data collection

This example illustrates a GET operation with user defined headers, which, in this case, are for
application specific access identifier and version information.

A meter keeps tabs on electricity used, and is intermittently visited by a meter reader. The meter reader
points a collection device at the meter and presses a button which causes the following:

Client Request: bytes Meaning
opcode 0x80 CONNECT, Final bit set

0x001A 26 bytes is length of packet
0x10 version 1.0 of OBEX
0x00 no special flags
0x0800 2K max packet size
0x70 HI for a user defined, length prefixed header
0x0013 length of header
XuseElectricityX actual contents of user defined access header

Server Response:
response code 0xA0 SUCCESS, Final bit set

0x000B packet length of 11
0x10 version 1.0 of OBEX
0x00 no flags set
0x0040 64 byte max packet size
0xF0 HI for user defined 4 byte header
0x00000603 meter version info

Client Request: bytes Meaning

Object Exchange Protocol Version 1.2

47

Opcode 0x83 GET, Final bit set
0x0003 length of GET packet

Server Response:
Response code 0xA0 SUCCESS, Final bit set

0x0038 length of response packet
0x49 HI for End-of-Body chunk
0x0035 Length of header
0x.......... 0x32 bytes of meter information

A security code (“XUseElectricityX”) was passed in a user defined header during connection to keep
prying eyes at bay. The GET operation specified no Name or other headers, so the meter returned a
reading. A header entry at this point might have instructed the meter to return service information. No
Type or Name headers were needed on the returned object because the client application knows just
what it is getting.

7.3 Example Get of the Capability Object

This example shows a client requesting the capability object from a device. The OBEX packet size is 512
bytes.

Opcode or
Response plus

Headers

Final
bit

Header Data Header
Length

Running
Total of Data
Exchanged

Request GET 4
→ Type “x-obex/capability 20

Response CONTINUE 4
← Length “2000”

Body “start of capability object” 499 496 bytes

Request GET 4
→ no headers

Response CONTINUE 4
← Body “..continuation of object..” 509 1002 bytes

Request GET 4
→ no headers

Response CONTINUE 4
← Body “..continuation of object..” 509 1508 bytes

Request GET 4
→ no headers

Response SUCCESS 4
← End-Of-Body “..final segment of object” 495 2000 bytes

Object Exchange Protocol Version 1.2

48

7.4 Connect using Target, Who and Connection Id headers

Here is a PUT operation broken out with each component (opcode or header) on a separate line. We are
sending a file called jumar.txt, and for ease of reading, the example file is 4K in length and is sent in 1K
chunks. This illustrates the format of a directed Connection, using the Target, Who and Connection Id
headers. The connection was accepted by the Targeted application.

Client Request: bytes Meaning
opcode 0x80 CONNECT, Final bit set

0x0023 packet length = 35
0x10 version 1.0 of OBEX
0x00 flags, all zero for this version of OBEX
0x2000 8K is the max OBEX packet size client can accept
0x46 Target HI
0x0013 Length of Target Header
0x382D2BD03C39
11D1AADC0040F6
14953A

UUID for desired service/application (binary
representation)
{382D2BD0-3C39-11d1-AADC-0040F614953A}

0xC3 HI for Length header (optional header)
0x0000F483 total length of hex F483 bytes

Server Response:
response code 0xA0 SUCCESS, Final bit set

0x0023 packet length of 35
0x10 version 1.0 of OBEX
0x00 flags (LSAP-SEL multiplexing not supported)
0x0800 2K max packet size
0xCB HI for Connection Id header
0x00000001 ConnId = 1
0x4A Who HI
0x0013 Length of Who Header
0x382D2BD03C39
11D1AADC0040F6
14953A

UUID of responding application (same value as Target
header in request)
{382D2BD0-3C39-11d1-AADC-0040F614953A}

Client Request:
opcode 0x02 PUT, Final bit not set

0x0427 1063 bytes is length of packet
0xCB HI for Connection Id header
0x00000001 ConnId = 1
0x01 HI for Name header
0x0017 Length of Name header (Unicode is 2 bytes per char)
JUMAR.TXT name of object, null terminated Unicode
0xC3 HI for Length header
0x00001000 Length of object is 4K bytes
0x48 HI for Object Body chunk header
0x0403 Length of Body header (1K) plus HI and header length
0x.......... 1K bytes of body

Server Response:
response code 0x90 CONTINUE, Final bit set

0x0003 length of response packet

Object Exchange Protocol Version 1.2

49

The PUT operation …proceeds to completion…
Client Request: bytes Meaning
opcode 0x81 DISCONNECT, Final bit set

0x0008 packet length = 8
0xCB HI for Connection Id header
0x00000001 ConnId = 1

Server Response:
response code 0xA0 SUCCESS, Final bit set

0x0003 packet length = 3

7.5 Combined Get and Put - paying for the groceries

Now that you have the idea of what the byte sequence looks like, we will represent the remaining
examples in a more readable format.

Smiling vacantly, the checkout clerk says “$45.12, please”. You take out your bit-fold (electronic bill-
fold). You point it at the IR window at the checkstand, and press the “Do-it” key. An encrypted IR
connection is made to the register. During the connection negotiation, you discover that the store takes
Visa and the local bank’s debit card.

Request:
<opcode=Connect>
version info
encryption information

Response:
<response code = success>
version and capabilities info
encryption information
Accepted-payment-forms: Visa, MasterCard,

Request:
<opcode=Get> // Get with no arguments tells register to return itemized amount

Response:
<response code = success>
Type: text/itemized-receipt
Len: 2562 // wow, you bought a lot of items

<body of receipt in form standardized by finance industry.
It includes date, a UUID for the transaction, and the total amount due>

You examine the list of items, making sure you got the sale price on asparagus, and make sure your
coupons were deducted. You press the Accept key, and select Visa from the offered payment choices...

Request:
<opcode=Put>
Type: payment/Visa
Len: 114
Payment-id: <UUID of payment sent to you in receipt>

<body of standardized Visa Payment>

The cash register chimes pleasantly as your payment is verified.

Object Exchange Protocol Version 1.2

50

Response:
<response code = success>
Type: text
Len: 123

<hey, it says you got some frequent flyer miles!>

Connection disconnects, you pocket the bit-fold and head out past the stacks of dog food and charcoal
briquettes. At home you set the bitfold down by your PC and press the “Reconcile” key, and it connects
to your PC, sends the days purchases with itemized receipts over to the OBEX server. With a home
accounting program you make short work of the financial record keeping, since the data is all entered for
you, free of errors. Of course, it is harder to hide the purchase of the Twinkies from your spouse...

Object Exchange Protocol Version 1.2

51

8. OBEX Services and Procedures

The following section covers the services currently defined for use over OBEX. This list in no way
represents the entire set of services eligible for use over OBEX. It is intended to provide an
understanding of what services currently use the OBEX protocol and how they use it. In addition,
common processes or methods, such as the “Simple OBEX PUT” are also covered.

8.1 Folder Browsing Service

A folder/file system is a hierarchy of folders that contain objects/files and folders. A client can browse
folders and GET the contents. The client can also traverse the folders and PUT and GET objects into
and out of the folders. Life in a folder is more permanent than life in an inbox. It is very likely that after a
client has PUT an object into a folder it can GET it at a later time.

The Folder Browsing service provides access to a device’s object store via OBEX. The application that
provides the service is called the folder browsing server, the client application is called the folder
browser. The service is built using OBEX PUT, GET and SETPATH commands as well as the OBEX
Folder-Listing object. It uses file access methods to PUT and GET Objects to the remote object store
over a directed OBEX connection. To connect to a folder browsing service the client issues an OBEX
CONNECT with a Target header containing the UUID (in binary) for the Folder Browsing service to the
Default OBEX server. This UUID is F9EC7BC4-953C-11d2-984E-525400DC9E09.

The availability of the folder browsing service can be determined by inspecting the OBEX capability
Object for the folder browsing service. Alternatively, a connection attempt to the folder browsing UUID
can be performed. There should only be one instance of a folder browsing service on the default OBEX
server. You could have folder browsing using a different OBEX server but it would not be a standard
service.

8.1.1 Exchanging Folder Listings

Often, an application will request a listing of the remote devices folder system, in-order to locate an
object it wants or to position an object for storage. When an application requests a listing of a folder’s
contents, it receives a folder-listing object. The specific format of this object is discussed in chapter 9.1
The Folder Listing Object. It should be noted that any OBEX headers sent with the folder-listing object
refer to the object itself and not the folder for which the object is a listing of.

The folder-listing object is exchanged as octet-sequence data in one or more OBEX Body headers. The
boundaries of the Body headers have no relevance to the internal structure of the folder listing.
Individual Body headers should be concatenated to form the complete folder listing.

8.1.1.1 Requesting A Folder Listing

To retrieve a folder listing an OBEX GET request is sent to the folder-browsing server. Within the GET
request, a Name header is used to convey the name of the folder for which a listing is desired. A Type
header is used to indicate to the server the type of object requested. This is necessary because the client
could be requesting a folder listing, or an object located within the folder. A connection must have
already been established to the folder browsing service before requests can be sent.

The method used when requesting a folder is based on the relative position of the current folder. The
following is an overview describing the four methods used when requesting a folder.

1. To retrieve the current folder: Send a GET Request with an empty Name header and a Type
header that specifies the folder object type.

Object Exchange Protocol Version 1.2

52

2. To retrieve a child folder: Send a GET Request with the Name of the child folder in a Name
header and a Type header that specifies the folder object type.

3. To retrieve the parent folder: Send a SETPATH with the Backup flag set, to change to the
parent folder. Then send a GET Request with an empty Name header and a Type header that
specifies the folder object type.

4. To retrieve the root folder: Send a SETPATH with an empty Name header, to change to the root
folder. Then send a GET Request with an empty Name header and a Type header that specifies
the folder object type.

A recap of OBEX headers used when requesting a folder object:
• Name: (Required) The Name header specifies the name of the folder for which the listing is

requested.
• Type: (Required) The Type header conveys the type of object requested. The value of this

header must be “x-obex/folder-listing” when requesting a folder listing.
• Connection ID: (Required) The Connection Id of the folder browsing service.

8.1.1.2 Responding with a Folder Listing Object

A successful response to the GET operation should either indicate a SUCCESS or CONTINUE response
code followed by one or more Body headers. The following headers may also be present in the
response: Name, Size and Time. When present these headers describe the folder-listing object that is
being retrieved.

• Name: (Optional) The Name header specifies the name of the folder for which the object is a
listing. This should match the name present in the request, but is not required to.

• Size: (Optional) The Size header represents the total size of the folder-listing object in bytes.
• Time: (Optional) The Time header is used to convey the ISO Time that the folder-listing object

was last updated.
• Body / End-Of-Body (Required if successful) The Body and End-of-Body headers are used to

return the folder-listing object.

8.1.2 Navigating Folders

This section reviews the methods used for navigating a remote object store. The concepts are the same
as those presented elsewhere in the OBEX specification. They are discussed here simply to make the
discussion more complete.

8.1.2.1 Changing Folders

The OBEX SETPATH operation is used to change folders. A Name header is used for downward
navigation and the Backup flag is used for upward navigation. To change to the root folder a SETPATH
operation with an empty Name header is sent.

8.1.2.2 Creating Folders

The OBEX SETPATH operation is used to create folders in the same manner as it is used to traverse
them. Implementations usually support a “create if non-existent” behavior for the SETPATH operation. In
this way, entire trees of objects can be moved from one device to another.

8.1.3 Security

Anytime a device exposes its internal object store to a remote user, security is of some concern. This
specification does not address any specific security measures because such behavior is highly device

Object Exchange Protocol Version 1.2

53

and operating system dependent. It is recommended that any application that provides access to its
object store take necessary precautions to protect the privacy and consistency of the local object store.

8.2 Simple OBEX Put file transfer (+ SetPath)

This process transfers an object or a set of objects to the receiving device’s inbox. The sending device
has no understanding of what was done with the object after it was received. The PUT command is used
with Name and optionally Type headers. An OBEX connection is required for compatibility with existing
applications and is also used to increase transfer performance. This service supports file level access.

The QuickBeam and IrXfer applications are both based on this model of simple file transfer. These
applications do not use directed OBEX connections, all objects go to the “inbox”. The QuickBeam
application provides a basic implementation of an inbox server, storing received objects on the file
system in an inbox folder. The QuickBeam and IrXfer clients push generic file objects, using the headers
and methods discussed in section 9.2 Generic File Object.

Applications exist which use the simple push file transfer model in conjunction with the SETPATH
command to transfer an entire directory to the receiving device’s inbox. This process is more complex
than the simple push model because it implies that the sender has some knowledge of how the receiver
will process or organize the objects. This creates difficulties for the receiving application and future
applications should avoid sending the SETPATH command to the Inbox. On the receiving side, server
applications should make an effort to permit the SETPATH operation to the extent possible.

Note that this process is not defined as a service because it is just a use of the inbox service. It is simply
a description of existing implementations of an inbox server.

8.3 Telecom/IrMC Synchronization Service

This service allows a client to communicate with a server in a predefined manner so that the client can
provide synchronization and backup services for the server. This service uses the OBEX PUT and GET
commands as well as IMC vCard, vCalendar objects and other IrMC specifically defined objects. Refer to
the IrMC specification for a complete object description. This service uses both File and Database
access methods.

The IrMC server is targeted by appending the string, “telecom/”, in a Name header before all object
names. This service is organized by 4 levels of operation, with each successive level increasing in
functionality. The levels 1, 2 & 3 do not use a dedicated OBEX connection and all requests are sent to
the default OBEX server’s inbox. Devices that support the IrMC service must handle this special case by
redirecting all such requests to the IrMC service. Level 4 uses a directed connection to target the service
(UUID, “IRMC-SYNC”) via the default OBEX server.

Both simple PUT file transfer and IrMC sync use the default OBEX server’s inbox service and they both
use PUT with the Name header. They are able to distinguish the target because IrMC uses names with
"telecom/" while simple PUT file transfer names do not contain paths.

8.4 OBEX Get Default Object

This process enables a device to request an object from a device’s inbox. Typically, the objects available
for request using this method will be few. Currently only business cards and the capability object have
been identified for use with this method. The purpose of providing this capability is to enable a device to
request basic information from a second device, instead of requiring that the second device initiate the
exchange.

Object Exchange Protocol Version 1.2

54

The procedure for requesting a default object is to send a GET command with a Type header specifying
the MIME type of the desired object and an empty Name header. In this situation an empty Name header
should be treated the same as no Name header. If a default object of the Type requested is available, it
should be returned in one or more Body/End-of-Body headers in a successful response. If the object is
not available, the response code NOT FOUND should be returned. If the request contained a value in the
Name header then the request is illegal (unless it is for the capability service) and FORBIDDEN should
be returned.

8.4.1 Get default vCard example

In this example, the client connects to the default OBEX server and requests the devices default vCard.
The device contains a default vCard and returns it successfully.

Client Request: bytes Meaning
opcode 0x80 CONNECT, Final bit set

0x0007 packet length
0x10 Version 1.0 of OBEX
0x00 flags, all zero for this version of OBEX
0x2000 8K is the max OBEX packet size client can accept

Server Response:
response code 0xA0 SUCCESS, Final bit set

0x0007 packet length
0x10 Version 1.0 of OBEX
0x00 no flags
0x0800 2K max packet size

Client Request:
opcode 0x83 GET, Single packet request, so final bit set

0x0018 packet length
0x01 HI for Name header
0x0003 length of empty Name header
0x42 HI for Type header
0x0010 Length of Type header
text/x-vCard Type of object

Server Response:
response Code 0xA0 SUCCESS, Final bit set

0x0210 length of response packet
0x49 HI for End-of-Body header
0x020D 522 byte vCard length
0x…….. default vCard

8.5 Capability Service

The OBEX capability service is designed to provide a general-purpose method for accessing service
information with OBEX. Traditionally, OBEX services and applications have derived private methods for
handling the device and service information that is of interest to them. However a broader scope of
services could interoperate if there were a more common way to access this information. For example,
an IrMC device represents the vCard fields it can handle, in a file called “telecom/pb/info.log”. This is fine
for IrMC devices because they see eye-to-eye, but a general-purpose application has no way of knowing
how to retrieve this information. Additionally, different applications that want to support vCards may
choose the same representation for acceptable vCard fields but will unlikely provide it in a file called
“telecom/pb/info.log”. The capability service aims to bridge this gap by providing a simple access
methods for retrieving commonly used information from a device.

Object Exchange Protocol Version 1.2

55

8.5.1 The Capability Object/Database

The capability object is designed to provide a single place where general-purpose device, service and
application information can be stored. Collecting this information in one place allows an application to
easily retrieve a host of interesting device specific information. The capability object contains object
information such as what objects the device supports and which ones can be PUT to the inbox. It
contains general-purpose information such as the devices serial number and manufacturer. It also
contains a specification of service connection procedures for the various services available on a device.
Such as, CONNECT Target Header values and Alternate LSAPs where the service is available.

The standardization of the capability object and its access methods allows a variety of services to
retrieve common information in a common manner. New services will know how to advertise their object
and service information and will not need to derive a private method. In addition, existing general
purpose services will be able to locate and retrieve information about new services in the same manner
that they retrieve existing service information. This will not only allow a more diverse set of OBEX
applications to exchange objects but it will also allow more applications to be installed on a device
because they’ll use fewer resources.

There are three main sections in the Capability Object they are; General Information, Supported Objects
and Service/Application-Info. The General section contains information about the device, which is likely
to be of general interest. Information such as serial number and manufacturer are contained in this
section. The Supported Objects section is separated into two sub-sections. The first section, the Inbox,
lists the objects that are recognized by the device’s inbox. This allows a connected device to determine if
the recipient will accept the object it wishes to send before it initiates the transmission. The Supported
Objects section provides information about other objects that are used in the device but are not
permissible in the inbox. The Service Info section is designed for use by applications that need to convey
static configuration information. Information such as application version and supported options is
recorded here

8.5.2 The Object Profile Database

The object profile database works in conjunction with the capability object to provide information about
individual objects. It is designed to allow a client to retrieve specific information about the level of
support that is provided for a specific object. The server builds an object profile for each object that the
device wants to support in the object database. An object profile contains the same information as the
IrMC protocol provides in the info.log file, object fields section. Under IrMC, this vital information is
hidden from most services because of its obscure location. By supplying this information in a service
independent manner, the information is more useful.

Each object profile must have a specified format that is self-supporting. No knowledge of the supporting
service can be required to understand the object profile. The method used by IrMC to describe vCards is
valid under this criterion. In order to be useful to a variety of applications, the object profile must be
generally available. This document is the repository for all object profiles. In addition, a method for
defining the access method for each object profile must be available.

Object profiles are accessed in a very specific manner. By providing a common method, new objects can
easily be added to the database. The capability service is responsible for providing the object profiles.
Requests are made of the capability service, by sending the MIME type of the object for which the profile
is requested. Since the capability service is designed to support many different types of objects, the type
of object requested is also provided. In this case, it is an object profile object, which has the type “x-
obex/object-profile”.

8.5.3 Locating the Capability Service

Before a request for the capability object or an object profile can be made the application must connect
to the capability service. Because the capability service is integral to the OBEX protocol it was designed

Object Exchange Protocol Version 1.2

56

to be located in the default OBEX server, along side the Inbox service. Therefore the capability service is
connected to by sending a CONNECT packet with no targeting information. This is the same method
used to connect to the inbox. The OBEX server can differentiate requests sent to the capability service
from that of the inbox because the OBEX operations supported by these services are mutually exclusive.
The Inbox does not support GET, while the capability service only supports GET. Using this approach,
requests are sent to the capability object without any connection targeting information.

Object profiles are a part of the capability service. Therefore, the same connection that is used to
retrieve the capability object is used for retrieving object profiles. The server can differentiate between
the requests by the Type header sent with the request.

Since IrMC also uses the default OBEX server with no targeting information, it is necessary to discuss
how capability service transactions are differentiated from IrMC transactions. There are two significant
differences that IrMC devices can use to differentiate IrMC from Capability Service requests. All
Capability Service requests will contain a Type header with the value “x-obex/object-profile” or “x-
obex/capability”. Neither of these values are valid in IrMC. However, if the Type header is ignored by the
server, the Name header also provides uniqueness. All Name headers used by IrMC start with
“telecom/”. Since “telecom/” is not a valid root MIME type, the Capability Service naming convention will
not conflict with the IrMC namespace.

8.5.3.1 Requesting the Capability Object

The capability object is requested by sending a GET request with the MIME type of the capability object
provided in an OBEX Type header. The MIME type of the capability object is “x-obex/capability”. A
successful response will contain one or more OBEX Body headers with the full capability object as their
contents.

8.5.3.2 Requesting an Object Profile

The format for an object profile object request is based on the MIME type of the object for which the
profile is requested. A GET request containing the MIME type of the object whose profile is desired in a
Name header, with a Type header containing the value “x-obex/object-profile” is interpreted by the
capability service as an object profile request. A successful response will contain one or more Body
headers with the object profile object contents.

If a client does not know the MIME type of an object it can look-up the object in the capability object
using the name extension. This record also contains the MIME type of the object, which can then be
used to make an object profile object query. Below is an example GET sequence for the vCard object
profile.

Client Request:
Opcode 0x83 GET, Single packet request, so final bit set

0x003B packet length
0x42 HI for Type header
0x0019 length of Type header
x-obex/object-profile MIME type of an object profile object
0x01 HI for Name header
0x001F length of Name header (Unicode)
text/x-vCard MIME type of the object for which a profile is requested

Server Response:
response code 0xA0 SUCCESS, Final bit set

0x012C length of response packet
0x49 HI for End-of-Body header
0x0129 294 byte object length
0x….. vCard object profile

Object Exchange Protocol Version 1.2

57

8.5.3.3 Sending an Object Profile (unilaterally)

In some application environments, it may be necessary for a client to inform the server of its object
profile. This is the reverse of the service offered by the capability service. This can be the case when the
client is requesting objects from the server and wishes for them to adhere to the object profile that it
supports.

To fulfill this requirement, an object profile can be PUT to an application or service (NOT the capability
service). The service receiving the object profile can ignore and discard the object if it does not support
customized object responses. In this case, the PUT request should be failed by responding with a non-
success OBEX response code. If the service supports customized object responses then it should
process the object profile and apply its rules to any request for that objects type. The rules should be
applied for the duration of the connection or until another object profile is received. To PUT an object
profile the client sends a PUT request with the same headers as a GET request, a Type header of ”x-
obex/object-profile” and a Name header with the object profile’s MIME type.

Client Request:
Opcode 0x82 PUT, Single packet request, so final bit set

0x0164 packet length
0x01 HI for Name header
0x001F length of Name header
text/x-vCard name of object profile object (Unicode, null-

terminated)
0x42 HI for Type header
0x0019 length of Type header
x-obex/object-profile MIME type of an object profile object
0x49 HI for End-of-Body Header
0x0129 294 byte object length
0x…… vCard object profile

One instance where this is useful is when accessing the folder browsing service. In this service, the client
GETs folder-listing objects from the server. In order to convey its desire to receive only limited
information in the returned object the client sends a folder-listing object profile to the server before the
first folder-listing request. In this manner, the server can avoid overwhelming the client and wasting
bandwidth by eliminating information that the client is not interested in receiving.

Object Exchange Protocol Version 1.2

58

9. OBEX Objects

This section contains definitions for objects, which have been created or adopted for use within the
OBEX protocol and its applications. Whenever possible industry standard objects are used, such as
vCards, etc. However occasionally the need arises to create an object specific to OBEX. Such objects
are the topic of this chapter. The following is a list of the objects covered:

• The Folder Listing Object
• The Generic File Object
• The Capability Object
• The Object Profile Object

Often when creating a new OBEX object, the problem of assigning a MIME type for use with the OBEX
Type header arises. It is recommended that the following approach be used to determine the MIME type
for an object.

• If the object’s domain is outside of OBEX it should be given an experimental MIME type under
one of the existing MIME root types. A vCard is an example of such an object, it is rooted in the
“text” type. These types must follow the rules for creating an experimental MIME type,
specifically they must start with “x-“. The MIME type for vCards is “text/x-vCard”.

• If the object was created for use within OBEX than the type should be rooted in the OBEX
experimental root type “x-obex”. The capability and folder-listing objects, which have MIME types
“x-obex/capability” and “x-obex/folder-listing”, are examples.

9.1 The Folder Listing Object

A folder-listing object is a detailed itemization of the contents of a particular folder. Each object in a
listing can contain a variable amount of information, conveyed as attributes of the object. A folder can be
a directory or other similar type of container object. It is expressed as an application of the Extensible
Markup Language (XML) specified by the W3C. Folder object data is exchanged in one or more OBEX
Body headers. An example of a folder listing conforming to the OBEX folder object format is shown
below.

<folder-listing>
<folder name = ”System” created = ”19961103T141500Z”/>
<file name = ”Jumar.txt” created = ”19971209T090300Z” size = ”6672”/>
<file name = “Obex.doc” created = ”19970122T102300Z” size = ”41042”/>

</folder-listing>

Folder-listing objects are provided by a Folder Browsing service. This service is designed to provide
access to the folder/file system of the serving device. The folder system is represented as a hierarchy of
folders that contain objects/files and sub-folders. A client can browse folders and GET their contents. The
folder browsing service defines the methods used to traverse folders, as well as for storing and retrieving
objects.

9.1.1 Element Specification

9.1.1.1 Document Definition

The syntax for describing OBEX folder objects is based on the XML specification. A folder description is
written using the syntax of XML because it provides for flexible data tagging that fits the needs for an
open, flexible and general-purpose way of describing objects. An OBEX folder listing is a set of various
XML elements. Collectively these elements form an XML document, referred to as the folder listing.

Object Exchange Protocol Version 1.2

59

A folder-listing document may contains zero or more of the following elements:
• folder – A description of a folder type object.
• parent-folder – Indicates the existence of a parent folder.
• file – A description of a file type object.

These elements may also contain attributes that describe the file or folder element.

9.1.1.2 Elements of a Folder Listing Document

Each object in a listing is described by an element with attributes. This section details the syntax and use
of the defined elements. For more detailed information on the XML syntax and encoding rules, refer to
the XML specification available at http://www.w3.org/TR/REC-xml.

9.1.1.2.1 Elements

Element Name Meaning

file Indicates the existence of a file contained within the folder.

folder Indicates the existence of a folder contained within the folder.

parent-folder Represents the existence of a parent to the folder being presented.

folder-listing The document type.

9.1.1.2.2 Attributes used in File and Folder Elements

Attribute Name Meaning

name

The name of the folder or file. It does not include any path or similar
information. The value of this attribute is used in a NAME header to
retrieve the object if desired. This value must be unique in all similar
elements in the document.

size
The size of the folder or file object in bytes. This size is an estimate
and is not required to be exact. It is expressed as an unsigned base
10 integer.

modified

This attribute represents the last modified time for the object. It is
expressed in the same format used by the OBEX ISO Time header.
That format is YYYYMMDDTHHMMSS, where the capital letter ‘T’ is
expressly inserted between the day and the hour fields. It is
recommended that whenever possible UTC time be used. When
expressing UTC time, the letter “Z” is appended to the end (for
example: 19670110T153410Z).

created
This attribute represents the creation time for the object. It is
expressed in the same format used by the OBEX ISO Time header.
It is recommended that whenever possible UTC time be used.

accessed
This attribute represents the last accessed time for the object. It is
expressed in the same format used by the OBEX ISO Time header.
It is recommended that whenever possible UTC time be used.

Object Exchange Protocol Version 1.2

60

user-perm

group-perm

other-perm

These attributes convey the access permissions for the object. The
permissions are encoded based on the access currently available to
this user over the object listed. The following alphabetic characters
are used to describe access:

“R”, “W”, “D”

The value of the permissions type is an unordered sequence of
these alphabetic characters. The permissions indicators are case
independent.

R: The READ permission applies to all object types. It indicates that
an attempt to GET the named object should successfully retrieve its
contents.

D: The DELETE permission applies to file types. It indicates that
the file may be removed by sending a PUT-DELETE command.

W: The WRITE permission applies to all object types. It indicates
that an attempt to modify the contents of the file by PUT’ing to the
file should succeed. For folder objects it indicates that attempts to
create a folder or other object within that folder should succeed.

There are three levels of permissions. These are for systems that
distinguish between access for the user, the group and other. The
default permissions attribute is user.

Note: A permission indicator does not imply that the appropriate
command is guaranteed to work – just that it might. Other system
specific limitations, such as limitations on available space for storing
objects, may cause an operation to fail, where the permission flags
may have indicated that it was likely to succeed. The permissions
are a guide only. Some systems may have more specific
permissions than those listed here, such systems should map those
to the flags defined as best they are able.

owner The Owner attribute is used to convey the user associated with
ownership or responsibility for this object.

group Some file systems have the notion of group ownership. This
attribute is used to convey that information when present

type
This attribute works similarly to the IrOBEX Type header and
expresses the MIME type of the file object. It can be used to
interpret the files’ internal format or an application association.

xml:lang

The XML defined language attribute may be used to specify the
language of both content and attribute values. The default language
of English (us-EN) need not be specified. This attribute affects the
interpretation of the following attributes: name, owner and group.
As well as any element content.

9.1.1.2.3 Attributes used with the Folder Listing Element

Attribute Name Meaning

version
The version attribute is used in the folder-listing element to convey
the version of the folder listing DTD that the document conforms to.
The current version is 1.0.

Object Exchange Protocol Version 1.2

61

9.1.1.2.4 File and Folder Element Content

Both file and folder elements may contain element content. When present, the content expresses the
recommended display name of the file or folder. This differs from the name attribute in that it does not
need to be unique or be a valid file/folder name. In the absence of this content, the name attribute should
be used when displaying the element.

9.1.2 Folder Listing Details

9.1.2.1 The Folder Object Type

When requesting a folder listing, the Type header must contain the value “x-obex/folder-listing”. By
specifying this type, ambiguities about the type of document requested can be avoided. This value is not
case sensitive. It is not necessary to send the Type header in the response.

9.1.2.2 Empty Folder Listing Objects

When a request for a folder listing results in an empty listing, the response should follow the behavior of
any successful request. The folder-listing object contained in the response Body header should be a
valid XML empty object. Here is an example of such an object:

<?xml version="1.0"?>
<!DOCTYPE folder-listing SYSTEM "obex-folder-listing.dtd">
<folder-listing version=”1.0”/>

9.1.2.3 Customizing Folder Listings

A folder listing object profile can be used to provide information about the elements and attributes
supported by the folder browsing server or browser. If available, the object profile should be registered
with the capability service under the name “x-obex/folder-listing”. The object profile is an empty XML
folder object. It lists all the supported elements and attributes in their regular format but with no values. If
a client browser wishes to inform the server of its object profile it should PUT the object profile to the
server before it performs the first GET of a folder listing.

Adherence to a received object profile is not required. However, it is recommended that devices, which,
by default provide detailed responses, support this feature. It is most useful in the case where a simple
device is querying a more robust device and it doesn’t want to get flooded with information. For example,
if a PDA chooses to browse a desktop device it might want only a list of file and folder names and sizes.
Below is an example PUT of an object profile for an application that only recognizes name and size
attributes. Note that the syntax can be completely parsed by an XML processor.

Operation Header Content

PUT Name x-obex/folder-listing

Type x-obex/object-profile

Body

<?xml version="1.0"?>
<!DOCTYPE folder-listing SYSTEM "obex-folder-listing.dtd">
<folder-listing version=”1.0”>
 <parent-folder />
 <folder name=”” size=”” />
 <file name=”” size=”” />
</folder-listing>

Object Exchange Protocol Version 1.2

62

9.1.3 Encoding Folder Listing Objects

9.1.3.1 XML Basics

The definition of a folder-listing object is based on the W3C Specification of XML. XML is used because
it provides the structure and syntax for the folder-listing object. For a folder-listing object to be correct, it
must follow the syntax rules specified by the XML specification. In XML, the content and organization of
a particular object type is expressed by its Document Type Definition (DTD). In order for folder-object to
be correct, it must also adhere to the obex-folder-listing DTD. This DTD is provided in section 9.1.4.1 of
this document.

XML allows the DTD to be either internal or external to the document that relies on it. The folder object
DTD is always external and is never sent as part of the folder object. It is assumed that the receiving
entity will be able to handle the object without an internal DTD.

The content of an XML document is contained in its elements and attributes. This document defines the
elements and attributes used in folder-listing objects. The XML specification states that element and
attribute names are case sensitive. Therefore, the element names “Parent-Folder”, “parent-folder” and
“PARENT-FOLDER” all refer to different elements.

9.1.3.2 Character Encoding Format

An XML document allows for the specification of the character encoding used in the document. The
encoding declaration is positioned in the very beginning of the document to enable quick determination.
The default encoding for XML documents is UTF-8 and need not be specified. If an alternate encoding is
used it must be specified in the encoding declaration.

It is recommended that folder-listing objects which contain Japanese characters be encoded using the
SHIFT_JIS encoding. This encoding has the benefit of ensuring that the characters of ASCII have their
normal values, which makes the processing of the encoding declaration straightforward. The following
example illustrates an XML declaration for a SHIFT_JIS encoded document.

<?xml encoding=”SHIFT_JIS”?>

9.1.3.3 Folder-Listing Object Examples

The following listing is used to illustrate the encoding of a folder into a folder-listing object.

Name Size Creation Time (UTC) Last Modified (UTC) Type
-- parent folder

System -- Nov 3,1996 2:15p Nov 3, 1996 2:15p folder
IR Inbox -- Mar 30, 1995 10:50a Mar 30, 1995 10:50a folder
Jumar.txt 6,672 Dec 9, 1997 9:03a Dec 22, 1997 4:41p text/plain
Obex.doc 41,042 Jan 22, 1997 10:23a Jan 22, 1997 10:23a application/msword

9.1.3.3.1 Detailed encoding of Example Data

<?xml version="1.0"?>
<!DOCTYPE folder-listing SYSTEM "obex-folder-listing.dtd">
<folder-listing version=”1.0”>

<parent-folder />
<folder name = “System” created=”19961103T141500Z”/>
<folder name =” IR Inbox” created=”19950330T105000Z”/>
<file name = “Jumar.txt” created=”19971209T090300Z” size=“6672”

modified=“19971222T164100Z” user-perm=”RW”/>
<file name =”Obex.doc” created=“19970122T102300Z” size = “41042”

type=”application/msword” modified=“19970122T102300Z”/>

Object Exchange Protocol Version 1.2

63

</folder-listing>

9.1.3.3.2 A Simpler encoding illustrating display names

<?xml version="1.0"?>
<!DOCTYPE folder-listing SYSTEM "obex-folder-listing.dtd">
<folder-listing version=”1.0”>

<parent-folder />
<folder name=“System”/>
<folder name=”IR Inbox”/>
<file name=“Jumar.txt” size=”6672”>Jumar Handling Guide</file>
<file name =”Obex.doc” type = ”application/msword”>IrOBEX Specification v1.0</file>

</folder-listing>

9.1.3.4 Simple Encoding Methods

In the simplest case, devices that want to provide a listing of the objects available on the device can
construct a static representation of the folders. If the object list can dynamically change, the application
providing the listing may need to be more adaptive. In general, the construction of an XML folder-object
is simple and straightforward. The first three lines of the document are generally static text. The following
encoding of the attributes for the various files and folders will generally be a consistent straightforward
format.

9.1.3.5 Room for Future Extensions

The folder-listing element contains an attribute that specifies the version of the DTD that was used to
construct the object. If the future necessitates changes to the folder-listing DTD, the version information
can then be used to indicate what revision of the DTD the object was based on. Since it is intended that
folder-listings be exchanged without an internal DTD, it is essential that different versions of the DTD be
readily discernable.

9.1.4 XML Document Definition

9.1.4.1 DTD Specification

<!-- DTD for the OBEX Folder-Listing Object -->

<!ELEMENT folder-listing (folder | file | parent-folder)* >
<!ATTLIST folder-listing version CDATA "1.0">

<!ELEMENT file (#PCDATA)>
<!ATTLIST file name CDATA #REQUIRED>
<!ATTLIST file size CDATA #IMPLIED>
<!ATTLIST file type CDATA #IMPLIED>
<!ATTLIST file modified CDATA #IMPLIED>
<!ATTLIST file created CDATA #IMPLIED>
<!ATTLIST file accessed CDATA #IMPLIED>
<!ATTLIST file user-perm NMTOKEN #IMPLIED>
<!ATTLIST file group-perm NMTOKEN #IMPLIED>
<!ATTLIST file other-perm NMTOKEN #IMPLIED>
<!ATTLIST file group CDATA #IMPLIED>
<!ATTLIST file owner CDATA #IMPLIED>
<!ATTLIST file xml:lang NMTOKEN #IMPLIED>

<!ELEMENT folder (#PCDATA) >
<!ATTLIST folder name CDATA #REQUIRED>
<!ATTLIST folder size CDATA #IMPLIED>
<!ATTLIST folder modified CDATA #IMPLIED>
<!ATTLIST folder created CDATA #IMPLIED>
<!ATTLIST folder accessed CDATA #IMPLIED>

Object Exchange Protocol Version 1.2

64

<!ATTLIST folder user-perm NMTOKEN #IMPLIED>
<!ATTLIST folder group-perm NMTOKEN #IMPLIED>
<!ATTLIST folder other-perm NMTOKEN #IMPLIED>
<!ATTLIST folder group CDATA #IMPLIED>
<!ATTLIST folder owner CDATA #IMPLIED>
<!ATTLIST folder xml:lang NMTOKEN #IMPLIED>

<!ELEMENT parent-folder EMPTY>

9.2 Generic File Object

9.2.1 Introduction

The purpose of this chapter is to outline a method for the exchange of a basic file object [blob] from one
device to another. While the OBEX protocol provides many useful headers and capabilities for
exchanging objects. This section is designed to provide the reader with an overview of the basic
structure used when exchanging generic file data. The file object is assumed to be sent by a generic
client to the receiving device’s inbox. In a manner consistent to the way QuickBeam and IrXfer
applications work. Based on these assumptions, the file exchange should follow the guidelines shown
here for headers used and response codes expected.

9.2.2 Commonly Used Headers

• Name: (Required) This header is used to convey the full name of the object to exchange. The Name
header should not contain any path information. If it is necessary to specify a path, it should be done
with the SETPATH command. All information in this header is interpreted as the objects name.

• Length: (Recommended) This header is used to convey the size of the file object in bytes. This can
be used for verification of storage space requirements. The sum of the bytes passed in Body
headers should be this many bytes (but is not guaranteed).

• Body/End-of-Body: (Required) Body headers are used to transfer the file data itself. They are sent
repeatedly as long as file data exists to be exchanged. The End-of-Body header is used to indicate
to the receiving application that this is the last piece of the file data. Applications frequently close the
file and consider the transfer complete upon reception of this header. The data contained in the
Body/End-of-Body headers should be concatenated to form the file.

• Time: (Recommended) This header is used to exchange the time that the file was last modified.
Current file transfer applications use both the simple 4-byte Time header and the ISO format. It is
recommended that all applications use the more robust ISO Time header. For backward
compatibility it should be noted that the “IrXfer” application provided by Microsoft only accepts the 4-
byte Time header. Attempts to send the ISO header will result in the rejection of the operation.

• Type: (Optional) The MIME type of the file object. This is not often used but can be helpful in some
cases to identify the application to associate with the file object.

9.2.3 Response Codes Commonly Used in File Exchange

The following is a list of the known OBEX Response codes that are used during File Object Exchange.
• CONTINUE
• SUCCESS
• BAD REQUEST
• UNAUTHORIZED
• NOT FOUND
• INTERNAL SERVER ERROR

Object Exchange Protocol Version 1.2

65

9.2.4 Example Put Exchange

An application wishes to PUT a 2000 byte file named “Test File Object” with the time stamp
0x41a50016 (Jan 9, 1992, 11:02:00 UTC). The OBEX packet size is 512 bytes.

Opcode or
Response plus

Headers

Final
bit

Header Data Header
Length

Running
Total of Data
Exchanged

Request PUT
→ Name “Test File Object” 37

Length “2000”
Time “19920109T110200Z” 19

Response CONTINUE 4
← no headers

Request PUT
→ Body “start of file data..” 509 506 bytes

Response CONTINUE 4
← no headers

Request PUT
→ Body “..continuation of file data..” 509 1012 bytes

Response CONTINUE 4
← no headers

Request PUT
→ Body “..continuation of file data..” 509 1518 bytes

Response CONTINUE 4
← no headers

Request PUT
→ Body “..final segment of file data” 485 2000 bytes

Response CONTINUE 4
← no headers

Request PUT 4
→ End-of-Body Empty end of body header. 3 2000 bytes

Response SUCCESS 4
← no headers

9.3 The Capability Object

The syntax for the capability object is based on XML. XML was chosen because of its flexibility and ease
with which elements can be categorized and their attributes collected. An example Capability Object is
shown at the end of this chapter. The capability object is flexible enough that individual manufacturers

Object Exchange Protocol Version 1.2

66

can selectively include objects, services and attributes that are of interest to them. It also permits the
addition of user defined elements for specific application or manufacturer needs.

9.3.1 General Information Section

The general section is used to hold information that is specific to the device which is hosting the
capability object. This information may be used by a variety of services and applications and is therefore
collected in the general section to make it easily available. The following is a description of the items that
may be present in the general section.

9.3.1.1 Serial Number

The serial number is used to uniquely identify the device. This number should be assigned by the
manufacturer in a globally unique method. The serial number does not have to be a UUID. If
manufacturer and model number are combined with the serial number you get a universal unique ID. The
format of the serial number is specified by the manufacturer. It must be unique within a specific device
model. This value is required.

9.3.1.2 Manufacturer

The manufacturer element is used to identify the vendor that builds the hardware device. This
information can be handy when identifying the device to the user. It is a string value that shows the full
name of the manufacturer. This value is required.

9.3.1.3 Model Name

The model name element is used to identify the model name and/or number assigned to the device by
the manufacturer. Again, the information is handy when identifying the device to the user. This string
value conveys the full model name of the device. This value is required.

9.3.1.4 Optional Elements

Other elements can be added to the Capability Object General information section. The following
optional elements have been identified.

• Firmware Version / Date
• OEM
• Software Version / Date
• Hardware Version / Date

9.3.1.5 Inbox Objects Section

The Inbox section details the types of objects that the device will accept in its inbox. An object is located
by matching the MIME type or name extension listed in the Inbox-Object record. The Inbox-Object record
may also contain the UID of the application or service that provides support for the object. This UID is
the globally assigned UUID for the service or application. It can be used as a cross-reference to locate
the service in the services section. This list can always include the object type “ANY” to indicate that any
object can be PUT to the inbox.

9.3.1.5.1 Object

A record indicating the support for a particular object type. This element may contain one or more of the
following attributes.

• Type The MIME type of the object.
• Name-Ext The generally accepted filename extension used for this object format.
• UUID The UUID of the supporting service.

Object Exchange Protocol Version 1.2

67

Each Inbox-Object must contain at least a Type or Name-Ext value. It is highly recommended that both
attributes be present when available. The UUID attribute is optional. Below is an example Inbox-Object
element illustrating the use of all 3 attributes.

<Object Type=”image/jpeg” Name-Ext=”jpg” UUID=”OBEX-ImageX” />

9.3.1.6 Service Objects Section

The Service objects section details the types of objects that are used by services present on the device.
This section is used to present information for all objects that are not supported by the inbox. These are
mostly common objects that are retrieved from the device using the GET operation.

9.3.1.6.1 Object

The format for a service object is the same as that of an inbox object discussed above.

9.3.1.7 Service Information Section

The Services section is used to list the applications or services supported by the device. This section
provides a place where application specific information can be presented. Additionally special
information regarding application access methods are placed here. Applications are not required to have
representation in the Services element.

The application section is indexed by the UUID of the application or service.

9.3.1.7.1 UUID

One service record exists for each service that wishes to provide service specific information in the
capability object. The service records are organized by their UUID’s. The information contained in each
service record is governed by the service itself. This allows for the specification of service specific
information. The following information may be present in any Service record.

• Access The access method for the service. The attributes for this element are shown below. If
not present it can be assumed that the service is accessible via the standard connection
targeting process used in OBEX.

Endpoint
Contains the endpoint to which the client can connect to communicate with this
service. In IrDA, the endpoint is synonymous with a TinyTP LSAP-SEL. In TCP,
it is a TCP Port number.

Target The Target header value used to establish a connection with this service.

Protocol The transport protocol used to communicate with this service. Possible values
are “TCP” and “IrDA”.

9.3.1.8 Requesting the Capability Object

The capability object is requested by sending a GET request with the MIME type of the capability object
provided in an OBEX Type header. The MIME type of the capability object is “x-obex/capability”. A
successful response will contain one or more OBEX Body headers with the full capability object as their
contents.

9.3.1.9 Capability Object Example

<!-- General Purpose information -->

Object Exchange Protocol Version 1.2

68

<General>
<SN>1234567890</SN>
<Manufacturer>Big Factory, Ltd.</Manufacturer>
<Model>Mighty 4119</Model>

</General>

<!-- Inbox Object Definitions -->
<Inbox-Objects>

<Object Type=”text/x-vMsg” Name-Ext=”vmg” />
<Object Type=”text/x-vCard” Name-Ext=”vcf” />
<Object Type=”image/jpeg” Name-Ext=”jpg”
UUID=”F9EC7BC7-953C-11d2-984E-525400DC9E09” />

</Inbox-Objects>

<!-- Service Object Definitions -->
<Service-Objects>

<Object Type=”x-irmc/info.log” Name-Ext=”log” />
<Object Type=”x-obex/folder-listing”
UUID=”F9EC7BC4-953C-11d2-984E-525400DC9E09”/>

</Service-Objects>

<!-- Service access information -->
<Services>

<Folder-Browsing UUID=” F9EC7BC4-953C-11d2-984E-525400DC9E09”>
<IrDA Target=” F9EC7BC4-953C-11d2-984E-525400DC9E09”/>

</Folder-Browsing>

<Image-X UUID=”F9EC7BC7-953C-11d2-984E-525400DC9E09”>
<IrDA Endpoint=”7” />
<IrDA Target=”F9EC7BC7-953C-11d2-984E-525400DC9E09”/>
<TCP Target=”F9EC7BC7-953C-11d2-984E-525400DC9E09”/>

</Image-X>

<IrMC UUID=”IRMC-SYNC”>
<IrDA Target=””/>
<PhoneBook Support=”4” Optional=”7” Version=”1.0” />
<Messaging Support=”4” Version=”1.0” />
<FW-Info Version=”2.0e” Date=”19971031T231210” />
<SW-Info Version=”2.0” />
<OEM Name=”Jane’s Phones” />

</IrMC>
</Services>

9.4 The Object Profile Object

This section gives an overview on how to create object profile objects for your objects. Object profiles do
not have to be in XML or any other common format. Each object profile developer is free to choose the
most applicable format for describing the object. When complete, this format must be described in
section 9 OBEX Objects.

9.4.1 Creating an Object Profile

Although all object profile objects have the same MIME type, they are not necessarily in the same
format. Each object profile is defined in a format that best represents the object. For example, the vCard
object profile syntax is very similar to the vCard syntax. This makes it easier for vCard oriented parsers

Object Exchange Protocol Version 1.2

69

to process the vCard object profile. The same holds true for the folder-listing object profile. This object
profile is represented in XML format to match the folder-listing object format.

Whenever feasible the object profile syntax chosen should mirror the format and expressive capabilities
of the object itself. In addition, a self-describing object format such as the format used by vCards and
folder-objects is preferred. Whatever format is chosen, the author must add the specification of this
format to this document. The MIME type of the object must also be specified to avoid possible ambiguity.
The end of this document contains a section entitled Object Profiles. This is where all the object profiles
available in the capability database are described.

9.4.2 Object Profiles

This section holds the definitions for each object profile supported by the capability object. Each
definition must contain the MIME type and the name extension of the object. As well as, the format used
by the profile object. The definitions are sorted alphabetically by object name.

9.4.2.1 Folder-Listing

MIME type x-obex/folder-listing
Name extension None
Profile format XML, Refer to Folder-Listing Object Proposal.

9.4.2.2 vCalendar

MIME Type text/x-vCalendar
Name extension vcs
Profile format TBD, Refer to the IrMC specification of X-IRMC-FIELDS definition.

9.4.2.3 vCard

MIME type text/x-vCard
Name extension vcf
Profile format TBD, Refer to the IrMC specification of X-IRMC-FIELDS definition.

9.4.2.4 vMessage

MIME type text/x-vMsg
Name extension vmg
Profile format TBD, Refer to the IrMC specification of X-IRMC-FIELDS definition.

9.4.2.5 UPF

MIME type image/x-UPF
Name extension upf
Profile format TBD

9.4.3 Object Profile Example

This is an example of a vCard object profile. The vCard object profile is derived from the work of the
IrMC group. This definition is similar to the X-IRMC-FIELDS extension property.

Begin: vCard-Profile
Version:
N:=20
UID:=4

Object Exchange Protocol Version 1.2

70

ADR[1=20;2;6;7]
TEL;TYPE=HOME;WORK;
End: vCard-Profile

Object Exchange Protocol Version 1.2

71

10. Test Guidelines

10.1 Introduction

10.1.1 Objective

The purpose of this section is to define the minimum behaviors that are required of a device in order to
certify an implementation of the IrOBEX protocol. The testing process is a verification of the claims
made on the Compliance Statement. This specification will focus on the Protocol implementation. IrDA
believes that Testing to the Protocol is the most reliable means of assuring interoperability and
compatibility between devices.

10.1.2 Scope

This section does not in any way replace or modify the IrOBEX Protocol section. If this Test Specification
requires behaviors that conflict with the behaviors defined in the Protocol specification, the Protocol
specification will prevail and the Test specification will be changed.

It is assumed that each implementer has thoroughly tested their device during and after development.
The test cases defined herein do not exercise every combination of commands and parameters that are
possible to encounter during a given transaction. The requirement of demonstrating the behaviors
defined below will give IrDA, its member organizations and the end user a certain level of confidence
that the device will interoperate with other devices having complementary functions.

Test cases that have been defined in this specification are intended to exercise, at some level, all of the
behaviors that a device must support. Where optional behaviors are claimed to be supported by a
device, they must also be tested to ensure that they conform to the Protocol specifications.

For an implementation of the IrOBEX Protocol to be compliant with this specification, it must support a
set of required operations. It makes sense to require a minimum level of support because these test
procedures are used to certify IrDA reference devices. Reference devices are then used to certify
interoperability between IrOBEX devices. Without specifying a minimal level of functionality,
interoperability cannot be assured.

Interoperability testing should be a part of the Compliance process. This specification does not attempt to
define the method or extent of interoperability testing to be required. Implementers should attempt to
create environments and conditions that will reflect the most common usage of their device. Successes
and failures of their implementations should be noted on the Compliance Statement. Implementers
should diagnose the failures to help identify shortcomings in either the devices involved or the Protocol
itself.

10.2 The Compliance Statement

The questions below are used to determine the IrOBEX capabilities supported by the device. The
answers to the questions are used, in some cases, to determine which test cases need to be run. The
intention is to require testing only for supported capabilities.

10.2.1 Test Results

Results could be in hardcopy or electronic form. It is up to each implementer to present the result of their
testing in such a way that will allow IrDA to confirm the results of each test case. HEX data must be
annotated to facilitate review.

Object Exchange Protocol Version 1.2

72

It is assumed that each developer has the ability to record the behavior of their device during testing.
The record should include both the Request and Response frames.

It should be expected that the IrDA will check the device by running its own selected tests to confirm the
submitted results. If significant differences are found the developer may be asked to re-submit or provide
additional information about the conditions under which the device was tested or both.

10.2.2 Required Behaviors

Some behaviors are required of any device with an implementation of the IrOBEX protocol that wishes to
be certified as an IrDA Reference device. The required behaviors are the subset of behaviors that are
necessary to promote interoperability between various IrOBEX applications and devices.

Most of the required behaviors are intended to insure that any device that wishes to exchange an object
in a protocol-compliant manner can do so. Therefore, some of the requirements affect only server
behaviors. Required tests are denoted with a (Required) statement at the beginning of the test
description. Support for the PUT operation is required.

If a device does not support an OBEX server (at all) then the required server tests can be eliminated.
The same holds true for the required client tests.

10.2.3 Client Questions

Is an OBEX Client Supported?
Yes or no response. If no, all tests in the client series can be eliminated and no further questions in this
section need be answered. Client tests are identified by the “C” as the second character in the test
number.
Is the Connect Operation Supported?
Yes or no response. If no, all tests in the “CC” series can be eliminated.
Is the Disconnect Operation Supported?
Yes or no response. If no, all tests in the “DC” series can be eliminated.
Is the Abort Operation Supported?
Yes or no response. In no, all tests in the “AC” series can be eliminated.
Is the Get Operation Supported?
Yes or no response. If no, all tests in the “GC” series can be eliminated.
Is the SetPath Operation Supported?
Yes or no response. If no, all tests in the “SC” series can be eliminated.
Is Ultra Supported?
Yes or no response. If no, all tests in the “UC” series can be eliminated.

Object Exchange Protocol Version 1.2

73

10.2.4 Server Questions

Is an OBEX Server supported?
Yes or no response. If no, all tests in the server series can be eliminated and no further questions in this
section need be answered. Server tests are identified by the “S” as the second character in the test
number.
Is the Abort Operation Supported?
Yes or no response. In no, all tests in the “AS” series can be eliminated.
Is the Get Operation Supported?
Yes or no response. In no, all tests in the “GS” series can be eliminated.
Is Operation rejection supported (Server Abort)?
Yes or no response. If no, all the tests in the “RS” series can be eliminated.
Is the SetPath Operation Supported?
Yes or no response. If no, all tests in the “SS” series can be eliminated.
Is Ultra Supported?
Yes or no response. In no, all tests in the “US” series can be eliminated.

10.2.5 Test Numbering System

Tests defined by this specification use a numbering system that identifies the following:
• The operation that the test exercises.
• Whether the test is for the client or server.
• The number of the test within the set.

For example the test numbered “DC1” is the DISCONNECT Operation, Client Test number 1.
Required tests are noted with the statement “Required” at the beginning of the test description.

Object Exchange Protocol Version 1.2

74

10.3 Test Environment

10.3.1 Physical Setup

Two ports will be placed facing each other on a black, horizontal, insulating surface .75m apart. Devices
manufactured to the short range IrDA physical standard of 20cm should be placed 10cm apart.

10.3.2 Electromagnetic Interference Sources

The ability of the product to exhibit correct protocol behavior should not be affected by environmental
conditions during protocol testing. Note that the physical capabilities of hardware are evaluated by tests
described in the Physical Layer Test Specification.

The protocol test area is flexible for the applicant. However, it is expected to be easily reproducible for
test verification. The applicant will describe the light sources used in the test area including information
regarding: distance to the test surface, orientation with respect to the ports, manufacturer, part number
and intensity. All equipment is expected to be common and available. The applicant will further
describe any other E-M sources that could potentially affect hardware functionality. Drawings are
appropriate.

Alternatively, the applicant may choose to submit measurements of the intensity of emissions in the
center of the test area (lux) in a wavelength range of 100nm to .05mm.

NOTE: Refer to Appendix A.1 of the SIR Physical Layer Link Specification for expected capabilities of
any IrDA product. As a guideline, it is recommended that the test environment fall within the parameters
described in A.1.

10.3.3 Test Personnel

This test specification is an outline. It was written for to give the Test Engineers in your group a set of
basic test cases. This specification assumes that the Test Engineers are familiar with the terms and
procedures of the protocol. It is assumed that the Test Engineers have the ability to generate specific
frames and procedures and can also record both sides of the transaction.

10.4 Connected Tests

All of the tests in this section assume that a Tiny TP connection is already present between the OBEX
client or server being tested and the OBEX test application.

10.4.1 Connect Operation

CC1. Demonstrate an OBEX CONNECT request that includes the devices supported, OBEX packet
size and OBEX protocol version 1.0. No flags can be present.

CS1. (Required) Demonstrate successful OBEX response to an OBEX CONNECT request which
includes the devices supported OBEX packet size and OBEX protocol version 1.0. No flags can
be present.

Object Exchange Protocol Version 1.2

75

10.4.2 Disconnect Operation

DC1. Demonstrate an OBEX DISCONNECT request packet.

DS1. (Required) Demonstrate a successful OBEX response to properly formed OBEX DISCONNECT
request.

10.4.3 Put Operation

The PUT operation is the basic mechanism for exchanging objects within the IrOBEX protocol. Therefore
it is required that all implementations support the OBEX PUT operation. All of the following tests in the
client series require that a Name header be specified with the object. The lengths specified in these tests
refer to the exact length of the object exchanged, in bytes.

PC1. (Required) Demonstrate a PUT of a 25 byte object.

PC2. (Required) Demonstrate a PUT of the maximum sized object supported by the device. This size
must be recorded in the test report. If the maximum size object is arbitrarily large, an upper
bound of 10 kilobytes may be used.

PC3. (Required) Demonstrate a PUT of a 0 byte object.

PC4. (Required) Demonstrate the successful handling of a server rejection of a multi-packet PUT
operation. This should illustrate a client send of object body, responded to with a non-successful
response code.

PC5. Demonstrate that the test PC2 when performed after a successful OBEX CONNECT operation
utilizes the larger OBEX packet size advertised in the CONNECT response.

PS1. (Required) Demonstrate a successful PUT of a 25 byte object.

PS2. (Required) Demonstrate a successful PUT of the maximum sized object supported by the
device. This size must be recorded in the test report. If the maximum size object is arbitrarily
large, an upper bound of 10 kilobytes may be used.

PS3. (Required) Demonstrate a successful PUT of a 0 byte object.

10.4.4 Get Operation

The GET operation has one basic variation; that is, the GET default object behavior. Most of the
following tests in the client series require that a Name header be specified in the request. The GET
default tests are the only ones that do not require a Name header. The lengths specified in these tests
refer to the exact length of the object exchanged, in bytes.

GC1. Demonstrate a successful GET of a 25 byte object.

GC2. Demonstrate a successful GET of a maximum sized object supported by the device. This size
must be recorded in the test report. If the maximum size object is arbitrarily large, an upper
bound of 10 kilobytes may be used. This test also demonstrates an application of the default
OBEX packet size.

GC3. Demonstrate a successful GET of a 0 byte object. Handling of the result is system dependent
but should not cause a failure.

Object Exchange Protocol Version 1.2

76

GC4. Demonstrate a successful GET of a 25 byte default object.

GC5. Demonstrate the successful handling of a server rejection of a multi-packet GET operation. This
should illustrate the client’s request for object body receiving a non-successful response code.

GS1. Demonstrate a successful GET of a 25 byte object.

GS2. Demonstrate a successful GET of a maximum sized object supported by the device. This size
must be recorded in the test report. If the maximum size object is arbitrarily large, an upper
bound of 10 kilobytes may be used.

GS3. Demonstrate a successful GET of a 0 byte object. The response code should indicate success
and body/end-of-body headers may be present, as long as they are empty.

GS4. Demonstrate a successful GET of a 25 byte default object.

GS5. Demonstrate that the test GS2 when performed after a successful OBEX CONNECT operation
utilizes the larger OBEX packet size advertised in the CONNECT request.

10.4.5 Abort Operation

AC1. Demonstrate that a PUT operation can be successfully aborted. This requires that the PUT
operation take more than one packet to exchange. The demonstration must illustrate that the
client sends some of the object, but not all, before sending the ABORT Operation.

AC2. Demonstrate that a GET operation can be successfully aborted. This requires that the GET
operation take more than one packet to exchange. The demonstration must illustrate that the
client receives some of the object, but not all, before sending the ABORT Operation.

AS1. Demonstrate that a PUT operation can be successfully aborted. This requires that the PUT
operation take more than one packet to exchange. The demonstration must illustrate that the
server properly processes the ABORT operation and responds successfully to the request.

AS2. Demonstrate that a GET operation can be successfully aborted. This requires that the GET
operation take more than one packet to exchange. The demonstration must illustrate that the
server properly processes the ABORT operation and responds successfully to the request.

Object Exchange Protocol Version 1.2

77

10.4.6 SetPath Operation

For all the SETPATH requests it must be verified that no undefined bits are set in either the flags or
constants field of the SETPATH request.

SC1. Demonstrate a SETPATH request for a downward path change using an OBEX Name header.

SC2. Demonstrate a SETPATH request for an upward (backup flag) path change.

SC3. Demonstrate a SETPATH request for a path reset using an empty OBEX Name header.

SS1. Demonstrate a successful SETPATH response to a downward path change.

SS2. Demonstrate a successful SETPATH response to an upward (backup flag) path change.

SS3. Demonstrate a successful SETPATH response to a path reset.

10.4.7 Server Rejection Responses

RS1. Demonstrate that the server can ABORT a PUT operation. This requires that the PUT operation
take more than one packet to exchange. The demonstration must illustrate that the server sends
a non-successful response code after receiving the initial part of the object body.

RS2. Demonstrate that the server can ABORT a GET operation. This requires that the GET operation
take more than one packet to exchange. The demonstration must illustrate that the server sends
a non-successful response code after sending the initial part of the object body.

10.4.8 Miscellaneous Tests

MS1. (Required) Invalid opcode test: Demonstrate that an unknown or user-defined operation request
receives a “Not Implemented” (0xD1) response code from the server.

10.5 Non-Connected Tests

10.5.1 Ultra Put Tests

The only IrOBEX operation supported over Ultra is the PUT operation. The following tests are used to
validate the Ultra PUT behavior. These tests are required when Ultra is supported. As with the connected
OBEX PUT tests, all tests are expected to send at least a Name header with the operation.

UC1. Demonstrate an ultra PUT of a 25 byte object.

UC2. Demonstrate an ultra PUT of the maximum sized object supported by the device. This size
must be recorded in the test report. If the maximum size object exceeds 500 bytes, then a 500
byte object should be used.

UC3. Demonstrate an ultra PUT of a 0 byte object.

US1. Demonstrate that the server does not respond to an Ultra PUT request.

US2. Demonstrate that a server successfully receives an object PUT to it.

Object Exchange Protocol Version 1.2

78

10.5.2 IAS Tests

IC1. (Required) Verify that the “OBEX” IAS entry is properly requested and retrieved.

IS1. (Required) Verify that the “OBEX” IAS entry is registered and returned properly.

10.5.3 Tiny TP Connection Tests

TC1. (Required) Verify that the Tiny TP MaxSduSize parameter is not present in the TTP Connect
packet.

TS1. (Required) Verify that the Tiny TP MaxSduSize parameter is not present in the TTP Connect
response.

Object Exchange Protocol Version 1.2

79

10.6 Header Tests

10.6.1 Split Header Tests

HC1. (Required) Demonstrate that OBEX headers broken over Tiny TP packet boundaries are
properly handled. This should be demonstrated by sending a PUT request with the Name
header split into two Tiny TP packets. The device should properly interpret the complete name.

HS1. (Required) Demonstrate that OBEX headers broken over Tiny TP packet boundaries are
properly handled. This should be demonstrated by responding to a PUT request with the Name
header split into two Tiny TP packets. The device should properly interpret the complete name.

10.6.2 Header Type Tests

HC2. (Required) Demonstrate that one byte style OBEX headers are properly formed when
transmitted and properly handled when received.

HC3. (Required) Demonstrate that four byte style OBEX headers are properly formed when
transmitted and properly handled when received.

HC4. (Required) Demonstrate that byte sequence style OBEX headers are properly formed when
transmitted and properly handled when received.

HC5. (Required) Demonstrate that UNICODE style OBEX headers are properly formed when
transmitted and properly handled when received. This includes verification that the header data
is null-terminated.

HS2. (Required) Demonstrate that one byte style OBEX headers are properly formed when
transmitted and properly handled when received.

HS3. (Required) Demonstrate that four byte style OBEX headers are properly formed when
transmitted and properly handled when received.

HS4. (Required) Demonstrate that byte sequence style OBEX headers are properly formed when
transmitted and properly handled when received.

HS5. (Required) Demonstrate that UNICODE style OBEX headers are properly formed when
transmitted and properly handled when received. This includes verification that the header data
is null-terminated.

Object Exchange Protocol Version 1.2

80

11. Appendices

11.1 Minimum level of service

Almost all elements of OBEX are optional to allow resource-constrained implementations to do the bare
minimum while allowing reasonably rich interactions between more capable devices. Variations on this
theme have been illustrated throughout this document. The only protocol requirements are that
connection oriented versions of OBEX (such as those running over the IrDA TinyTP protocol) must use a
CONNECT operation. Obviously at least one other operation will be needed to have a useful application.

A minimal OBEX server application would support CONNECT and either PUT or GET.

11.2 Extending OBEX

The headers, opcodes, flags, and constants defined for OBEX have ranges reserved for future use and
ranges for user defined functions. Reserved ranges must not be used without official extensions to this
specification. Please contact the authors or IrDA if you have proposed extensions with broad
applicability. As a general rule, reserved flags or constants should be set to zero by senders and ignored
by receivers.

User defined opcodes and headers are freely available for any kind of use. Obviously, they are only
likely to make sense if both sides of the connection interpret them the same way, so the sides must
somehow identify themselves to ensure compatibility. Recommended methods using the IrDA transport
protocols are to use unique IAS class names, or optional headers (in particular the Who header) in the
CONNECT packet.

11.3 Proposed Additions to OBEX

1. Add flexible acking, permitting the client to specify which packets it wants a response on. This
permits faster operation by reducing the necessity to turn the IR link around frequently.

2. Add single byte encoding for Type header, covering common types
3. Add Offer operation - enables receiving side to preview and approve proposed objects
4. Add Negotiate operation - in-band negotiation
5. Add content negotiation - all sides to propose multiple options and have other side select
6. Add encryption
7. Add compression hooks

11.4 Known Target Identifiers

This section summarizes the UUID’s known at the time when this document was last updated.
• IrMC Service

• Unique identifier value “IRMC-SYNC”.
• Encoded as 9 bytes of ASCII text in a Target header.

• Folder Browsing Service
• Unique Identifier value “F9EC7BC4-953C-11d2-984E-525400DC9E09”.
• Encoded as 16 bytes of hexadecimal in a Target header.

11.5 MD5 Algorithm for Authentication

This appendix contains code for a copyright and royalty free implementation of the MD5 algorithm. The
code was copied from http://www.pbm.com/dice/rnd.txt.

/*

Object Exchange Protocol Version 1.2

81

 * This code implements the MD5 message-digest algorithm.
 * The algorithm is due to Ron Rivest. This code was
 * written by Colin Plumb in 1993, no copyright is claimed.
 * This code is in the public domain; do with it what you wish.
 *
 * Equivalent code is available from RSA Data Security, Inc.
 * This code has been tested against that, and is equivalent,
 * except that you don't need to include two pages of legalese
 * with every copy.
 *
 * To compute the message digest of a chunk of bytes, declare an
 * MD5Context structure, pass it to MD5Init, call MD5Update as
 * needed on buffers full of bytes, and then call MD5Final, which
 * will fill a supplied 16-byte array with the digest.
 */

typedef unsigned long word32;
typedef unsigned char byte;

struct xMD5Context {
 word32 buf[4];
 word32 bytes[2];
 word32 in[16];
};

void xMD5Init(struct xMD5Context *context);
void xMD5Update(struct xMD5Context *context, byte const *buf, int len);
void xMD5Final(byte digest[16], struct xMD5Context *context);
void xMD5Transform(word32 buf[4], word32 const in[16]);

/*
 * Shuffle the bytes into little-endian order within words, as per the
 * MD5 spec. Note: this code works regardless of the byte order.
 */
void
byteSwap(word32 *buf, unsigned words)
{
 byte *p = (byte *)buf;

 do {
 *buf++ = (word32)((unsigned)p[3] << 8 | p[2]) << 16 |
 ((unsigned)p[1] << 8 | p[0]);
 p += 4;
 } while (--words);
}

/*
 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
 * initialization constants.
 */
void
xMD5Init(struct xMD5Context *ctx)
{
 ctx->buf[0] = 0x67452301;
 ctx->buf[1] = 0xefcdab89;
 ctx->buf[2] = 0x98badcfe;
 ctx->buf[3] = 0x10325476;

 ctx->bytes[0] = 0;

Object Exchange Protocol Version 1.2

82

 ctx->bytes[1] = 0;
}

/*
 * Update context to reflect the concatenation of another buffer full
 * of bytes.
 */
void
xMD5Update(struct xMD5Context *ctx, byte const *buf, int len)
{
 word32 t;

 /* Update byte count */

 t = ctx->bytes[0];
 if ((ctx->bytes[0] = t + len) < t)
 ctx->bytes[1]++; /* Carry from low to high */

 t = 64 - (t & 0x3f); /* Space avail in ctx->in (at least 1) */
 if ((unsigned)t > len) {
 bcopy(buf, (byte *)ctx->in + 64 - (unsigned)t, len);
 return;
 }
 /* First chunk is an odd size */
 bcopy(buf,(byte *)ctx->in + 64 - (unsigned)t, (unsigned)t);
 byteSwap(ctx->in, 16);
 xMD5Transform(ctx->buf, ctx->in);
 buf += (unsigned)t;
 len -= (unsigned)t;

 /* Process data in 64-byte chunks */
 while (len >= 64) {
 bcopy(buf, ctx->in, 64);
 byteSwap(ctx->in, 16);
 xMD5Transform(ctx->buf, ctx->in);
 buf += 64;
 len -= 64;
 }

 /* Handle any remaining bytes of data. */
 bcopy(buf, ctx->in, len);
}

/*
 * Final wrapup - pad to 64-byte boundary with the bit pattern
 * 1 0* (64-bit count of bits processed, MSB-first)
 */
void
xMD5Final(byte digest[16], struct xMD5Context *ctx)
{
 int count = (int)(ctx->bytes[0] & 0x3f); /* Bytes in ctx->in */
 byte *p = (byte *)ctx->in + count; /* First unused byte */

 /* Set the first char of padding to 0x80. There is always room.*/
 *p++ = 0x80;

 /* Bytes of padding needed to make 56 bytes (-8..55) */
 count = 56 - 1 - count;

 if (count < 0) { /* Padding forces an extra block */

Object Exchange Protocol Version 1.2

83

 bzero(p, count+8);
 byteSwap(ctx->in, 16);
 xMD5Transform(ctx->buf, ctx->in);
 p = (byte *)ctx->in;
 count = 56;
 }
 bzero(p, count+8);
 byteSwap(ctx->in, 14);

 /* Append length in bits and transform */
 ctx->in[14] = ctx->bytes[0] << 3;
 ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29;
 xMD5Transform(ctx->buf, ctx->in);

 byteSwap(ctx->buf, 4);
 bcopy(ctx->buf, digest, 16);
 bzero(ctx,sizeof(ctx));
}

/* The four core functions - F1 is optimized somewhat */

/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))

/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f,w,x,y,z,in,s) \
 (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x)

/*
 * The core of the MD5 algorithm, this alters an existing MD5 hash to
 * reflect the addition of 16 longwords of new data. MD5Update blocks
 * the data and converts bytes into longwords for this routine.
 */
void
xMD5Transform(word32 buf[4], word32 const in[16])
{
 register word32 a, b, c, d;

 a = buf[0];
 b = buf[1];
 c = buf[2];
 d = buf[3];

 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);

Object Exchange Protocol Version 1.2

84

 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);

 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);

 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);

 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);

 buf[0] += a;
 buf[1] += b;
 buf[2] += c;
 buf[3] += d;
}

Object Exchange Protocol Version 1.2

85

void MD5(void *dest, void *orig, int len)
{
 struct xMD5Context context;

 xMD5Init(&context);
 xMD5Update(&context, orig, len);
 xMD5Final(dest, &context);
}

