StrongARM** EBSA-285
Evaluation Board

Reference Manual

October 1998

Order Number: 278136-001

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The EBSA-285 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-
548-4725 or by visiting Intel’'s website at http://www.intel.com.

Copyright © Intel Corporation, 1998
*Third-party brands and names are the property of their respective owners.
*ARM and StrongARM are trademarks of Advanced RISC Machines, Ltd.

StrongARM** EBSA-285 Evaluation Board Reference Manual

intel.

Contents

1 T o [N Tl o] o PP 1-1
1.1 HOW t0 USE ThiS DOCUMENT......cceiii ittt a e e e e 1-2
1.2 N[0 2= 1o o [P TP PUPPPRTRPT 1-2
1.3 RETEIBINCES ...ttt e e e e e e e e e naaes 1-3
1.4 Physical DESCHPHON ...ttt ee e e e 1-3
15 UNpacking the Card.......... e 1-4
1.6 Understanding the Different MOES...........ueeeiiiiiiiiiiiiiii e 1-4

1.6.1 Add-IN CArdoeeiiiiiiiiiiiieeee et e e e 1-5
1.6.2 HOSE BIAGE. .. ettt e e e e e 1-6
1.6.3 Example INStallationooiiiiiiiiie e 1-6
1.6.4 Other Configuration OPLIONS........cciiiiiiiieiiie e 1-7
1.7 Powering Up for the First TimMe..........uuiiiii e 1-7
1.8 Running the Onboard DiagnNOSHICSuuuiiiiiiiiiieaiiiieeeee e 1-8
1.9 Using the ARM** SDT with your EBSA-285........ccuuiiiiiiiiieeaieiiiiieeeee e 1-8
1.10 Support for Angel Over the Ethernet ... 1-8
1.20.1 DESCHIPLON ...tiiiieiiitiiee ettt ettt et e e e e abe s 1-9
1.10.2 Low-Level Angel Interface.........ccccovviiiiiiiiiiiii e 1-10
1.10.3 INIAIZALION. ...t 1-10
1.10.4 Host/Client INteractionccooviiiiiiieiie e 1-10
1.10.5 Areas of DIfferenCe.......ccoooiiiiiiiiiiie e 1-10

2 Functional SPECIfICALIONiiiiiiiii e 2-1
2.1 [O PP P TPPPTRRPT 2-1
2.2 P 2 1 PSPPI PPRPTPRRT 2-1
2.3 The MemOry SUDSYSIEMccoiiiiiiiee e r e e e e e s e eneanes 2-3

2.3.1 SDRAM it e et e e e 2-3

2.3.2 FIaSN ROM ..ottt ee e 2-3

2.3.3 EPROM EMUIALOT ..ottt 2-4

2.3.4 Memory-Map SWItChINGcvvieieiiiiiiiceee e 2-4
2.4 /O SUDSYSIEM ... e e e a e e e e e e e 2-4
2.5 INEEITUPES L.t e e e e e et e e e e e e et e e e e e e abaneeeeeeeaan 2-4
2.6 PCIINTEITACE ...t e e e e e e e e sneaes 2-5
2.7 O U3 Y o] (=] SRR 2-5
2.8 B I ST SSR 2-5
2.9 {0 = 1 1= (o o T 2-6
200 CHOCKS. . ettt a e e e e e 2-7
2001 RESEIS ittt ettt e aeaeae e 2-7
2.12 POWETN REOUITEIMENTS .. uuuiiieiieiieisi s e e e e e e e e e e e e te e et et e ee et e aae ettt s s e e s e e e e e aaaaaeans 2-7
2.13 Onboard POWEr GENEIratioNuuieiiiiiieeaeiiiiiie et e e e e e e e e e 2-8
214 ONDOAId SOMWAIEcuviiiiiiieeii ittt e e e e e e 2-8

3 Programmer’s GUIAEccoooiiiiiiii e s e e e s e e e e e e e e e aeaeaeeeeeeeeeeeeeeraeeranes 3-1
3.1 [=T 1Y 1= 1 4T Y2 3-1
3.2 SDRAM MEIMOIY ..ottt e e e et e e e e e e s e e e e eaba e 3-1
3.3 X-BUS MEMOIY-IMEP ...eiiieiiiieee ittt et e e e e e e e eeaa e e e 3-2
3.4 INtErruUPt ASSIGNMENTcco i s e e e e e e e e e e e e e aeaeeeeeneeeane 3-2

StrongARM** EBSA-285 Evaluation Board Reference Manual iii

3.5 TIMEI ASSIGNIMENT ...ttt e e et e e e e e e e e e e b e e eeeeaeas 3-2
3.6 SOft INPUY/OULPUL REGISTENciiiiiiieii e 3-3
3.7 The Reset State of the SYSIEM ... 3-3
Software Configuration and INitialization ... 4-1
4.1 Disabling the FIash ROM AlIAScceiiiiieiiiii e 4-1
4.2 Accessing the FIash ROM.......cooiiiiiiiiiiieeece et ee e 4-1
4.2.1 Programming the Flash from the SA-110........cccooiiiveieeeii e, 4-2

4.2.2 Programming the Flash from the PCI Interface............ccccoevevvivvvennennnn, 4-2

4.3 Determining the Card Configuration............cccuueeeiierere s 4-2
4.4 INILIANIZING the X-BUS...ueiiiiiiiee i e e e e e e s e e e e e e e e e e e e 4-2
4.5 Initializing the PCl BUS ArDIter........uuiiiiiiie e 4-3
4.6 Setting the INITIALIZE_COMPLETE Bitc.uoiiiiiiiiiiienie e 4-3
4.7 INitializing the SDRAM ... a e e e e e e 4-3
4.8 Re-initializing the SDRAM e 4-5
4.9 Initializing the PCI INLEITACEuueiiiiiieaee e 4-6
4.10 Initializing the 21285 UART ...t e e e e e e 4-7
4.11 Configuring Cacheable/Non-Cacheable Spacecccociiiiiiiiiiiiiiicee 4-8
Software Development ENVIFONMENT. ...t 5-1
5.1 Loadable Debuggable IMAgESuuuviiiiieeeiiei e e e 5-1
511 BUIING cveieiiiieieie e s 5-1

5.1.2 RUN-TIME& ENVIFONMENTcccviiiiiiiiiiiee et 5-1

5121 MeMOIY MapP....ooceiiiiieiieiiiiiiie ettt e 5-1

5.1.2.2 ARM C Library SUPPOI........cuuviireeeeeeiiieiiiiieeee e e e e e e ee e 5-2

5.1.2.3 EXCEPUON VECLOIS.....cieiiiiiiiiiiiiiiiieeee ettt e e 5-2

5.1.2.4 ACCESS 1O /O DEVICES.....coiiiiiiiiieiieiee et 5-2

5.2 Standalone Flash IMAagEScooo i 5-2
5.2.1 BUIIAING i 5-2

5.2.2 RUN-TIME ENVIFONMENTouiiiiiiiiiiiaie ettt e e e e e e 5-3

5.2.2.1 MEMOIY MaP ...ciiiiiiiiiiiiiiitiiee e e e e eeeeaeaeaeeaaaees 5-3

5.2.2.2 C Library SUPPOIt.......ccooi it 5-3

5.2.2.3 EXCEPLON VECIOIS....ccveiieeeeeiiiiiiiiieiee e e eeeess e svenneneeeeae e e e e 5-3

5.2.2.4 ACCESS 0 /O DEVICES.......cveeiiriiiiei et 5-3

ONDOAIA SOWAIEceoiiiieiiii et nnnee e 6-1
6.1 Primary BOOt LOAAENcooiiiiiiieeee ettt 6-1
6.2 Format of Images in FIash ROM ... 6-2
6.3 Y oo =] PP TSP 6-3
6.4 DT o | g1 1] 1o SRR PPPPUPPPP 6-3
6.4.1 Preparing to Run the DiagnOoStCScccouiiiiiiiiiieieeeeiiieee e 6-3

6.4.2 DeSCription Of TESS ..ccoiiiiiiiiiiiee e e e 6-3

Flash Management ULouei e 7-1
7.1 USING the FMU ..ot 7-1
7.1.1 When to Specify the Block Number............ccoooiiiiiiis 7-4

7.1.2 When to Specify the ‘NOBOOt" OPtioNeeeiiiieriiiiiiiiieiieeee e 7-4

Theory of Operation/Hardware DEeSIQNcoouiiuiiiiiiiiiiaaae et 8-1
8.1 GBNEIAL ... e 8-1
8.2 An Introduction to the SCheMALICScccciviiiiii e 8-1

StrongARM** EBSA-285 Evaluation Board Reference Manual

8.3 VOIAGE DOMAINSeiiiiiiiiie ettt e ettt e e e e e e s e e s e nbe bbb e e eeeaaaaaeaeaanns 8-2
8.4 Interfacing TECANIQUESooo i 8-2
8.5 PrINCIPAI BUSES.....co it eeea e e 8-3
8.6 L0 = U PP URPPTPPPR 8-4
8.7 2 PRSPPI 8-4
8.8 SDRAM INEEITACE ...eiiiiieiii et 8-4
8.8.1 Multiplexed AdAreSS BUS......ccuiiiiaiiiiiiiiiiiie e 8-5

8.8.2 Bank AdAresS BUS.......cc.uuiiiiiiiiiiieei e 8-5

8.8.3 DALA BUS....eiiiiiiiite e 8-5

8.8.4 CIMD .ottt e e e e e aaraaaea e 8-5

8.8.5 ChiP SEIECES ...ceieeiee e 8-5

8.8.6 SDRAM ClOCKS....cciiiiitiiieeiiciiiie ettt ettt e et e e e st e e e e snraaeee e 8-5

8.8.7 DIMMS ...ttt ittt e e et e e e st e e e et eae e e b raaaea e 8-6

8.9 Flash ROM INtEITACEuueieiiiiiieee e 8-7
8.10 X-BUS INEEITACE..... i e e 8-7
8.10.1 SOt 1O c.iiiiii et a e raaa e 8-8

8.10.2 X-Bus EXpansion HEAEIScoccuiiiiiiiiiiiie e 8-8

8.11 The Serial POI e e ee e e e e e e e e 8-9
8.12 INEEITUPLS ettt e e e s e e e e e 8-9
8.13 [O I 1 1= = T PP RSO PPR 8-10
8.14 PCIBUS AIDIEI ...ttt e e e e e e e e e e e e e e e annes 8-10
815 JT A i et eaaa i aaaa 8-10
S 700 I T O [Lo & TP UPRRRRPR 8-11
8.17 ST PP PPPP PP UPPPPRTTR 8-11
8.17.1 HOSE BIIAGE. ...ttt 8-12
8.17.1.1 POWEr-ONn RESELcoiiiiiiieieieee s 8-12

8.17.1.2 SWItCh RESEL ... i 8-12

8.17.1.3 JTAG Connector RESEt.........ccoeeiiiiiiiiiiiiiieiieeee 8-13

8.17.1.4 Watch Dog Timer RESELcccovviiiiiiiiiiieieie e 8-13

8.17.1.5 PCIRESEL oottt 8-13

8.17.2 Add-iN Cardeeeieiiiiiiiee et 8-13
8.17.2.1 PCIMaSter RESELcceieeiei e 8-13

8.17.2.2 Blank Programming Modecccccviiieereeee e 8-13

S T I T o 01 PP 8-14
8.18.1 3.3V GENEIALION ..oeieiuviiiiiei ittt ettt 8-14

8.18.2 2.0-V GENEIALIONcuvveiie ettt e e e e saneee s 8-14

8.18.3 POWETI SEQUENCING ...uvvuriiiieiiieeeeesiiiiiitineeeeeseeeesesssssnntneereeeeeesessansnnnnnes 8-15

70 e T B =Yoo 11]] 113 Vo USSR 8-15
8.20 Jumpers and TeSt POINTS..........coiiiiiiiiiiiiiie e e e 8-15
8.21 Expanding the EBSA-285.........ccoo oottt 8-15
8.22 The Printed CirCUIt BOAIduuiiiiiiiiiiaiei et 8-16
8.23 DesSign IMProVEMENLSccoeeei e e e e s e e e e e e e aaaaeeaeeeeeeaaanees 8-17
A (O%eT 0110]8T ir= 1110 o €U T = PPN A-1
Al Default ConfiQUIatioN............eieiiiiiiiie e A-2
A2 Description of Jumpers and CONNECLONSeeeeiiiiiieeiiiiiee et A-4
A.2.1 X-Bus Expansion Headerscccoouiiiiiiiiiiii e A-4

A.2.2 Configuration JUMPEISccooiuiiiiieiiiiiee ettt A-6
A.2.2.1. CPU Core Clock Frequency Selection...........cccceevvvveeeennnnen A-6

A.2.2.2. Arbiter/X-Bus Selection..........ccccceeeiiiiiiiiiiiiiiiieee e A-7

A.2.2.3. FIash/EPROM SeleCtioncceeiieeiiiiiiiiiiiiieieieee e A-8

StrongARM** EBSA-285 Evaluation Board Reference Manual \

Vi

A.2.2.4. Selection of the 21285 as the Central Function................... A-9

A.2.25. ReServed MOAEccoovvviiieiieeiiiie e A-9

A.2.2.6. BootImage Selection.........ccccovvieiieiiiiiiie e A-9

A.2.2.7. SA-110 Clock Probe Connection.......ccccccoeevvevveiiieeeeivnninnnnnn. A-9

YA < T =1 A = o] 1 | £ A-9

A.3 (@]] 412 (0] £ A-10
A.3.1 Serial Port CONNECIONuuuieiiiietee et e e s A-10

YANEC 07N B 7Y € T 0] | aT=Tox (o] CRm R A-10

A.3.3 POWEE CONNECION ..ouneeeie e e e e e e e e e e eaanes A-10

A4 Cables for External CONNECLIONuueiiiiiiieieiee e e eaes A-11
YN B R YT 4 = | B = o A-11

F N N I 7 AN T = o A A-11

A5 Upgrading the SDRAM DIMMScoiiiiiiiiiiiiciiiieeeeee e s sieneeee e e e e e s e ennnnns A-12
The DeSigN DAtabhaSeuuuiiiiiiiieeiei it e e s s e e e e e e e s e s s erereeeeeeeesnnnnns B-1
B.1 Hardware Material.............uuiiiiiiiiiiiiiie e e et e e e et e e B-1
B.2 SOftWare Materialoiiiiiiiiiii e B-1
L0 =) PO PO UPPPPPPR index-1

StrongARM** EBSA-285 Evaluation Board Reference Manual

intel.
Figures

1-1

1-3
2-1
8-1
A-1
A-2
A-3
A-4

A-6
A-7

A-9
A-10

Tables

2-1
2-2
2-3
2-4

3-2
4-1

6-2
8-1

8-3
A-1

A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10
A-11
A-12
A-13
A-14
A-15
A-16

EB S A 285 ..ttt r e e e e e e e e anreas 1-3
Example Configuration in an EBSA-BPL-5V or EBSA-BPL-3V3 Backplane...... 1-6
Angel CommuNICAtioN OVEIVIEWuuuiiiiiiiiaaaiaaiaiiiiee e e e e e a e e e e e 1-9
EBSA-285 BIOCK DIaQramccooiiiiiiiiiiiiei ettt a e 2-2
RESEE CIICUILS ettt a e e e e e e e e e e as 8-11
Jumper and ConNNECtOr LOCALIONSccuiiiiiiiiiiiiiiiieiie et A-1
Primary JUMPEr SEHINGScoiiiiiiiiiee e a e e e A-2
EBSA-285 Configured as an Add-in Card...........oooiiiiiiiiiiieieeiiiieeeee e A-3
EBSA-285 Configured as a HOSt BFrAQeccoeeeiaiiiiiiiiiiiiiieeeeeeeeeiiiiee e A-3
X-BUS Headers PINOUL ..ot A-4
J17 Pinout Showing Default Jumper Configuration............ccoooeciiiiiiinne A-6
J17 Core Clock Selection JUMPEISccoiiiiiiiiiiiiiiie e A-6
O L T T | SRS A-7
Serial Port Connector Detall..... ... A-10
JTAG CoNNECLOr J1 PINOUL...ccciiiiiiiiiiiiiiiiee et e s A-10
TAP IDC CONNECLOr PINOULeviiieiiiiiiie ettt 2-5
SIgNAlS ON the TAP....cc e e e e e 2-6
B AN N =T 1] (T PSSR 2-6
JTAG COMMEANTSeiiiiiiiiiiiee ittt e et e bbb e e st e e e s bbbr e e s nrneeeas 2-6
INEEITUPL ASSIGNMENT ...ueiieiiieee e e e e e s e e e e e e e e s e s e s reeeeeeeeeannnnnes 3-2
Bit Assignment of Soft Input/Output REQIStEr........ccoccviiiiiieeieee e, 3-3
21285 Baud Rate Divisors for 50 MHz fCIK_iN......coooveiiiiiiicicecce i 4-7
2o Lo o [g F=To LIRS T =1 1= Tox 1 o] o S PPSRSRR 6-1
Flash IMage HEAAETcuvviiie ettt e e e e e e e 6-2
SDRAM Array Configuration: 2-Array Part.........ccccoeccvvviiiieeie e cciiiiieee e e 8-6
SDRAM Array Configuration: 4-Array Part..........cccoeeciviiiiieeiee s ccciiiineeeeee e 8-6
Use 0f RESEIVEA PCI PINS......coiiiiiiiiieiiiiiie ettt 8-10
General Information on EBSA-285 Jumpers and Connectors.............cccvvveeee... A-4
X-BUS CONNECION J3 ...ttt A-5
X-BUS CONNECLOIS JA/JI5.....cciiiiiiee ittt ettt e ee e saanee e s A-5
X-BUS CONNECLON JBoeieiiiiiieeeees ettt A-5
X-BUS CONNECLON B ...ttt A-5
Arbiter/X-Bus Selection JUMPETSueiviiieee it e s st aren e e e e e e e ennens A-7
FIash/EPROM SOCKEt SEIECHION.cccviiiiieeiiiiiiee et A-8
Flash/EPROM Socket Selection (J16)ceeveeeeeeiiiiiiiiiiiiieeeee e e e s eeseninieeeeeeeees A-8
Jumper Combinations for ROM Selection...........ccccvvveieeeeiiiiiiiieeceee e A-8
Selection of Central FUNCLONoovviiiiiiiiiie e A-9
Jumper Settings for Selection of Central FUNCLONcoooviiiiiiiiieeiiee e A-9
Description Of TESt POINEScvviiiiiii e e e e e e A-9
NUI-MOAEM CabIE.. ... e A-11
Sun Null-Modem Cable ..o A-11
JTAG CADIE ...t A-11
DIMMs For Use With The EBSA—=285cccoiieiiiiiii e A-12

StrongARM** EBSA-285 Evaluation Board Reference Manual vii

intel.

Introduction

Introduction 1

The EBSA-285 is supplied as aplug-in card. This chapter provides a physical description of the
card and then describes:

How to unpack the card and giveit avisual inspection

The different modes that the card can be used in

How to configure the card to suit your application

How to power up the card for the first time

How to connect the card to a host system and run its onboard diagnostics

The EBSA-285 is an evaluation board for the SA-110 microprocessor and 21285 Core Logic
controller. It is designed to:

Provide a software test and debug environment
Allow benchmarking of prototype software algorithms
Act as areference platform for operating system ports

Demonstrate the performance of the 21285’s PCI interface, memory controller and internal
functional blocks

Provide a building block that can be used to build software-accurate models of target
applications

Act as a proven hardware design that can be modified for use in other applications
Allow all the major features of the 21285 to be demonstrated and tested

This document is a single point-of-reference both for configuring and using the board and for
engineers wishing to copy parts of its design. As such, it has the following scope:

Functional specification
Theory of operation (to be read in conjunction with the circuit schematics)
Configuration guide (memory options, speed options, jumper and link options)

Programmers’ guide (memory maps, boot process, references to programmable 1/O devices on
the board)

This document aims not to duplicate material that can be found elsewhere. Specifically, it does not
duplicate material that can be found in vendor data sheets for components used in the design, nor
does it document the ARM** software development environment.

StrongARM** EBSA-285 Evaluation Board Reference Manual 1-1

Introduction

1.1

1.2

intel.

How to Use This Document

All readers should turn to Chapter 1 for information about how to connect and power on the board,
how to verify that it isworking correctly, and how to connect it to aterminal or host system.

All readers are advised to read Chapter 2 to get an understanding of the overall functionality of the
board. Subsequent chapters assume a familiarity with the material in that chapter.

Thereafter, software engineers will probably want to refer to the following chapters:
¢ Chapter 3, aguide to the memory map of the board and the address decoding of all 1/0O devices.
¢ Chapter 4, aguide to configuration of the memory and other devices on the board.
¢ Chapter 5, abrief introduction to the software devel opment environment.

¢ Chapter 6, describes the onboard software, including the power-on sequence of the board, and
the power-on diagnostics.

* Chapter 7, describes the Flash Management Utility that is provided with the EBSA-285.

Hardware engineers will probably want to refer to the following chapters:
¢ Chapter 8, adetailed technical description of card hardware, including the theory of operation.

A number of appendixes provide general reference material:

¢ Appendix A, describes all of the link and jumper options present on the card, and al of the
cables that may be required for connection to the card.

¢ Appendix B, describes the machine-readable design databases for the EBSA-285 hardware
and software.

Notation

All numbers are shown in decimal unless otherwise stated.

All hexadecimal numbers have an Ox prefix. 32-bit hex values have dots for ease of reading.
Examples are: Oxfe0b.3004, Oxfb.

All binary number have an Ob prefix; long numbers include dots for ease of reading. Examples are:
0b00, 0b0000.0000.1010.0000.

This document refersto an 8-hit data unit as a byte, a 16-bit data unit as a half-word and a 32-bit
data unit as alongword.!

Electrical signal names are shown thus: cpu_wait_|. An_| at the end of asignal name indicates that
the signal is asserted (active) when it islow (close to OV).

Displayed messages are printed in 9-point Courier format. For example:

Test Passed

1. Standard ARM notation is to use the terms byte, half-word and word, respectively. Intel’s convention is to use the tevord layie,
longword. Therefore, this document avoids use of the term ‘word’, which is ambiguous to different audiences.

1-2

StrongARM** EBSA-285 Evaluation Board Reference Manual

1.3

1.4

Figure 1-1.

StrongARM** EBSA-285 Evaluation Board Reference Manual

Introduction

References

This section provides a selective bibliography and a reference to relevant manufacturers’ data
sheets. ARM-specific and SA-110-specific information is referenced in the support page at the end
of this manual.

1. High-Speed Digital Design - a handbook of black magic. (Howard W Johnson, Martin
Graham, 1993 Prentice Hall ISBN 0-13-395724-1)

2. Intel 28F008 data sheet (visit http://developer.intel.com)
3. Samsund996 16M Sync DRAM databook

Physical Description

The physical layout of the EBSA-285 is shown in Figure 1-1. It is a single-board computer with the
form-factor of a PCl add-in card.

The EBSA-285 contains processor, system controller, memory and input/output devices. There are
a number of header blocks on the card that accept 2-pin jumpers, allowing the card to be configured
in different ways, so that all of the major features of the 21285 can be used.

The bulkhead mounting bracket of the EBSA-285 holds a female 9-way D-type connector, three
LED indicators and a rotary switch. The D-type connector provides an RS232 terminal connection
to a host system. The LEDs provide status information during power up and self-test. The rotary
switch is used by onboard software to allow a particular image stored on the board to be executed
automatically at power up.

EBSA-285
Header
blocks DIMM sockets JIAG
conpector
,,,,,,,,,,,,,,,,,,, — I |
|
Flash || fiioeend TSN EEESEs T T a=ses 1
i (R [zt
mage .
50) selector :| SA- |
‘ 110 !
| Daughter board
e g g
I
L4 / ! (if fitteq)
LEDs I
I
[21285 e e
Serial port
COMO PC/AT-style
EPROM Universal power connector g
\ / socket PCl-slot fingers (bench-fest mode) 5

1-3

Introduction

1.5

Caution:

1.6

1-4

intel.

Unpacking the Card

The EBSA-285 contains electronic components that are susceptible to permanent damage from
electrostatic discharge (static electricity). To prevent electrostatic damageit is supplied in an
antistatic bag. When handling the card, risk of damage can be alleviated by following afew simple
precautions:

¢ Do not remove the card from the bag unless you are working on an antistatic, earthed surface
and wearing an earthed antistatic wrist strap.

* Keep the antistatic bag that the card was supplied in; if you remove the card from a system,
storeit back in the bag.

The EBSA-285 is normally supplied with a single, 168-pin plug-in DIMM module containing
16 MB of SDRAM memory. If the DIMM is not fitted when you receive your EBSA-285, install it
by following these steps:

1. Identify the DIMM socket closest to the edge of the EBSA-285.

2. Slidethe DIMM into the socket taking account of the polarity slots. Do not touch the gold
contacts. You can see that there are two polarization slots cut in the DIMM; this ensures that
the DIMM is oriented correctly.

3. Support the underside of the EBSA-285 and press the DIMM down into the socket. It should
mate with a gentle ‘click’.

Before you install and power up your EBSA-285, you should perform a quick visual inspection:

1. Inspect the card for physical damage.

2. Ensure that each of the 2-pin jumpers is pushed down firmly onto its mounting posts. If you

remove any of the jumpers, refer to Appendix A to ensure they are replaced correctly.

3. Ensure that one DIMM is fitted, in the socket closest to the edge of the card, and that the main
portion of the gold contacts on the DIMM has disappeared into the socket along the whole

length of the DIMM.

4. Check the position of the Flash Image selector switch. There is a dot or an arrow on the switch
showing which image is selected. If necessary, use a small screwdriver to rotate the switch so

that image 0 is selected.

Understanding the Different Modes

There are two distinct ways in which the EBSA-285 can be configured. In order to understand the
differences between them, it is necessary to review some aspects of the PCl-based system architecture.

The PCI bus has a multi-master capability, allowing any PCI master in the system peer-to-peer

access to any other PCl master/target.

In general, the PCI bus is symmetrical, so that any device on the bus can have the same set of
capabilities as any other device. However, one device in the system is responsible for generating a
software-driven initialization and configuration of all devices on the bus after power up or reset.

StrongARM** EBSA-285 Evaluation Board Reference Manual

16.1

Introduction

Initialization and configuration is performed using Configuration Cycles on the PCI bus and the
devicethat interfaces to the PCI bus to perform these cyclesis called the Host Bridge. The
processor that accesses the PCI bus through the Host Bridge is called the host processor, or simply
the host.

In this document, all devices on the PCI other than the Host Bridge are referred to as PCI devices or
add-in cards, or agents.

In amotherboard-based system like a PC, the host processor and the Host Bridge are built onto the
motherboard. The motherboard may also contain some PCI devices (for example, an Ethernet
network interface) and further PCI add-in cards may be plugged into PCI expansion connectors on
the motherboard.

The EBSA-285 can act either as a Host Bridge (in which case the EBSA-285's SA-110 processor is
the host processor) or as an add-in card (in which case the SA-110 processor would normally be
termed a co-processor).

The 21285 is configured in a mode called ‘Central Function’ (CFN) mode when it is acting as the
Host Bridge for a system.

In addition to the generation of PCI configuration cycles, there are a number of other functions that
are normally associated with the Host Bridge:

* Busarbitration

PCI clock generation
* Interrupt controller
* Reset generation

* The provision of pullups or ‘keepers’ on some bus signals

Some of these functions are referred to in the PCI specification as ‘Central Resource Functions’.

Add-in Card

This is the default mode for the card. When you receive a new EBSA-285, the jumpers on the card
will be configured for this mode.

If you already own a PC with a PCI expansion bus then using this mode is the simplest way to
power up and use the EBSA-285.

When the EBSA-285 is configured in this mode it can be plugged into an existing PC motherboard
or into a PCI backplane which already contains a Host Bridge. The EBSA-285 is supplied with
power, reset and PCI clock from the PCI connector. The motherboard or PCI backplane provides
bus arbitration, interrupt controller and pullups for the system.

When the host system is powered up, software running on the host processor will read the
configuration registers of the 21285 on the EBSA-285 and allocate system resources for it
accordingly. On a standard PC, this function is performed by the BIOS.

StrongARM** EBSA-285 Evaluation Board Reference Manual 1-5

Introduction

1.6.2

1.6.3

Figure 1-2.

1-6

intel.

Thisis not the default mode for the card. When you receive anew EBSA-285, refer to Appendix A
to configure the jumpers on the card for correct operation in this mode.

Host Bridge

When the EBSA-285 is configured in this mode it must be plugged into a special slot (the ‘System’
or ‘Host’ slot) in a PCI backplane. Intel can supply the EBSA-BPL-5V and EBSA-BPL-3V3 as
suitable backplanes. The EBSA-285 acts as the Host Bridge and also provides the PClI interrupt
controller for the system. It is supplied with power and PCI clock from the backplane. The
EBSA-BPL backplane also provides PCI bus arbitration and pullups.

If you wish to use a PCI backplane other than the EBSA-BPL-5V/EBSA-BPL-3V3, refer to the
StrongARM** EBSA-BPL Reference Mantmtonfirm that the backplaneis suitable before
powering up for the first time.

Example Installation

Figure 1-1 shows an advanced installation using the EBSA-285 and one of the Intel PCI
Development Backplanes.

In this arrangement there are two EBSA-285 cards, a PCI network card and a PCI video card. The
EBSA-285 in the backplane’s System slot is configured as a Host Bridge and the other EBSA-285
is configured as an add-in card.

Example Configuration in an EBSA-BPL-5V or EBSA-BPL-3V3 Backplane

System
slot

StrongARM** EBSA-285 Evaluation Board Reference Manual

I n o Introduction

1.6.4 Other Configuration Options
The EBSA-285 also supports configuration options that are beyond the scope of this introductory
section. Theseinclude:
* Setting the SA-110 processor core frequency

* Using the 21285 internal PCI arbiter instead of the backplane arbiter (only applicable in Host
Bridge mode)

¢ Allowing aplug-in EPROM emulator to be used in place of the onboard flash ROM
¢ Holding the SA-110 processor in reset so that a new image can be programmed into the
onboard flash ROM (only applicable in add-in card mode)

Refer to Appendix A for details on selecting and using these modes.

1.7 Powering Up for the First Time

Use Section 1.6 to decide which mode to use your card in, and use Appendix A to ensure the
jumpers are set appropriately. If you need more details on how to install the card or attach a power
supply, refer to Chapter 8.

Use an RS232 null-modem cable to attach the COMO port on the EBSA-285 to an RS232 port on a
terminal or terminal emulator. For example, you could connect to a PC running Windows and use
the Windows Terminal or Hyperterminal application. Configure the terminal to operate at 9600
baud, 8-bit data, 1 stop bit, no parity, no flow control. If you need more details on choosing an
appropriate cable, refer to Appendix A.

Note: If you are using the card as an add-in card, you cannot use aterminal emulator running on the host
for thisinitial test because the card will have issued messages before the host has booted.

I dentify the group of three LEDs on the bulkhead mounting bracket of the EBSA-285. Power-cycle
the system and watch the LEDs.

The LEDs should al beilluminated initially and then be extinguished after about half a second. At
the same time, the terminal screen should display a message similar to this:

Angel Debug Monitor for EBSA 285 (FIQ, MW off, Cock Switching on (serial)
1. 00 (Advanced RI SC Machines 2.11) rebuilt on Jun 9 1997 at 23:57:00

If you fail to see the behavior described then use this checklist to identify the problem:

¢ |f you have configured the EBSA-285 as an add-in card and it stops the host PC from booting
correctly, verify the jumper settings on the card.

¢ |f the LEDs behave correctly but the terminal doesn’t produce any output, check the terminal
cable and terminal settings. You can test the cable by connecting it between two PC COM
ports and running terminal emulation on each port; if the cable is correctly wired you will be
able to type characters on either terminal emulator and display them on the other.

¢ |f neither the LEDs nor the terminal behaves correctly then check that the jJumpers are set
correctly and that the flash image selector switch is set to 0.

¢ Attempt to run the onboard diagnostics by following the instructions in the next section.

StrongARM** EBSA-285 Evaluation Board Reference Manual 1-7

Introduction

1.8

1.9

1.10

1-8

intel.

Running the Onboard Diagnostics

You can get an additional level of confidence that the card is working correctly by running the
onboard diagnostics that are programmed into the flash ROM.

Before starting the diagnostics:
1. Attach the card to aterminal as described in Section 1.8.

2. Useasmall screwdriver to rotate the Flash Image selector switch so that the dot or arrow on
the switch pointsto the number 1. This selects the image that, by default, contains the onboard
diagnostics.

3. Power-cycle the system. The diagnostics should start up automatically and report progress on
the terminal. The first thing that the diagnostics do isto flash all three LEDs once.

Chapter 6 describes the output that the diagnostics should produce and describes what to do if the
diagnosticsfail.

Using the ARM** SDT with your EBSA-285

The ARM Software Development Toolkit (SDT) includes a remote debugger. When running the
remote debugger, one part runs on the host (this part includes the user interface) and the other part
runs on the target (the EBSA-285). The host and target communi cate across a communications
channel. By default, the EBSA-285 uses its COM0 RS232 port to communicate with the host.

The software that runs on the Target is called the remote debug agent or remote debug stub. By
default, the remote debug agent used with the EBSA-285 is a program called Angel .*

Use an RS232 null-modem cable between the COMO port on the EBSA-285 and the RS232 port on
the machine on which the SDT has been installed.

If you are using the EBSA-285 as an add-in card, the SDT can run on the same host. Thisrequires
COMO to be connected to one of the COM ports on the host.

Start up the ARM debugger in the SDT. Use the ‘remote_a’ option from the options menu to select
remote debug across a serial port.

For more details on using the SDT, refer toARM Software Development Toolkit Reference
Manual. Chapter 6 describes how to use the SDT to build images that can be executed and
debugged on the EBSA-285.

Support for Angel Over the Ethernet

A TCP/IP Ethernet stack has been added to the Angel debugger for faster downloads and
debugging of programs targeted for the EBSA-285. The system requires a Bootp server to be
running on the Ethernet to which the EBSA-285 is connected, for it to resolve its own IP address.
Beyond this the differences, other than download speed, between using the ARM debugger over
serial and Ethernet are largely transparent.

For a description of IP stacks and the general terminology please réfiterteetworking with
TCP/IP, Principles, Protocols and Architecture. Author: Douglas Comer. ISBN: 0-13-470188-7

StrongARM** EBSA-285 Evaluation Board Reference Manual

intel.

1.10.1 Description

Introduction

Figure 1-3 shows the layers involved with communications over the Ethernet, and how Angel and
user program relate. The program communicates its print/read statements and semi-hosting
commands viaAngel, just asfor serial. The channels layer within Angel then decides which is the

active device and uses that device to send the message to the debugging host. The stack isa

minimal implementation to satisfy the needs of Angel only.

Figure 1-3. Angel Communication Overview

Angel

Programs

Channels Layer

(interrupt driven) (polled)

Serial Layer Ethernet Layer
-~ -~
-~ -~
-~ -~
-~ -~
-~ -~
-~ -~
e -~
Socket Layer BOOTP
UDP Layer
IP Layer
ARP Layer

Ethernet Driver Abstraction Layer

Ethernet Device Driver

Hardware (21x4x)

StrongARM** EBSA-285 Evaluation Board Reference Manual

1-9

Introduction

1.10.2

1.10.3

Note:

1.10.4

1.10.5

1-10

intel.

The area of interaction between Angel and the stack is via a socket layer interface. Thisisa
minimal implementation of a socket layer, allowing use of:

Low-Level Angel Interface

Socket Initialize a socket

bind Bind socket to a port

sendto Send to a specific address

recv Receive

recvfrom Receive and indicate source of data

close Close the socket

All of the options and flags in these functions are ignored.

Initialization

Upon initialization the stack will attempt to find out its own I P address using the bootp protocol. It
will send out four bootp requests, approximately one to two seconds apart, but will stop when it
receives avalid reply. If no bootp request is received then only serial will be usable. A broadcast
message is sent to indicate that the debugger is ready to connect when the bootp is complete.

During this bootp period it will not be possible to connect to the debugger.

Host/Client Interaction

Angel will now poll the Ethernet stack and listen for the host debugger trying to connect. The
communications occur over UDP/IP, the Angel connect happens on a known port. When a packet

with a ‘magic’ word is received on this known UDP port it initiates a negotiation of other
communication channels and various Angel parameters. The host may also connect via serial, in
which case the Ethernet stack is no longer polled.

Angel can now communicate with the host over the negotiated channels. The ARM remote
debugger usage from this point should be the same as for serial debugging. However, it should be
noted that Angel must be allowed to run occasionally in order for it to examine the Ethernet stack —
this is entirely dependent upon the application that is being run calling ‘angel_yield’ from time to
time. This is not necessary for serial because serial uses interrupts to transfer data so is able to halt
the application in the foreground. It is not detrimental to yield when serial is being used. Although
there is a method built into Angel to start the polling mechanism, polling is always controlled by

the program.

Packet transmission via Ethernet is immediate.

Areas of Difference

The stack requirements are different. Angel uses more stack because of the layered approach to IP
- see devconf.h for the sizes.

StrongARM** EBSA-285 Evaluation Board Reference Manual

intel.

Functional Specification 2

2.1

2.2

This chapter describes each functiona element of the EBSA-285. More detailed information
describing how the board works and how to program it can befound in later chapters of this document.
Figure 2-1 isabasic block diagram of the board, showing how the major elements interconnect.

CPU

The EBSA-285 uses the SA-110 microprocessor as its CPU. The board allows the processor to be
operated at any one of its 16 core clock frequencies (between 88.3 MHz and 287 MHz with the
upper limit determined by the speed grade of the CPU fitted) at afixed core voltage of 2 V.

The CPU is packaged in a 144-pin thin quad flat pack (TQFP).

21285

The 21285 isaCore Logic controller for the SA-110 microprocessor. The 21285 performsall of the
control functions on the EBSA-285.

The 21285 is packaged in a 256-point plastic ball grid array (BGA).

StrongARM** EBSA-285 Evaluation Board Reference Manual 2-1

Functional Specification

Figure 2-1.

2-2

EBSA-285 Block Diagram

—
EPROM
Socket .
(Byte Flash « > Buf <:>
wide) RAM
(32-bit En SDRAM
wide) | . DIMM
s —— MA13:0] >
| Buf
+12V —1\
CMD Y
K D[3L0] N
SA-110 A[31:0] N 21285 K PCl-bus >
StrongARM -
< JTAG > oMo
T 1\ RS232 (_)|:|
Clk Clk I/Face
L 9-way
AN D-type
Buffer Buffer Buffer - En Flash image
selector
£ { — switch
Buf
Q
§ JTAG
. En: |
+3.3V > Latch
+5V —>
—>{ Regulator L NN\ LEDs
) . = I e ——
+2v X-bus Expansion D n Soft 110
Headers

StrongARM** EBSA-285 Evaluation Board Reference Manual

u
I nt9| o Functional Specification

2.3 The Memory Subsystem

The EBSA-285 provides synchronous DRAM (SDRAM) for its main memory and flash ROM for
its boot path and non-volatile storage. It also supports the use of a plug-in ROM emulator to aid
software debug.

2.3.1 SDRAM

SDRAM chips usually contain multiple logical banks of memory (typicaly 2 or 4) within asingle
chip. The existence of these multiple banksis invisible to software but allows the memory
controller to extract greater performance from the memories. To avoid confusion with these
internal banks, the term array is used to describe a physical group of memory devices that share a
common chip select and provide a 32-bit data path.

The 21285 supports four SDRAM arrays. The EBSA-285 has sockets for two 168-pin 64-bit
SDRAM DIMMs. The 64-bit data path of the DIMM istreated as two separate arrays (since the
21285 requires a 32-bit data path). One of the sockets can accommodate a DIMM of up to four
arrays, the other can accommodate a DIMM of up to two arrays. The standard configuration of the
EBSA-285 contains asingle 2-array DIMM, providing atotal of 16 MB of memory. Appendix A.5
explains how to choose suitable DIMMs with which to upgrade the EBSA-285.

2.3.2 Flash ROM

Non-volatile storage is provided by four byte-wide 1 MB flash ROMs, arranged to provide a 32-bit
ROM path. This provides atotal of 4 MB of ROM.

The ROM is used for two purposes:
¢ |nall configurations of the EBSA-285 it provides the boot code for the SA-110.

* When the EBSA-285 is used as an add-in card, the SA-110 software can make aregion of the
ROM visible on the PCI bus so that it appearsin PCl space as a PCI expansion ROM. The
expansion ROM makes code available to the host processor that can be executed for
device-specific initialization and, possibly, a system boot function.

The 21285 supports 8-bit, 16-bit and 32-bit ROMs, but the EBSA-285 design only allowsthe
32-bit mode to be used for accesses to the flash ROM.

The flash ROM is divided into a number of separate blocks, which can be erased and
reprogrammed independently. The EBSA-285 is supplied with code programmed into some of the
flash blocks. In particular, block 0 of the flash contains the bootstrap code for the SA-110,
including the remote debug agent.

If block O becomes corrupt, the SA-110 will be unable to execute code after areset. In this
situation, the flash can be reprogrammed using one of these techniques:

* Select the 21285klank ROM programming mode via a jumper on the EBSA-285 and plug
the board into an Intel PC, then reprogram block 0 across the PCI bus.

* Program the flash ROM viathe 21285 JTAG port.

The EBSA-285 is supplied with a software utility that allows images to be programmed into Flash
ROM either across the PCI bus, as described above, or under the control of the ARM** toolkit's
remote debugger. This utility, the Flash Management Utility (FMU), is described in Chapter 7.

Software for reprogramming flash ROM via the 21285 JTAG port may be provided in future
releases of the EBSA-285 software.

StrongARM** EBSA-285 Evaluation Board Reference Manual 2-3

u
Functional Specification I nt9| o

2.3.3

Warning:

234

2.4

2.5

2-4

EPROM Emulator

An EPROM emulator is adebugging tool that connectsto atarget asthough it were an EPROM but
allows fast download and modification of code. The EBSA-285 has a 32-pin 0.6-inch DIL socket
that can be used to connect a byte-wide 512 KB EPROM emulator head. A conventional EPROM
cannot be fitted to this socket. Thisis because the socket provides 3.3 V power, and aWE line (not
found on EPROMS). Similarly, only 3.3 V EPROM emulators can be used.

Fitting a5V emulator may result in damage to your EBSA-285.

Jumpers on the EBSA-285 are used to reconfigure the ROM width and disable the flash ROM in
this mode; access to the flash ROM and the EPROM emul ator socket are mutually exclusive. When
the EBSA-285 is configured correctly, the 21285 makes SA-110 and PCI accesses to the EPROM
emulator appear as 32-bit accesses.

The PROM Jet* EPROM emulator, from EmuTec, has been used successfully on the EBSA-285.
Details from:
Telephone number in the United States of America: +1 425 267 9604

The company web page: http://www.emutec.com

Memory-Map Switching

Immediately after reset, the 21285 decodes the flash ROM at two locations; at its normal base
address in high memory and also at an alias of 0. Decoding at this alias allows the SA-110 to fetch
its reset vector. The aliasis disabled by the first store (write) instruction executed by the SA-110.

I/O Subsystem

All local 1/0 (within the EBSA-285 module) is performed as programmed 1/O under the control of
the SA-110. The I/O subsystem provides the following resources:

* An RS-232 console port (data leads only) accessed viaa 9-way D-type on the bulkhead. This
isreferred to as COMO.

¢ An 8-hit I/O port used to control LEDs and read the state of jumpers and a switch.

The only other 1/0 facilities on the board are those provided by the 21285 itself.

Interrupts

When the EBSA-285 is used as a Host Bridge (21285 configured as Central Function), logic in the
21285 acts as an interrupt controller for interrupts generated locally (on the module and within the
21285) and for interrupts generated by other devices on the PCI.

When the EBSA-285 is used as an add-in card, logic in the 21285 acts as an interrupt controller for
interrupts generated locally (on the module and within the 21285). In this mode, the SA-110 can
generate an interrupt to the Host Bridge (across the PCI bus) under software control. The interrupt
isrouted out of the EBSA-285 as INTA#.

StrongARM** EBSA-285 Evaluation Board Reference Manual

2.7

Note:

2.8

Table 2-1.

StrongARM** EBSA-285 Evaluation Board Reference Manual

Functional Specification

PCI Interface

The EBSA-285 has a 32-bit PCI interface that is compliant with the PCI Local Bus Specification,
Revision 2.1. It supports both 3.3 V and 5 V signalling. The EBSA-285 has the capability either to
generate or to respond to configuration cycles on the PCI bus. These cycles are normally performed
by aHost Bridge, however, they can be generated by an add-in card, for example, to determine the
PCI access to system memory.

PCI Bus Arbiter

The 21285 contains a PCI bus arbiter. When the EBSA-285 is configured as a Host Bridge, and
plugged into a suitable backplane, the EBSA-285 can provide arbitration for the 21285 itself plus up
to four devices on the PCI. The PCI Bus Arbiter cannot be used at the same time as the X-Bus (since
they share signal pins on the 21285). A set of jumpers on the EBSA-285 enables one or the other.

When the PCI Bus Arbiter is enabled the X-Bus is disabled, so the EBSA-285 LEDs and flash
image selector switch cannot be used.

JTAG

The SA-110 and the 21285 both contain JTAG ports that allow test access to the I/O pins of the
device. The EBSA-285 daisy-chains the two JTAG ports and provides access to the port through a
7x2 0.1-inch pitch header connector. It is recommended that all ROM communications performed
by the programming software tool, be done through the DS21285 JTAG Boundary Scan chain. The
microprocessor should be held in the reset state by asserting NnRESET signal low, so asto grant
access to address and data buses.

The Test Access Port (TAP) is buffered from the connecting source device by a standard
7T4ACT 244 device. The physical connection to the TAP is made to the board by a 14 way IDC
connector. Table 2-1 shows the IDC connector pinout.

TAP IDC Connector Pinout

Pin Type Use Polarity
1 - 33Rto+5V -
2 - GND -
3 Input to board TRST_L Active low
4 - NC -
5 Input to board TDI Normal
6 - GND -
7 Input to board T™MS Normal
8 - GND -
9 Input to board TCK Normal
10 - GND -
11 Qutput from board TDO Normal
12 Input to board SRST_L — Board reset Active low
13 - Connected to pinl -
14 - GND -

This pinout is compatible with ARM PCBs and microprocessors.

2-5

Functional Specification I n

Table 2-2 shows the signals on Test Access Ports (TAPS).

Table 2-2. Signals on the TAP

Signal Name Pull-up Sampled/Updated on Clock Transitions From-to Optional
Test Data In (TDI) Yes Low to high No
Test Data Out (TDO) No High to low No
Test Clock input (TCK) No - No
Test Mode Signal (TMS) Yes Low to high No
Test Reset input (TRST) Yes Asynchronous Yes

The JTAG registers available are shown in Table 2-3.

Table 2-3. JTAG Registers

Register Purpose
Instruction register Holds the current instruction op-code value for the following task.
Boundary scan Reads and writes data to physical device connection pins.
Shortcuts the route of the JTAG daisy chain. Register is one cell long per
Bypass devi
evice.
Device ID Read out a preprogrammed compounded device information number.

Design specific test data register Test data register used by IC manufacturers

The JTAG commands available are shown in Table 2-4.

Table 2-4. JTAG Commands

Command Nature Op-Code 285 Value
EXTEST Public All 0's 0000
SAMPLE Public User defined 0001
BYPASS Public All 1's 1111
INTEST Public User defined —
RUNBIST Public User defined —
IDCODE Public User defined 0100

USERCODE Public User defined —
CLAMP Public User defined 0011
HIGHZ Public User defined 0010
2.9 Expansion

The 1/O capabilities of the EBSA-285 can be expanded in two ways:
* ThePCl interface

* The expansion headers of the buffered 21285 X-Bus. These allow a small mezzanine PCB to
be attached for connection to the X-Bus. The X-Bus provides a simple way of providing
access to low-performance 1/O.

2-6 StrongARM** EBSA-285 Evaluation Board Reference Manual

intel.

2.10

2.11

2.12

Functional Specification

Clocks

The EBSA-285 uses these oscill ators:

* 3.6864 MHz oscillator: This oscillator is used for two purposes. Firstly, it isused to drive the
SA-110 phase-locked loop (PLL) input, from which the SA-110 generatesiits core clock.
Secondly, it is used to provide afixed frequency input to one of the timers in the 21285.

* 50 MHz oscillator: This oscillator provides the osc input clock for the 21285. The 21285
buffers and redrives this clock to generate the SA-110 bus clock, the SDRAM clocks and the
21285 feedback clock, fclk. The local buses and the majority of the 21285’s internal logic run
synchronously at this clock frequency.

* When the EBSA-285 is plugged into a backplane (either as an add-in card or aHost Bridge) it
receives PCI clock from the backplane.

Resets

There are three sources of reset on the EBSA-285:
¢ Power-on reset
* Reset from PCI
¢ Reset from the 21285 watchdog timer

Power-on reset is generated automatically when power is applied to the EBSA-285. It can also be
initiated by:

¢ A push-button switch attached to a 2-pole 0.1-inch pitch connector on the board

¢ Circuitry connected to the JTAG test connector

Resets generated by any of these methods are equivalent and indistinguishable.

When the EBSA-285 is run in Central Function mode, the circuitry on the board is reset by
power-on reset and the 21285 generates PCI reset output under software control. In Central
Function mode, the 21285 watchdog timer can be used to reset the whole system in away that is
equivalent to a power-on reset.

When the EBSA-285 isrun in non-Central Function mode, it receives reset from the PCl and this
reset is used to reset all of the circuitry on the board.

Power Requirements

The EBSA-285 has the following power requirements:
* +5V +/-5% @1A
e +12V +/-5%, @ 250 mA
When the EBSA-285 is plugged into a backplane (either as a Host Bridge or an add-in card), it

draws power from the PCI edge connector. The EBSA-285 will function without the + 12 V
supply; that supply rail is only used to allow reprogramming of the flash ROMs.

StrongARM** EBSA-285 Evaluation Board Reference Manual 2-7

u
Functional Specification I nt9| o

2.13

2.14

2-8

Note:

Onboard Power Generation

The EBSA-285 generates + 3.3V and + 2 V using onboard circuitry. The +3.3 V isgenerated from
+ 5V using aDC/DC converter. The + 3.3 V is used to supply the flash, the SDRAMSs, the 21285
and various data and address buffers. The +2 V is generated from + 3.3V using alinear regulator.
The + 2V isused to supply the core voltage for the SA-110.

Although the EBSA-285 supports both + 3.3 V and + 5V signalling on the PCI bus, it never draws
+ 3.3V power from a PCI connector; it ways requires+ 5 V.

Onboard Software

The EBSA-285 onboard software is programmed into the flash ROM. The flash ROM can contain
anumber of independent images. At a minimum, the flash ROM contains a program called the
Primary Boot Loader (PBL). The PBL can load and start a specific image that is stored in flash
ROM and selected using the rotary flash image selector switch on the bulkhead mounting bracket.
By default, the PBL starts up the ARM remote debug agent.

An onboard diagnostic suiteis also programmed into flash ROM and can al so be selected by means
of the rotary switch.

StrongARM** EBSA-285 Evaluation Board Reference Manual

intel.

Programmer’s Guide 3

Much of the functionality on the EBSA-285 is fixed by the design of the 21285. This chapter
describes the facilities that are specific to the EBSA-285. These are:

* Theflash memory

* The SDRAM memory

* The X-Bus memory-map

* Interrupt assignment

¢ Timer assignment

¢ The soft input/output port

* Thereset state of the system

This chapter, in conjunction with the 21285 Data Sheet, should act as a complete reference for
programmers of the EBSA-285.

3.1 Flash Memory

Non-volatile code storage is provided by four 1 MB flash ROMs. These are Intel 28F008 parts.
They are arranged to provide a 32-bit boot path for the SA-110.

Each flash ROM provides sixteen 64 KB blocks of memory. The blocks are contiguous but can be
erased and programmed separately. Because the flash is arranged as 32-bit memory, it can be
treated as sixteen 256 KB blocks decoded at addresses 0x4100 0000 - 0x413F FFFF.

A new EBSA-285 contains debugger and self-test images in the first two blocks of the flash ROM.
User code can be programmed into other blocks. A utility for managing images in flash ROM is
described in Chapter 7.

The EBSA-285 can be configured to accommodate an 8-bit ROM emulator, which attaches viaa
32-pin 0.6-inch DIL socket on the board. Refer to Section 2.3.3 for information on choosing and
using a ROM emulator.

3.2 SDRAM Memory

The EBSA-285 can accommodate two 168-pin 3.3V SDRAM DIMMs. The standard

configuration isto fit asingle 16 MB DIMM, which appears astwo 8 MB arrays decoded at
addresses 0x0 - OxFF FFFF. Appendix A.5 describes how to upgrade or change the configuration

of the DIMM. Section 4.7 describes how to initialize the 21285’s memory controller to enable
access to the SDRAM.

StrongARM** EBSA-285 Evaluation Board Reference Manual 3-1

u
Programmer’s Guide I nt9| o

3.3

3.4

Table 3-1.

3.5

X-Bus Memory-Map

The X-Busis used for accessesto external low-speed 1/0 devices. There are four separate address
spaces. On the EBSA-285 the only address space that is used is the XCS2 address space,

0x4001 2000 - 0x4001 2FFF. All accessesin thisregion alias to the soft input/output register,
which is described in Section 3.6. The remaining X-Bus address regions could be used by a
mezzanine daughtercard attached to the EBSA-285.

Initialization of the X-Bus is described in Section 4.4.

Interrupt Assignment

The 21285 allows some of its external pinsto be used as interrupt inputs. The assignment of these
signals on the EBSA-285 is shown in Table 3-1 on page 3-2.

Interrupt Assignment

Bit in IRQ

Signal Status Assignment
ciirg | 18 When the EBSA-285 is configured as the Host Bridge and plugged into a PCI
pelirg_ backplane, this bit supplies INTA# from the PCI.
xcs_l[2] 14 This bit would never normally be enabled as an interrupt on the EBSA-285.
xcs_I[1] 13 This bit is unassigned on the EBSA-285. It could be used on an X-Bus
daughtercard.
xcs_I[0] 12 This bit is unassigned on the EBSA-285. It could be used on an X-Bus
daughtercard.
irg_in_I[3] 1 When the EBSA-285 is configured as the Host Bridge and plugged into a PCI

backplane, this bit supplies INTD# from the PCI.

This input is driven from a fixed 3.68 MHz oscillator. It is normally used to
irq_in_I[2] 10 increment Timer 3, as described in Section 3.5. It would never normally be
enabled as an interrupt.

When the EBSA-285 is configured as the Host Bridge and plugged into a PCI

irq_in_I{1] ° backplane, this bit supplies INTC# from the PCI.

irq_in_I[0] 8 When the EBSA-285 is configured as the Host Bridge and plugged into a PCI

backplane, this bit supplies INTB# from the PCI.

Each of these interrupts has programmabl e pol arity.

Timer Assignment

The 21285 has four internal timers. These can be incremented by clocksinternal to the 21285 or by
an external input.

If timer 3 is configured to increment from an external input, it will be clocked from the SA-110
PLL input oscillator, and will count at arate of 3.68 MHz. Thisis the only independent fixed
oscillator frequency on the board and it can be used to infer the system bus speed, the PCI clock
speed, and the SA-110 core clock speed.

StrongARM** EBSA-285 Evaluation Board Reference Manual

Table 3-2.

3.7

Programmer’s Guide

Soft Input/Output Register

The bulkhead mounting bracket of the EBSA-285 holds three LED indicators (one each red, amber
and green) and a 16-position switch. The soft input/output port allows software to control the state
of the LEDs and read the state of the switch. Software can aso read the state of three onboard
jumpers. The bit assignment of this register is shown in Table 3-2.

Bit Assignment of Soft Input/Output Register

Bit Name Type Description

This bit acts as a read/write bit and has no other effect. Its intention is to
7 TOGGLE | Read/Write | provide a bit that can be toggled under software control to provide some
indication that the X-Bus can be accessed successfully.

6:3 Unused Write-only | These bits are unused on writes; data is don't-care.

2 RED_L Write-only | Write a 0 to illuminate the red LED, write a 1 to extinguish the red LED.

Write a 0 to illuminate the green LED, write a 1 to extinguish the green

1 GREEN_L | Write-only LED

Write a 0 to illuminate the amber LED, write a 1 to extinguish the amber

0 AMBER_L | Write-only LED

Read the state of jumper J17 pins 9-10. Read ‘1’ if the jumper is removed,
‘0’ if the jumper is fitted. This bit is used by the supplied initialization
software to determine whether or not the EBSA-285 should permit access
to PCI. PCI accesses are enabled when fitted.

6 IBUF6 Read-only

Read the state of jumper J17 pins 11-12. Read ‘1’ if the jumper is removed,

5 IBUFS Read-only | .5t ihe jumper is fitted.

Read the state of jumper J17 pins 13-14. Read ‘1’ if the jumper is removed,

4 IBUF4 Read-only | .t the jumper is fitted.

Read the state of the 16-position switch. The data is the inverse of the
3:0 | SWITCH_L | Read-only | value selected on the switch, so that this nibble will read Oxf when the
switch is set to ‘0’, Oxe when the switch is set to ‘1’, and so forth.

Onboard software adopts a consistent policy for the use of the LEDs, the rotary switch and the
jumpers. Thisis described in Chapter 6.

The Reset State of the System

After reset, the 21285 SDRAM controller and the X-Bus are disabled. The 21285 decodes the flash
ROM at two locations; at its normal base address and also at an alias of 0.

Since the 21285 SDRAM controller is disabled by reset, SDRAM contentsis UNDEFINED after
reset.

StrongARM** EBSA-285 Evaluation Board Reference Manual 3-3

intel.

SoftwareConfigurationand Initialization4

Software must initialize the system hardware after a power up or reset. This chapter provides
guidelines for the various initialization steps that need to be taken.

The software that isloaded into the system by the Primary Boot Loader or by aremote debug agent
such as Angel can make assumptions about what in the system has already been configured. The
state of the run-time environment in these different situations is described in Chapter 6.

The correct sequence for the initialization steps required after reset is:
1. Disablethe flash ROM alias at address 0.

Determine the board configuration.

Initialize the X-Bus or PCI bus arbiter.

Initialize the SDRAM.

Configure the 21285 UART (optional).

Configure the PCI interface (optional).

N o ok~ wDd

Configure the SA-110 memory-management unit (MMU), turning on virtual memory, clock
switching and caches (optional).

4.1 Disabling the Flash ROM Alias

After reset, the 21285 decodes the flash ROM at two locations; at its normal base address of
0x4100 0000 and also at an dias of 0. Decoding at this alias allows the SA-110 to start executing
from the normal reset vector address of 0. Once the first write operation has been executed by the
SA-110, the dliasis disabled. Software should ranch to the high-order dias of the flash ROM
before executing the first write operation.

4.2 Accessing the Flash ROM

After reset and in normal operation, the flash ROM appears as a 32-bit read-only device. It is
actually implemented using four, 8-bit devices that are accessed in parallel. Flash operations other
than simple ROM operations are selected by writing specific commands into the Command User
Interface. Refer to the Intel 28FO08SA data sheet for details of the commands.

The four flash parts can be accessed individually or simultaneously, depending upon whether
commands are sent to all parts simultaneously or to a subset of the parts. For example,
programming a flash location is achieved by writing 0x40 to a byte location followed by writing a
data byte to the same location. A write of 0x40404040 to any EBSA-285 flash location followed by
awrite of Oxabcd.ef01 to the same location will result in Oxabed.ef0O1 being programmed into the
location (one byte programmed into each of the four flash devices). However, awrite of
0x40000040 to an EBSA-285 flash location followed by awrite of Oxabcd.ef01 to the same
location will result in the Oxab and 0x01 bytes being programmed and the other two bytes of the
longword being unchanged.

StrongARM** EBSA-285 Evaluation Board Reference Manual 4-1

u
Software Configuration and Initialization I nt9| o

42.1

4.2.2

4.3

4.4

4-2

Programming the Flash from the SA-110

The SA-110 must not be executing from flash ROM when it executes a flash programming
algorithm. The reason for thisis that flash programming requires a defined sequence of reads and
writes to the flash. Code fetches would disrupt the sequence.

The Angel debug monitor relocatesitself into SDRAM after power-up. The standard flash management
utility also executes from RAM, thus avoiding any code fetches when programming flash.

Programming the Flash from the PCI Interface

Before programming the flash from the PCI interface, the 21285 ROM Write Byte Address Register
must be set to 0.

The 21285 alows the flash to be reprogrammed from the PCI interface while the SA-110 is

running (though this will only work correctly if the SA-110 is not accessing the flash). However,

the 21285 also provides a special mechanism for reprogramming flash, called ‘Blank ROM Mode'.
On the EBSA-285, this mode is selected by moving a jumper on J15 (refer to Appendix A.2.2.3.
for details).

Determining the Card Configuration

The EBSA-285 can be used in various modes, all selected by jumper, and it may be necessary for
software running on the board to behave differently in the different modes. Two bits identify the
configuration of the board:

¢ Bit 23 of the 21285 X-Bus Cycle/Arbiter Register — the X-Bus/Arbiter bit:

The 21285 is configured, at power up, to enalileer its X-Busor its internal PCI bus arbiter.
Depending upon which mode is selected, software should initialize the appropriate registers,
as described in Section 4.4 and Section 4.5. If the X-Bus is disabled, the soft input/output
register described in Section 3.6 cannot be used.

¢ Bit 31 of the 21285 SA-110 Control Register — the CFN bit:

The 21285 is configured, at power up, to act either as a Host Bridge (CFN asserted) or an
add-in card.

Initializing the X-Bus

If the X-Bus is enabled, it should be configured by writing to the 2X2BGs Cycle/Arbiter

Register andX-Bus I/O Srobe Mask Register. TheX-Bus I/O Strobe Mask Register is also used to
set the polarity of some of the 21285 interrupt inputs. A suitable initialization sequence for the
EBSA-285 is:

1. Write 0x1000 16db to the 21285Bus Cycle/Arbiter Register.
2. Write Oxfcfc fcfc to the 2128%-Bus I/O Strobe Mask Register.
3. Write 0x6000 0000 to the 2128B-110 Control Register (enables X-Bus chip selects 2 and 1).

StrongARM** EBSA-285 Evaluation Board Reference Manual

u
I nt9| o Software Configuration and Initialization

4.5 Initializing the PCI Bus Arbiter

If the PCI bus arbiter is enabled, it may be configured by writing to the 21285 X-Bus Cycle/Arbiter
Register. The arbiter will work correctly with the default (power up) valuesin this register.

4.6 Setting the INITIALIZE_COMPLETE Bit

If the EBSA-285 is configured as an add-in card, plugged into a PC, the PC will attempt to access

the EBSA-285's PCI configuration registers as part of the PC’'s power up self-test (POST)
sequence. After reset, the 21285 will cause a PCI retry in response to a PCI configuration cycle.
Unless software on the EBSA-285 configures the PCI interface, this will cause the PC to retry
forever, so that it appears to ‘hang’. The minimum initialization required to avoid this is to set bit 0
(INITIALIZE_COMPLETE) in the 212855A-110 Control Register. A more sophisticated

initialization is described in Section 4.9.

4.7 Initializing the SDRAM

Two sets of operations are required in order to allow access to the SDRAM:
* Configure the 21285 memory controller registers.

* Configure the mode registersin the SDRAM arrays.

This section provides a sample configuration, coded in ARM** assembler. The code assumes that
all four SDRAM arrays are populated with 2Mx8 parts that can run with alatency of two.

1. Start with a set of equates for registers and register values.

CSR_BASE EQU &42000000
SDRAM_TI M NG EQU &10C
SDRAM ADDR SI ZE 0 EQU &110
SDRAM ADDR SI ZE 1 EQU &114
SDRAM ADDR S| ZE 2 EQU &118
SDRAM ADDR S| ZE 3 EQU &11C
CMD_DRI VE EQU &800
PARI TY_ENABLE EQU &1000
Tref _mn EQU &010000
Tref_norm EQU &1A0000
Trp EQU &1

Tdal EQU &4

Trcd EQU &20
Tcas EQU &80

Trc EQU &300

StrongARM** EBSA-285 Evaluation Board Reference Manual 4-3

u
Software Configuration and Initialization I nt9| o

2. After reset, the SDRAM arrays are in an unknown state. To put them into a known state, force

an all-banks precharge to each of the four possible arrays. You must access al four arrays for
thiseven if al four are not fitted. Thisis necessary because the 21285 counts these precharge
accesses, and inhibits access to the SDRAM until al four have been completed. Failure to
perform four precharge accesses will result in unpredictable operation. An all-banks precharge
isinitiated by aread from any address in the mode register address space.

| dr r0, =&40000008 ; SDRAM array O
| dr ro,[r0]

| dr r0, =&40004008 ; array 1

| dr ro,[ro0]

| dr r0, =&40008008 ; array 2

| dr ro,[ro0]

| dr r0, =&40000008 ; array 3

| dr ro,[ro0]

. Write to the SDRAM Mode Register in the SDRAMSs. This requires one write operation for

each SDRAM array. The address isimportant, not the data. The offset from the start of the
mode space for each SDRAM array controls what data is written to the SDRAM mode
register. The mode register should be configured for a burst size of 4 and for linear addressing.

| dr r0, =&40000008: OR: Tcas

str ro,[ro0]
| dr r0, =&40004008: OR: Tcas
str ro,[ro0]

| dr r0, =&40008008: OR: Tcas
str ro,[ro0]
| dr r0, =&40000008: OR: Tcas
str ro,[ro0]

. Write to the SDRAM Timing Register in the 21285. Set the refresh interval to the minimum

because we have to wait for 8 refresh cycles to complete before we can rely on the SDRAMs
operating normally.

| dr r 1, =CSR_BASE

| dr ro, =Trp: OR Tdal : OR: Trcd: OR Tcas: OR
Trc: OR CVMD_DRI VE: OR: Tref _m n

str ro,[rl, #SDRAM TI M NG

. Wait for 8 refresh cycles to complete. The minimum refresh interval is 32 cycles and we are

currently running with the Icache off, so the complete process will take 256 cycles.
| dr r0, =&100

wai t subs ro, ro, #1
bgt wai t

StrongARM** EBSA-285 Evaluation Board Reference Manual

In

4.8

tel.

Software Configuration and Initialization

6. Write to the four 21285 SDRAM Address and Sze Registers. This simple code assumes four

arrays arefitted and that they are all the same size and type. More sophisticated code would
automatically detect and size each array.

| dr ro, =&14

str ro, [r1, #SDRAM ADDR S| ZE 0]
| dr r0, =&800014

str ro,[rl, #SDRAM ADDR_SI ZE_1]
| dr r0, =&1000014

str ro,[rl, #SDRAM ADDR_SI ZE_2]
| dr r0, =&1c00014

str ro, [r1, #SDRAM ADDR S| ZE 3]

. Finally, reset the refresh interval to a sensible value. Continuing to run with avery short

interval would waste memory bandwidth. The refresh interval is calculated to refresh 4096
rowsin 64 ms.

| dr ro, =Trp: OR Tdal : OR: Trcd: OR: Tcas: OR
Trc: OR CVMD_DRI VE: OR: Tref _norm
str ro,[rl, #SDRAM TI M NG

Re-initializing the SDRAM

The 21285 only allows SDRAM mode writes to be performed when refresh is disabled. Therefore,
the initialization sequence shown in the previous section cannot be re-executed. Either of the
following two modifications will alow the code to be re-executed:

¢ At the start of the sequence, read the 21285 SDRAM Timing Register and check whether

refresh is enabled (refresh interval set to anon-zero value). If it is enabled, you can infer that
the SDRAM initialization has already been performed and that no further action is needed. If
refresh is not enabled, you can execute the initialization sequence described in Section 4.7.

At the start of the sequence, disable refresh by setting the refresh interval to 0, then wait for
15 bus clock cycles to ensure that any pending or in-progress refresh completes successfully.
You can then execute the initialization sequence described in Section 4.7.

StrongARM** EBSA-285 Evaluation Board Reference Manual 4-5

u
Software Configuration and Initialization I nt9| o

4.9 Initializing the PCI Interface

This section describes the minimum set of PCI registers that must be configured to allow the PCI
interface to be used.
1. Start by setting some important registers to a known state as follows:
— Write Oxc in the 2128®utbound Interrupt Mask Register (disable outbound interrupts).
— Write 0x0 in the 2128®oorbell PCl Mask Register (clear doorbell interrupts to PCI).
— Write 0x0 in the 2128®oorbell SA-110 Mask Register (clear doorbell interrupts to the
SA-110).
— Write 0x0 in the 2128%Cl Address Extension Register (set it to a known state).
— Write 0x1 in the 21288nterrupt Line Register (some PCI systems do not correctly
recognize an interrupt ID of 0).
2. Negate the PCI reset signal (this only has an effect if the EBSA-285 is the Host Bridge - it is
ignored otherwise):
— Set bit 9 (PCI not reset) in the 21285110 Control Register.

3. Open up a window from PCI memory space into the EBSA-285 SDRAM address space. If the
EBSA-285 is configured as an add-in card, configuring this window will allow the host PC to
allocate PClI memory address space for the EBSA-285 when it performs its POST. To create an

8-MB window:
— Write 0x007¢.0000 to the 2128»RAM Base Address Mask Register.
4. The next step must only be performed if the CFN bit is set and the bench test bit is clear (refer
to Section 4.3):
— Write 0x0 to the 2128&ommand Register. This stops the 21285 from responding to any
PCI transactions.
— Write 0x4000.0000 to the 212&%R Memory Base Address Register.

— Write 0xf000 to the 21288SR I/O Base Address Register.

— Write 0x0 to the 21285DRAM Base Address Register.

— Write 0x17 to the 21288ommand Register. This enables the 21285 as a bus master and
allows it to respond to I/O space and memory space transactions as target.

5. Finally, set bit O (INITIALIZE_COMPLETE) in the 2128%-110 Control Register. This will
allow the EBSA-285 to respond to PCI configuration cycles, as described in Section 4.6.

4-6 StrongARM** EBSA-285 Evaluation Board Reference Manual

u
I nt9| o Software Configuration and Initialization

4.10 Initializing the 21285 UART

The EBSA-285 runs with an fclk_in frequency of 50 MHz. The frequency of fclk_in determines
what divisors are appropriate when configuring the 21285's internal UART. Table 4-1 shows baud
rate divisors for this bus frequency.

Table 4-1. 21285 Baud Rate Divisors for 50 MHz fclk_in

Baud Rate Divisor Error
50 15624 0.00%
75 10416 0.00%
110 7101 0.00%

134.5 5808 0.01%
150 5207 -0.01%
300 2603 -0.01%
600 1301 -0.01%
1200 650 -0.01%
1800 433 -0.01%
2000 390 0.10%
2400 325 0.15%
3600 216 -0.01%
4800 162 0.15%
7200 108 0.45%
9600 80 -0.47%

19200 40 0.76%

38400 19 -1,73%

56000 13 0.35%

128000 5 -1.73%

StrongARM** EBSA-285 Evaluation Board Reference Manual 4-7

u
Software Configuration and Initialization I nt9| o

4.11 Configuring Cacheable/Non-Cacheable Space

To get maximum performance from the SA-110 you must enable clock switching and turn on the
internal 1cache and Dcache. The Dcache can only be enabled when the MMU is enabled. The
page-tables used by the MMU control, on a page-by-page basis, whether or not the contents of the
memory page is Dcacheable and whether or not writes to the page can use the SA-110 write buffer.
Refer to the SrongARM** SA-110 Microprocessor Technical Reference Manual for more details.

For correct operation, the following rules must be followed:
¢ The SDRAM address region may be marked |cacheable, Dcacheable, Bufferable.

¢ Theflash ROM address region may be marked Icacheable and Dcacheable for reads. During
writes to flash ROM (reprogramming) the Dcache and write buffer should be disabled.

* Someregions of 1/O space may be marked as bufferable, non-cacheable, which will improve
the performance of write operations. The PCI memory space in particular (0x8000 0000 -
OxFFFF FFFF) should be marked as bufferable, non-cacheable. Thiswill allow SA-110 writes
to this region to be merged within the 21285 resulting in write bursts on the PCI whenever
possible.

¢ The 21285 CSR address region should be marked non-cacheable, non-bufferable.

If you implement the Software Dcache Flush Algorithm described in Chapter 6 of the

SrongARM** SA-110 Microprocessor Technical Reference Manual you can use accesses to the

21285's SA-110 Cache Flush region (0x5000 0000 - 50FF FFFF). Read accesses to this region
complete in the minimum amount of time and return dummy data. This minimizes the time it takes
to flush the caches.

4-8 StrongARM** EBSA-285 Evaluation Board Reference Manual

intel.

Software Development Environment 5

This chapter describes the types of image that may be built for the EBSA-285, and how to use the
ARM** software development toolkit to build the images. The toolkit itself is described in the
ARM Software Development Toolkit Reference Manual. Two types of image are described:

* | oadable debuggable images
¢ Standalone flash images

Flash images may be programmed into flash using the FM U utility described in Chapter 7.

Note: This chapter assumes the EBSA-285 is using the Angel debug agent.

5.1 Loadable Debuggable Images

These images are run under the control of the Angel debug agent held in flash ROM,
communicating with either the ARM command line Symbolic Debugger (armsd) or the ARM
Windowing Debugger.

51.1 Building

Debuggabl e images can be written in either C or assembler. Aswell as describing the target CPU as
StrongARM** (-cpu StrongARM 1), you should assemble or compile with the -g option. This adds
symbolic information to the executable image file. If your program uses any standard C library
cals, for example printf(), you should link with the Angel (semi-hosted) C library. As symbolic
debug information isincluded in the default, there is no need to use any extra options when linking
debuggable images. Images should be linked using either the -AlF or the -AlF -BIN options.
Images linked with the -BIN option can still be debugged at the machine code level.

Images that are to be loaded across the serial line using the debugger’s load command may be
linked to use any base address in SDRAM except addresses that are below 0x8000. Addresses
0 - 0x8000 are used by Angel for context, stacks and so on.

51.2 Run-Time Environment

5.1.2.1 Memory Map

All SDRAM except address range 0 to 0x8000 is available to the program. The X-Bus and
SDRAM will have been initialized before entry to the program. The SA-110 MMU, write buffer,

and caches will not have been initialized unless you have done this by running a previous program
or by writing to the system coprocessor using debugger commands.

The C heap will be placed directly above the text segment of the program. By default, Angel runs

with the Dcache and the write buffer disabled but with clock switching and the Icache enabled. The
C library initialization functions will place the user stack at the top of SDRAM.

StrongARM** EBSA-285 Evaluation Board Reference Manual 5-1

u
Software Development Environment I nt9| o

5.1.2.2 ARM C Library Support

The ARM C library is described in the toolkit manual. All standard C functions are supported. All
reference to files (including references to standard input and output) refers to these files on the host.
This means that, for example, acall to printf() prints astring to the host that is running the debugger.

5.1.2.3 Exception Vectors

The Angel debug monitor uses the Undef, SWI and FIQ exception vector entries. The program can
safely modify any other exception vector to jump to its own exception handlers. The program can
alsoinstal itsown handlersusing SWI_InstallHandler. Thisisdescribed in the Angel documentation.

5.1.2.4 Access to I/O Devices

Angel usesthe COMO seria port. The program must not access this device. All other devices may
be used by the program.

5.2 Standalone Flash Images

These are images that are written into one or more consecutive flash ROM blocks. At boot time the
Primary Boot loader selects the image to run and then transfers control to it. Flash images can
either execute in place or from memory. If the flashed image is to be executed from memory, the
Primary Boot Loader first initializes the memory and then copies the image into memory before
passing control to it.

Asaside effect of initializing the X-Bus, the Primary Boot Loader always disables the flash ROM
alias at address 0x0 and executes from the high-order aias.

5.2.1 Building

Images may be written in C or assembler. No special options are needed when assembling or
compiling. Aswell as providing startup code to swap the initial memory map and so on, you must
supply the code of any library functions used (refer toSection 5.2.2.2). There are two ways of
linking such images:

* -AIF-BIN-BASEn
— If the base address is outside of the address range of the flash ROM, the PBL will copy the

image to its base address in system SDRAM (removing the header in the process) and
execute it from its entry point; the image will execute from SDRAM.

In this case, the image may occupy non-contiguous blocks in flash ROM.
— If the base address is equal to the flash block address + 0xc0, the PBL will execute the

image by branching to its entry point; the image will execute from flash ROM (for
example, use address 0x410C 00CO for an image that will execute out of flash block 3).

In this case, the image must occupy contiguous blocks in flash.

— If the address does not meet either of these requirements, the FMU will report an error and
will not program the image into flash.

Images linked with this option may use any base address in SDRAM.

5-2 StrongARM** EBSA-285 Evaluation Board Reference Manual

intel.

5.2.2

5221

5.2.2.2

5.2.2.3

5.2.2.4

Software Development Environment

* -AlIF-BASEn
The image will execute from flash ROM. Requirements are;

— The image must occupy contiguous blocks in flash ROM
— The image must not contain any writable initialized data
— The address of the first flash block to be used for the image must be known at link time

— The base ‘n’ must be the address of the flash block + 0x40 (for example, 0x410C 0040 for
flash block 3)

In this case, the image is started by branching to the BL instruction that is the first longword of
the AIF header. The FMU does not validate the entry point.

This option should normally be avoided (except for programs that relocate themselves to SDRAM
during initialization) since accesses to flash ROM are much slower than access to SDRAM.

Run-Time Environment

Memory Map

All of SDRAM is available to the program. If the program is run from SDRAM, then SDRAM will
have been initialized before entry to the program. If it is run directly from flash, then the X-Bus has
been initialized and the initial memory map has been swapped. The boot time memory map will
still be in use although the PC will be in the first alias above 4100 0000 of the flash block (not in a
low alias). The MMU and caches will not have been initialized. The C library initialization
functions place the user stack at the top of SDRAM.

C Library Support
ARM’s software development toolkit includes sources and porting information for two run-time

libraries; a minimum standalone library and an ANSI C library. EBSA-285 ports of these libraries
may be supplied as part of the firmware database in the hardware develoger’s kit.

Exception Vectors

The program may modify and use the exception vectors without restriction.

Access to I/O Devices

If a C library is used, it will provide routines to access some devices (for example, the COMO serial
port) and it will expect exclusive access to the associated underlying hardware. Other than this, the
program may access any device.

1. Early versions of the HDK are unlikely to provide this.

StrongARM** EBSA-285 Evaluation Board Reference Manual 5-3

intel.

Onboard Software 6

6.1

Table 6-1.

The EBSA-285 is shipped with the following programs blown into its flash ROM:
* Primary Boot Loader (PBL)
* Angel remote debug agent
¢ Diagnostics

When the EBSA-285 isreset or powered up, code execution commences with afetch from the reset
vector at location 0, the first image in flash. Thiswill start execution of the PBL.

Primary Boot Loader

The Primary Boot Loader (PBL) is part of aspecial Angel image programmed into the first block
(block 0) of the flash. The PBL isthefirst code executed when the EBSA-285 comes out of reset.

The flash can contain a number of different images; the main function of the PBL isto determine
which image to execute and then to execute it. If necessary, the PBL will load the selected image
from flash into system memory.

Images are programmed into flash ROM using the Flash Management Utility (FMU) described in
Chapter 7. The format of the imagesin flash is described in Section 6.2.

When the PBL is executed, it performs these tasks:

* Readsthe value of the flash image sel ector switch to determine which image to branch to after
initial boot (see Table 6-1)

Boot Image Selection

Selection Contents Action
0 Image 0: Enters ARM**/Angel* remote debug stub within PBL image
1 Image 1 Contains diagnostics image when board first supplied
2toF Images 2 to F | Available for user programs

¢ |If Image0is selected, enters the ARM/Angel remote debug stub within the PBL image
¢ |f any other image is selected:

1.Switches the memory map

2.Searches for theimage in flash, and verifies that the checksum is correct.

3.If image is not found or is corrupt (bad checksum), behaves as though the selected image is
image 0.

4.1f theimage isin executable AlF format, jumps to the image (the system memory map has not
been changed and the DRAM has not been initialized).

5.If theimage is in non-executable AlF format, then:

a. If theimage executes from SDRAM, then it:
i. Initializes DRAM
ii. Loads the image into memory at the addresses defined in the AIF header

b. Jumps to the image’s entry point

StrongARM** EBSA-285 Evaluation Board Reference Manual 6-1

Onboard Software i nt9| o

6.2

Note:

Table 6-2.

6-2

Format of Images in Flash ROM

The flash ROM isin four 1 MB parts, organized to provide 16, 256 KB, 32-hit wide, blocks.
Block 0 (at address 0x0000 0000, after reset) is reserved for the PBL/Angel. The remaining
15 blocks can be used to hold other images.

Each image, apart from the PBL/Angel, has an image header that allowsiit to be stored across
non-contiguous blocks. Only the first block used by the image has an image header. Any individual
block isonly used by one image or no image. Any block that is not in use will bein its erased state.

Theformat of an image stored in the flash ROM isbasically AIF (ARM Image Format), with afew
additional bytes prepended. The format is shown in Table 6-2. When the FM U is used to program
an image into flash, the FMU will create and prepend the header information onto the image.

You may write an aternative flash programming utility, but it should follow the defined flash
structure so that the PBL can load the image.

Flash Image Header

Offset Size

(bytes) (bytes) Name Description

BL to AIF header (for executable AIF) or BL to image entry point (for
0 4 Type non-executable AIF on image to be executed from flash) or NOP (for
non-executable AIF executed from RAM).

Number | Unigue image number (O to Oxff).

Sig 0x55 Oxaa 0x00.

Allocation map. Bit O represents block 0, bit 31 represents block 31

8 4 Map (only bits 15:0 are required for the current flash part).

12 4 Checksum Checksum of image including headers, using the algorithm
described below.

16 4 Length Image length (including all headers) - used to determine what gets
checksummed.
ASCII string identifying name of image. Unused characters should

20 16 Name be set to 0x20 (ASCII space).

36 4 Bootflags Bit 0 is NoBoot. When set for an image, the PBL will load the image

g but then pass control to the ARM remote debug stub within the PBL.
40 24 Reserved | Reserved for future use.
64 128 AIF header | AIF header for image.

The headers use atotal of 192 bytes. Thefirst free byteis at offset 192 (0xc0).

The checksum is formed by taking the 2's complement of the 32-bit sum (ignoring carry) of all
longwords of the header and image, excluding the checksum itself, as specified by the length field.
If the length is not an integral number of longwords, the ‘missing’ bytes are set to Oxff (the
unprogrammed state of bytes in flash ROM).

When the checksum is correct, a 32-bit sum (ignoring carry) of all longwords of the header and
image, including any bytes required to round the length up to an integral number of longwords, will
be 0. Block 0 of the flash will always contain image 0, the PBL/Angel image. It is not defined
whether this image contains an image header. Images can have an image number between 0 and
Oxff, but the PBL/Angel can only load and start image numbers 0-F.

Software that deletes an image in flash ROM should erase all the blocks used by that image. Software
that programs an image in flash ROM should determine which blocks are free by checking each block
for an image header and then ORing the allocation maps of all the valid image headers.

StrongARM** EBSA-285 Evaluation Board Reference Manual

6.4

6.4.1

6.4.2

Onboard Software

Angel

The version of Angel used on the EBSA-285 is a part of ARM’s code. The full source code of
Angel is supplied as part of ARM’s SDT. The EBSA-285-specific source code is supplied on disk
with the EBSA-285, along with the files needed to rebuild Angel from source. The standard
version of Angel programmed into flash block 0 enables the SA-110 Icache and clock switching.
Read the README.TXT file on the disk provided with the EBSA-285 for a description of the
images supplied.

Diagnostics

These perform diagnostic tests that check that the system is operating correctly. The onboard
diagnostics are normally programmed into flash block 1 and executed when image 1 is selected.

Preparing to Run the Diagnostics

The diagnostics expect to output results to the COMO port, so this must be set up correctly. Set it to
9600 baud, 8 data bits, 1 stop bit, no parity and no flow control. Select image 1 and then reset or
power-cycle the system.

Description of Tests

The diagnostics test a series of system functions and, when complete, print a summary of the tests
run and their results. If any tests fail, the red LED is lit. If all of the tests are successful, the green
LED is lit.

The tests run through the following steps:

1. The initial state at power up of the LEDs is all on. The diagnostic tests turn them all off, on and
then off again with a short pause between. This proves that the 1/O path through the X-Bus is
working. After the tests, either the red LED will be lit to show that an error occurred or the
green LED will be lit to show that the tests were successful.

2. A banner is written to the COM port announcing that the tests have started. This demonstrates
that the COM port is working.

EBSA285 Power On Sel ftests

3. Clock switching and the Icache are now turned on. At this point the diagnostics are running
from flash; enabling clock switching and turning on the Icache will allow the diagnostics to
run as quickly as possible.

Enabl i ng C ock Swi tching...Done
Enabl i ng | - Cache. .. Done

4. The diagnostics now initialize memory. If memory cannot be initialized, the red LED is lit and
the tests halt.
*** |nitialising DRAM ***

StrongARM** EBSA-285 Evaluation Board Reference Manual 6-3

Onboard Software

5.

6-4

Now that the memory isinitialized, it can be tested:

*** Starting DRAM tests ***

Wrd wite each word’s address to itself

Test Passed

Wrd wite each word’s address to its top hal fword
Test Passed

Byte wite and read each byte; contents of each byte should be address nod 255
Test Passed

Wrd read the data witten by the previous test
Test Passed

Store multiple tests starting

Test Passed

Load nultiple tests starting

Test Passed

*** DRAM tests conplete ***

Up to this point, diagnostic tests have been run using registers only, but now that the memory
has been initialized and tested, it is available for use by test software. For this reason, the rest
of the diagnosticsismostly written in C rather than in assembler. This part of the diagnosticsis
actually a separate image designed to be run from main memory:

DRAM si ze i s 0x800000

EBSA285 St ub Code

Copyi ng 0x13b8 bytes, from 0x410409b4 to 0x200000

HHHHHHHHHHHHHHHE

Junping to C code. ..

EBSA285 Power On Sel ftests (built Jun 06 1997, at 10:08:02)

We are now running the C based diagnostic tests from memory and using aregion of memory
to hold the test results.

Using nenory at 0x700000 for results

The diagnostics now run through a series of tests, each testing a different aspect of the system.
Thefirst test checks that the 21285's on board timers are functioning:

StrongARM** EBSA-285 Evaluation Board Reference Manual

Onboard Software

9. Thenext test checksthat the flash ROM part is functioning correctly. It selects an unused flash
block and writes atest pattern to it. It then reads back the test pattern to check that it was
correctly written.

Fl ash Tests [v1.0]

Searching for flash device

Fl ash f

ound at 0x41000000 (0x10 bl ocks of size 0x10000

Scanni ng Fl ash bl ocks for usage
Listing Flash Bl ocks

0x0 * 0xeb00002e O0xaa5500 Ox1 Oxbfea8f6b Boot! oader
0x1 * 0xeb00002e O0Oxaa5501 O0x2 0x95a7bd94 post

0x2 * 0xeb00002e O0Oxaa5502 0x4 0x929c9fed Ange
0x3 0x3020100 0x7060504 0xb0a0908 0xf0e0dOc
0x4 Oxffffffff Oxffffffff Oxffffffff Oxffffffff
0x5 0x3020100 0x7060504 0xb0a0908 O0xf0e0dOc
0x6 Oxffffffff Oxffffffff Oxffffffff Oxffffffff
0x7 oxffffffff Oxffffffff Oxffffffff Oxffffffff
0x8 oxffffffff Oxffffffff Oxffffffff Oxffffffff
0x9 oxffffffff Oxffffffff Oxffffffff Oxffffffff
Oxa Oxffffffff Oxffffffff Oxffffffff Oxffffffff
Oxb Oxffffffff Oxffffffff Oxffffffff Oxffffffff
0Oxc Oxffffffff Oxffffffff Oxffffffff Oxffffffff
Oxd 0x3020100 0x7060504 0xb0a0908 0xf0e0dOc
Oxe oxffffffff Oxffffffff Oxffffffff Oxffffffff
Oxf 0x3020100 0x7060504 0xb0a0908 0xf0e0dOc
Testing Bl ock 0x3

Witing test pattern

Readi ng test pattern

Fl ash t

est worked

10. Thefinal test confirms that the COM port can receive characters as well as print them:

COM Port Tests [vl. 0]
Type sone characters followed by C/R
This is a test string

Did you see the characters echoed correctly? [yY/ nN? y

Done

StrongARM** EBSA-285 Evaluation Board Reference Manual

Onboard Software i nt9| o

11. Finally the test results and information about the system are printed. If any of the tests have
failed, thered LED will be lit. If all tests were successful, the green LED will be lit.

EBSA285 Power On Sel ftests (built Jun 06 1997, at 10:08:02)

Menory size is 0x800000, CPU id is 0x4401a103

21285 device id is 0x1065, 21285 revision is 0x0

CPU Frequency is 228.1 MHz

Central Function Mde, PCl disabled

Flags: J17 pins 9-10 not fitted, J17 pins 11-12 not fitted,
J17 pins 13-14 not fitted

Fl ash device at 0x41000000, 0x10 of size 0x10000

I mage switch is 0x4

Test Results Summary

Menory tests Successf ul
Timer tests Successf ul
Fl ash tests Successf ul

COM Port tests Successful

Sel ftests conpl ete, change boot sel ection before rebooting

6-6 StrongARM** EBSA-285 Evaluation Board Reference Manual

intel.

Flash Management Utility !

7.1

This chapter describes the Flash Management Utility (FMU). This program is supplied in source
form and as both an ARM** Image Format (AIF) file and a DOS executablefile.

Using the FMU

Images are programmed into flash using the Flash Management Utility (FMU). There are two
versions of the FMU; an Angel* remote debugger loadable version (fmu.aif) and aDOS
executable version (fmu.exe).

* The Angel loadable version uses the ARM debugger 1/O services to provide a command-line
interface.

* The DOS loadable FMU uses PCI BIOS services to access the EBSA-285 onboard flash
device. During this access, the SA-110 must be held in blank programming mode (jumper on
J15 pins 5-6).

When the FMU is started, it checks for the presence of aflash ROM, issues a start-up message and
then prompts for user input:

Intel EBSA-285 Flash Managenent Wility [1.2] (Angel)
Searching for flash device

Fl ash found at 0x41000000 (16 bl ocks of size 0x40000)
Scanni ng Fl ash bl ocks for usage

FMU>

The FMU provides these commands:

* Help — List all of the available commands

FMJ> hel p
FMJ command sunmary:

Li st - List images in flash
Li st Bl ocks - List how each Flash block is being used
Test Bl ock <bl ock- nunber >
- Wite a test pattern to a particular flash block
Del et e <i mage- nunber >
- Delete an image in flash
Del et eBl ock <bl ock- number >
- Deletes a block that appears not to be in an inmage
Del et eAl | - Deletes all blocks except block O
Pr ogr am <i mage- nunber > <i mage- nanme> <fil e-nane> [<bl ock- nunber>] [NoBoot]
- Programthe given image into flash
Quit - Quit
Hel p - Print this help text

StrongARM** EBSA-285 Evaluation Board Reference Manual 7-1

Flash Management Ultility I n

7-2

* List — List the images in flash. For example:

FMJ> | st

Li sting i mages in Flash

I mage O “Bootld" Length 45232 bytes, Map 0x00000001
Image 1 “Post” Length 536 bytes, Map 0x00000002

— You supply the image number and name when you program the image
— The length shown is the size of the image including all headers

— The map is a bit map showing which blocks of the flash are occupied by the image; bit 0
of the map corresponds to block 0 of the flash, and the image’s header is in the lowest
block occupied by the image

— You optionally supply the NoBoot option when you program the image
¢ ListBlocks — List how each flash block is being used. The first few bytes of the flash block are
listed. If the block contains an image, its image number is given. For example:

FMJ> | i st bl ocks

0: (I mage 0) 0x2e 0x00 Ox00 Oxeb 0x00 0x55 Oxaa 0x00
1: (Inage 1) 0x02 0Ox00 0x00 0x00 OxeO Oxdd O0x21 0xc6
2: (lmage 2) 0xd8 0x10 Ox01 Ox00 0x65 0x46 Ox6f 0x72
3: (Image 2) Ox4c OxOa 0x00 0x40 0x10 0x03 0x00 0x00
4: (Unused) oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff
5: (Unused) oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff
6: (Unused) oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff
7: (Unused) oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff
8: (Unused) oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff
9: (Unused) oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff
10: (Unused) Oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff
11: (Unused) Oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff
12: (Unused) Oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff
13: (Unused) Oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff
14: (Unused) Oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff

15: (Unused) Oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff

¢ TestBlock <block-number> — Test a particular flash block by writing a test pattern to the block
and then verifying it. For example:

FMJ> testbl ock 15

Do you really want to do this (y/N)? vy
Witing test pattern to block 15
Readi ng test pattern from bl ock 15

Fl ash test of block 15 worked

StrongARM** EBSA-285 Evaluation Board Reference Manual

In

tel.

Flash Management Ultility

* Delete <image-number> — Delete an image in flash. You cannot normally delete the flash
image that starts in flash block 0 (the primary boot loader). The only time that the FMU utility
permits you to do this is if the ARM remote debugger stub is executing from EPROM rather

than flash. For example:

FMJ> del ete 3

Do you really want to do this (y/N? vy
Del eting flash bl ocks: 4

Scanni ng Fl ash bl ocks for usage

FMU>

FMJ> delete O

WARNI NG Del eting flash boot bl ock

Do you really want to do this (y/N? vy
Del eting flash blocks: 0

Scanni ng Fl ash bl ocks for usage

If you are running an ARM remote debugger stub from an image other than image 0, you can
delete that image, but the FMU will be terminated during the delete. If you restart the system,

it will execute the PBL and run correctly.

¢ DeleteBlock <block-number> — Delete a block that is not part of an image. This may be used
to clean out corrupt blocks, or blocks that have been programmed by the TestBlock command.

The FMU will not allow you to delete a block that is part of a valid image. For example:

FMJ> del et ebl ock 15

Do you really want to do this (y/N? vy
Del ete flash bl ock 15

Scanni ng Fl ash bl ocks for usage

¢ DeleteAll — Delete all blocks except blocks 0 and 1.

* Program <image-number> <image-name> <file-name> [<block-number>] [NoBoot] — Program
the image with name <image-name> into the flash as image number <image-number>. The
image is read from the host from file <file-name> (which may include a directory name). Refer
to Section 7.1.1 for details of the block-number option and to Section 7.1.2 for details of the

NoBoot option. The Program command will fail with an error if:
— The image number is already in use.

— There is insufficient free space in the flash.

— The specified blocks are not free.

— The file does not exist or cannot be opened.
For example:

FMJ> program 3 | edl oop2 d:\users\crook\I edl oop. ai f noboot

Witing d:\users\crook\ledloop.aif into flash block 4

Del eting bl ocks ready to program

Del eting bl ock 4

Cal cul ati ng checksum

Witing flash i nage header

I mage is non-executable AIF file

The bootl oader will copy this inmage to 200000 before executing it
Witing image file

Scanni ng Fl ash bl ocks for usage

* Quit — exit from the FMU. When this command is executed, the FMU will return control to the

debugger.
* Exit — a synonym for Quit.

StrongARM** EBSA-285 Evaluation Board Reference Manual 7-3

u
Flash Management Ultility I nt9| o

7.1.1 When to Specify the Block Number

By default, the FMU ‘Program’ command will program an image into flash using any free blocks
allocated in ascending block order. This can result in an image occupying non-contiguous blocks
within the flash.

When an image is a hon-executable image (an image that will be loaded into system memory by
the PBL prior to execution) the PBL will load an image from non-contiguous flash blocks into
contiguous system memory. Therefore, allowing an image to occupy non-contiguous flash blocks
makes efficient use of the flash by avoiding fragmentation problems.

When an image is an executable image, it must occupy contiguous blocks within the flash. In
general, it must also have been linked to execute from a specific address (and therefore block) in
the flash. Therefore, when using the FMU to program an executable image, you must specify the
block-number when you issue the ‘Program’ command.

When a block-number is specified, the FMU will program the image into contiguous flash blocks,
starting from the specified block. The command will fail if insufficient unused contiguous blocks
are available.

Refer to Section 6.1 for information on the PBL, and to Section 5.2 for information on building
images that can be executed from flash.

7.1.2 When to Specify the ‘NoBoot’ Option

The usual reason to program an image into flash is so that it can be automatically executed after
reset or power up. If the image number is less than OxF, the flash image select switch can be set so
that the PBL will load and execute the image after areset or power up.

Sometimes, it is desirable to have the PBL load the image into system memory but then drop into
the ARM remote debug stub. This process allows the image to be started up under the control of the
debugger, to use the 1/0 facilities of the debugger and ultimately to pass control back to the
debugger when the image terminates.

If you use the NoBoot option when programming an image into flash, the PBL will load the image
into system memory but will not execute it; instead, control will passto the ARM remote debug
stub within image O.

There is no way to change the state of the NoBoot flag for an image once it has been programmed,;
you must del ete the image and reprogram it with the NoBoot flag changed.

Refer to Section 6.1 for information on the PBL and the flash image select switch.

7-4 StrongARM** EBSA-285 Evaluation Board Reference Manual

intel.

Theory of Operation/Hardware Design 8

8.1

8.2

General

This chapter provides atechnical description of the EBSA-285 hardware and explains various
trade-offs made in the design. It should be read in conjunction with the 21285 data sheet and the
EBSA-285 schematic set (the schematic set is provided as part of the EBSA-285 design database -
refer to Appendix B). You should read this chapter if you wish to gain a detailed understanding of
the operation of the card or if you wish to design a board based on the 21285. You are assumed to:

* Have abackground in high-speed digital design

* Have some familiarity with the ARM** architecture, the SA-110 bus interface and the 21285
data sheet

* Have access to the manufacturer’s data sheets for the flash, SDRAM and other components
used on the card

This chapter is organized so that each hardware-related section of the Functional Specification
(Chapter 2) has a corresponding section here in which the topic is covered in more detail. In
addition, this chapter includes:

* A topic-by-topic tour of the EBSA-285 schematics, including a description of the principal
buses

* A discussion of how an expansion card could be designed for the EBSA-285

¢ A summary of the design rules used for the PCB layup and routing

An Introduction to the Schematics

Specific sheets of the schematic set are referenced by sheet number (for example, SHT6). The
sheet number is shown in the bottom right corner of the schematic.

Thefirst sheet of the schematics (SHT1) is an index to the remaining sheets. The block diagram
(SHT2 of the schematics, (simplified in the body of the manual as Figure 2-1) shows all the major
components of the design, and provides a cross-reference to the location of any particular
functional block within the schematic set.

On the schematics, every signal has a three-letter prefix! that indicates the origin (driver) of the
signal. For bi-directional signals, the ‘most important’ driver of the signal determines the prefix.

1. Thereare afew exceptions, but they should not cause confusion.

StrongARM** EBSA-285 Evaluation Board Reference Manual 8-1

u
Theory of Operation/Hardware Design I nt9| o

8.3 Voltage Domains

Theintegrated circuits on the EBSA-285 use amixture of 5V and 3.3 V switching levels.

The parts of the circuitry requiring 3.3V are:
* SA-110 (SHT3)
* SDRAM DIMMs (SHT11, 12)
* EPROM emulator socket (SHT8)

The parts of the circuitry requiring 3.3V but are 5 V-tolerant are:

* 21285 (SHT5)
This allows the 21285 to be used on universal cards and the oscillator to be interfaced directly.

* Flash ROM (SHT8)
e LVT buffers (SHT6, 7)

The parts of the circuitry requiring 5V are:
* Oxcillators (SHT3, 5 13)

JTAG (SHT18)

PCI (SHT14)

¢ X-BusExpansion (SHT4)

¢ Reset Circuitry (SHT18)

Signals that are generated with 5V switching levels must be level converted before they can be
used asinputs to the SA-110. This affects the following signals:

e JTAG port (3v3_tdi, 3v3_tms, 3v3 trst I, 3v3_tck)
* SA-110 oscillator (un_3v3_osc3)
* Reset (flash_rst_I)

The level conversion is performed using a QuickSwitch* QS3384 (SHT3).

8.4 Interfacing Techniques

The following interfacing techniques are used on the card:

* 74LVT devices are used as level converters, these parts have a 3.3 V supply but are
5 V-tolerant. Their output switching range is within the TTL switching threshold, hence they
can drivethe TTL level devices powered fromthe5V rail.

* Qutput signalsfrom 3.3 V devices can be used to drive TTL directly. This method is used for
the bus control logic and on the X-Bus header control logic.

* A Quality Semiconductors ‘QuickSwitch’ device is used for level conversion (equivalent
pin-compatible devices are available from Texas Instruments and National Semiconductors).
The QS3384 acts as a set of bi-directional FET switches. It introduces negligible delay
(250 ps). Since the FET switches saturate, the switching level can be controlled by controlling
the saturation (supply rail) voltage. With the QS3384 powered at 4.3 V, the driven output will
be limited to 3.3 V, even under light loading.

8-2 StrongARM** EBSA-285 Evaluation Board Reference Manual

Theory of Operation/Hardware Design

8.5 Principal Buses

The principal internal busesin the EBSA-285 design are:

cpu_a[31:2] — CPU Address bus

This bus connects the SA-110 to the 21285 and also connects to the flash ROM. A sub-set of
this bus is buffered to generate the X-Bus address bus. The SA-110 uses this bus to drive
addresses for all of its accesses (to SDRAM, flash ROM, X-Bus and the 21285). The 21285
uses this bus to drive addresses for PCl accesses to the flash ROM. Byte resolution is provided
by the byte lane enables cpu_be[3:0] (SHT3) for CPU accesses. This bus has 3.3 V switching
levels and is not 5 V-tolerant (because the SA-110 pins are not 5 V-tolerant).

buf _a[11:2] - X-Bus address

Thisbusisgenerated from cpu_a[11:2] viaa 74LVT16244 (SHT6). The buffer is permanently
enabled. Thisbus has 3.3V switching levels but is 5 V-tolerant.

cpu_d[31:0] - CPU data bus
This bus is connected to the SA-110, the 21285 and the flash ROM. Thisbusis buffered to

generate the SDRAM and X-Bus data buses. This bus has 3.3 V switching levels and is not
5 V-tolerant.

buf_d[31:0] - Buffered Data bus

Thisbusis generated from cpu_d[31:0] viaa 74LVT16245 (SHT6). The buffer has the output
permanently enabled with the direction of flow governed by fbg _dwren |. The direction pin

on the 74LVT16245 has the A-B data path active when the signal is high. This meansthe CPU

data bus must connect to the ‘B’ side because fbg_dwren_l is an active-low signal. This bus
has 3.3 V switching levels but is 5 V-tolerant.

xbuf_buf_d[15:0] - Buffered X-Bus Data bus

Thisbusis generated from cpu_d[15:0] viaa 74LVT16245 (SHT7). The buffer has the output
permanently enabled with the direction of flow governed by fbg xd_wren _|. The direction pin

on the 74LVT16245 hasthe A-B data path active when the signal is high. This means the CPU

data bus must connect to the ‘B’ side because fbg_xd_wren_lis an active-low signal. This bus
has 3.3 V switching levels but is 5 V-tolerant.

fbg_ma[12:0] - SDRAM address bus

This busis driven by the 21285 to provide addresses for all SDRAM accesses. At power up
some of these signals act as inputs to the 21285 to allow configuration information to be
latched by the 21285. The signals have 3.3 V switching levels and are not 5 V-tolerant. This
busis buffered before driving the SDRAM arrays.

buf_ma[12:0] - Buffered SDRAM address bus

Thisbusis generated from fbg_ma[12:0] viaa 74LVT16244 (SHT6). The buffer is
permanently enabled. The signals have 3.3 V switching levels and are not 5 V-tolerant
(because the SDRAM pins are not 5 V-tolerant). This bus drives the two SDRAM DIMM
sockets.

StrongARM** EBSA-285 Evaluation Board Reference Manual 8-3

u
Theory of Operation/Hardware Design I nt9| o

8.6

8.7

8.8

8-4

CPU

The EBSA-285 uses the SA-110 microprocessor (SHT3). The card allows the processor to be
operated at any one of its 16 core clock frequencies (between 88.3 MHz and 287 MHz with the
upper limit determined by the speed grade of the CPU fitted) at afixed core voltage of 2 V. Core
frequency is selected by a series of jumpers (SHT17).

The SA-110 has 3.3 V I/O but is not 5 V-tolerant so requiresthat any 5V signals be level shifted.
The SA-110 is used in the following modes:

¢ Asynchronous bus mode (SnA low and MCLK asinput)

¢ Enhanced bus mode (CONFIG high)

¢ APE high mode (Non-Fastbus mode)

The CPU is packaged in a 144-pin thin quad flat pack (TQFP).

21285

The 21285 (SHT5) isa 3.3V device in a 256-pin plastic BGA package, it has 3.3 V switching
levels but has 5 V-tolerant inputs. It interfaces to the PCI, SA-110, SDRAM and X-Bus, providing
control signals for buffer control for SDRAM and X-Bus accesses and control signals for CPU
accesses to flash ROM or EPROM emulator. Due to the large number of outputs with high speed
edges the 21285 is sensitive to the amount of power plane decoupling it receives. The EBSA-285
uses eighteen 0.1 uF, two 47 pF, one 10 puF and seven 0.01 uF decoupling capacitors. These are
arranged as close as possible to the 21285 on the bottom side of the EBSA-285 PCB.

SDRAM Interface

The SDRAM interface consists of:
¢ Multiplexed address bus
¢ Databus
* CMD interface
¢ Chip selects
* Bank selects
* Byteselects
¢ Clocks

All these signals have relatively high switching frequencies with fast rise and fall times, and each
signal drives anumber of devices. To ensure that the maximum number of devices (32 SDRAMs
on two DIMMs) can be driven while maintaining the integrity of the signals, each of the signalsis
buffered and has a 33.2 Q series termination resistor (SHT20). The series termination resistors are
placed close to the output of the driver (so that thereislessthan 3 cm of etch between the output of
the buffer and the resistor).

StrongARM** EBSA-285 Evaluation Board Reference Manual

INlgl.

8.8.1

8.8.2

8.8.3

8.8.4

8.8.5

8.8.6

Theory of Operation/Hardware Design

Multiplexed Address Bus

The multiplexed address bus provides the SDRAMs with multiplexed row and column data. A
13-bit busis provided by the 21285 ma[12:0], each DIMM (SHT11, 12) has a 14-bit bus ma[13:0]
so the most significant bit istied to ground via a pull-down resistor (SHT11). The busis buffered
by a 74LVT16244 (SHT6) and has a 33.2 W series termination resistor on each line (SHT20).

Bank Address Bus

Each SDRAM DIMM can have multiple arrays, each comprising two or four banks. The 21285 can
address four banks of SDRAM by using the Bank Address bus fbg_ba[1:0]. Both signals can be
used on the primary DIMM socket J12, so this socket can contain afour bank DIMM. The
secondary DIMM socket only uses fbg_ba[1], so can only contain atwo bank DIMM, and only if
thereis not afour bank DIMM in the primary socket.

Data Bus

The data bus is the buffered CPU data bus buf_d[31:0] (SHT6). The data busis not
series-terminated because it is a bi-directional bus.

CMD

The CMD outputs from the 21285 generate command information to the SDRAMSs. Each lineis
buffered viaa 74LV T16244 (SHT7) and has a 33.2 W series termination resistor (SHT20).

buf_cmdO: Thislineis connected to /WE on the DIMMs.
buf_cmdl: Thislineis connected to /CAS on the DIMMSs.
buf _cmd2: Thislineis connected to /RAS on the DIMMSs.

The 21285 defines the CMD signals to be active-high, but their behavior is such that they can
connect to the SDRAM /WE, /RAS and /CAS signals directly (no inversion is required).

Chip Selects

There are four chip selects, buf_c9[3:0], each is buffered viaa 74LVT16244 (SHT7) and has a
33.2 W series termination resistor (SHT20). Each chip select is used to select asingle SDRAM
array, so amaximum of four arrays may be used in asystem. Byte Selectsbuf_dgm([3:0] are used to
provide byte lane information to an SDRAM array. These signals allow each byte within a 32-bit
longword to be accessed, either individually or together. Each signal is buffered viaa 74LVT16244
(SHT7) and has a 33.2 W series termination resistor (SHT20).

SDRAM Clocks

All the SDRAM clocks, fbg_sdclk[3:0], have matched |engths and impedances with each other and
with the 21285 SDRAM clock reference net, fbg_fclk_o. The overal length of the nets have been
kept as short as possible to maintain signal integrity. The clock reference net is used to minimize
the effect of skew on the SDRAM clock nets, to give the 21285 a reference for all SDRAM
transactions. Each of the lines has series termination of 33.2 W. An active-high clock enable signa
is provided for each pair of clocks. These pins should be used to enable the SDRAM clocks going
to used SDRAM arrays and to disable the clocks going to unused or missing arrays.

The 21285 SDRAM clock outputs have high-current drivers and must not be buffered externally;
this would introduce too much skew into the SDRAM timing.

StrongARM** EBSA-285 Evaluation Board Reference Manual 8-5

Theory of Operation/Hardware Design

8.8.7

Table 8-1.

Table 8-2.

8-6

intel.
DIMMs

The EBSA-285 uses 168-pin 64-bit DIMMs. The 64-bit memory on the DIMM is used to provide
two arrays of 32-bit wide memory. Thisleadsto an unorthodox wiring scheme for the DIMMSs. The
DIMM sockets are physically large and need to be near the 21285 because of the high speed
signalling between them. The sockets are placed along the top edge of the EBSA-285 asa
compromise between space and signalling constraints.

The seria presence detect, which normally usesthe 12C bus, is not used on this design. The unused
12C signals are tied high and the 1°C address lines, SA[2:0], are tied low.

The DIMMsthat are fitted must use 3.3 V switching levels.

The 4Mx64 part contains four arrays of 32-bit memory and can only be placed in the first DIMM
socket. The 2Mx64 part contains two arrays of 32-bit memory and may be placed in either of the
2 DIMM sockets.

An array consists of the parts that make up a 32-bit wide section of memory selected by asingle
chip select signal. Each array must use a single chip select line that is unique to that array.

Table 8-1 and Table 8-2 show the relationship between the chip select lines, the DQM lines, clk
lines and the data byte for that combination.

SDRAM Array Configuration: 2-Array Part

Array Byte CS DQM DQ CLK
1 0 0 0 DQO-DQ7 0
1 0 1 DQ8-DQ15 1
2 0 4 DQ32-DQ39 2
3 0 5 DQ40-DQ47 3
2 0 2 2 DQ16-DQ23 0
1 2 3 DQ24-DQ31 1
2 2 6 DQ48-DQ55 2
3 2 7 DQ56-DQ63 3
SDRAM Array Configuration: 4-Array Part
Array | Byte | cs | DQM DQ CLK
Arrays 1 and 2 are as shown in Table 8-1.
3 0 1 0 DQO-DQ7 0
1 1 1 DQ8-DQ15 1
2 1 4 DQ32-DQ39 2
3 1 5 DQ40-DQ47 3
4 0 3 2 DQ16-DQ23 0
1 3 3 DQ24-DQ31 1
2 3 6 DQ48-DQ55 2
3 3 7 DQ56-DQ63 3

The SDRAM draws alarge amount of operating and refresh current (300 to 400 mA) at switching
frequencies of up to 55 MHz. This requires that careful consideration is paid to the decoupling
capacitors around the DIMMs. Each DIMM has local decoupling on the DIMM. Four 22 pF
capacitors placed close to each DIMM socket provide decoupling on the EBSA-285.

StrongARM** EBSA-285 Evaluation Board Reference Manual

8.10

Theory of Operation/Hardware Design

Flash ROM Interface

The EBSA-285 uses four Intel TSOPII 28F008 flash ROM parts (SHT8). The PCB footprint is
designed so that they could also accommodate the larger 28F016 parts if desired. The flash ROMs
are 8-bit devices, arranged to provide a 32-bit data path.

Flash ROMs are connected directly to the unbuffered CPU address and data buses (cpu_a[22:2]
and cpu_d[31:0]). During all ROM accesses, the 21285 drives output-enable on cpu_a30 and
write-enable on cpu_a31, so these address lines are wired to the appropriate signals on the flash
ROMs. When the 21285 is accessing the flash ROM the CPU address bus drivers are placed in a
high impedance state by the 21285 asserting the ABE signal.

A 12V supply isrequired for programming the flash ROM. Thisisthe only place that 12 V is used
on the board, and it is only used during programming of the flash. If programming of the flash
ROM is not required, the EBSA-285 can be powered without 12 V.

The flash ROM requires 3.3 V switching levels.

The socket is provided to allow an EPROM emulator to be connected to the card for rapid program
development. It isasingle 32-pin DIL part. Writing to this memory areais permitted (the write
enable signal, cpu_a31, isrouted to the socket) but the emulator must support this mode. The
EPROM socket iswired to provide a byte wide memory; cpu_a[18:2] are wired to the socket lines
a[18:2] and cpu_a[29:28] are wired to g 1:0].

The 512 KB of the EPROM socket is mapped in place of the flash ROM but is byte wide rather
than 32-bit wide. The socket should not be used in half-word or longword modes and it cannot be
used when the flash ROM is active.

Two jumpers (SHT17) control the selection of flash or the EPROM socket.

* J15 pins 22/23/24 route fbg_rom_ce | to either the flash or EPROM (see Appendix A.2.2.3.).
The unselected signal lineis held high by a pull-up resistor.

e J15 7/8/9 either pull fbg_mad up (flash) or down (EPROM socket).

Both sets of jumpers must be changed together. To effect the new selection, the board must
then be power-cycled.

When the EBSA-285 is reset the flash ROM is also reset. This places the flash in a known state at
reset or power up. Resetting the flash halts any automated write/erase cycles that the flash is
performing. This avoids a read being made from flash during an automated cycle. If that were to
occur, the flash would provide status information. This would prevent the CPU from booting
correctly. Flash reset is covered in Section 8.17.

X-Bus Interface

The X-Bus interface allows the connection of low speed |SA style peripherals to the EBSA-285. It
provides a 16-bit data bus, xbuf_buf d[15:0], and 10-bit address bus, buf_a[11:2]. Control signals
are provided for reset, read and write strobes, buffer direction control and chip selects. The busis

unclocked and does not provide a means to stall the bus.

StrongARM** EBSA-285 Evaluation Board Reference Manual 8-7

u
Theory of Operation/Hardware Design I nt9| o

8.10.1

8.10.2

8-8

Soft 1/10

The 21285 XCS2 region is used to decode the onboard soft 1/0. This (see SHT7) consists of an
8-bit output latch, 74ABT377 and an 8-bit input port, 74ABT541. The signal levelsare5 V.

The assignment of the input and output port is described in Section 3.6. Writing to anywhere within
the XCS2 area on a 32-hit boundary will write to the 74ABT377. Reading from anywhere from
within the XCS2 area on a 32-bit boundary will read from the 74ABT541.

With the clock enable signal active, the outputs of the 74ABT377 arelatched on thetrailing (rising)
edge of the clock pulse. The clock enable pinisdriven by fbg_xcs2_| and the clock pinisdriven by
the write strobe fbg_xiow_|. The latched states of obuf_d[2:0] drive the three, bulkhead LEDs,
while obuf_d7 islooped back to the input port for diagnostic test of the soft /0.

The 74ABT541 used for input is an octal buffer with 3-state outputs and two output enable signals.
Both enables must be asserted for the buffer to drive its outputs. The output enable signals are
wired to the fbg_xcs2_| and fbg_xior_| lines. In addition to the output monitoring function of
obuf_d7, input lines Ink_soft[13:10] hold the state of the flash image selector switch, while
ibuf_d[6:4] monitor jJumpers on J17.

X-Bus Expansion Headers

The X-Bus expansion provides the X-Bus data, address and control signalsto 5, 2 x8 0.1 inch pitch
headers (SHT4). It also provides 5 V and ground to the header. This expansion option isintended to
provide an interface for additional low performance PC-AT type, 8- or 16-bit peripherals. The
signals provided are:

¢ buf g10:2]

¢ buf be1:0]

e xbuf _buf d[15:0]
e flash rst

¢ flash rst |

e xd wren |

e fbg_xior_|

e fbg xiow |

¢ fbg xcs2

¢ xbus xcsl |

¢ xbus xcs0_irq |
* vdd (5V)

e gnd (0V)

The pinout of the connectorsis shown in Appendix A.2.1.

StrongARM** EBSA-285 Evaluation Board Reference Manual

I n o Theory of Operation/Hardware Design

8.11 The Serial Port

COMO (SHT21) isaminimal serial port with just Rx and Tx lines. The data signals are shifted
between RS232 and internal (5 V) signal levels by aMAX?211 RS232 driver/receiver.

EMC radiation isinhibited by a 220 pF capacitor between the Tx line (con_tx) and ground.

8.12 Interrupts

The EBSA-285 isdesigned to work in anumber of modes so that all major modes of the 21285 can
be evaluated. This means there are a number of different sources of interrupt depending upon
which mode the card is placed in:

* Central function mode requires that system wide interrupts be handled by the EBSA-285,
which means that four interrupt lines (to service PCI interrupts d:a) are required when in this
mode.

The 21285 has four general-purpose interrupt pins (IRQ_IN[3:0]) and a single interrupt pin
(PCI_IRQ) that isan input in central function mode and an output in non-central function
mode. To service the four PCI interrupts, pci_int[d:b]_| are routed to IRQ_IN3, 1 and 0, and
pci_irq | performs the function of PCI_INTA#.

* When the 21285 is not the central function it must request an interrupt from the central
function on the request line, pci_irg | (the PCI_IRQ pin is an output in this mode).

* |n both central function and non-central function modes the EBSA-285 must handle:

— An interrupt from a fixed frequency timer (to provide ticks of fixed period for calibration)

To provide the required timing reference, the 3.68 MHz oscillator signal (fbg_timer) is
connected to the IRQ_IN2 pin, this is used to clock timer 3 of the 21285.

— Interrupts from the X-Bus expansion interface

The X-Bus chip select pins, XCS[2:0], can be configured as interrupt inputs. XCS0
(connected to xbus_xcs0_req_l) should be used as a COM port interrupt. Software should
be written so that this line is used as an input and not as a chip select line. The interrupt
outputs from both COM1 and COM2 should be OR’d together and wired to this pin on
any expansion cards that provide serial communication ports.

StrongARM** EBSA-285 Evaluation Board Reference Manual 8-9

u
Theory of Operation/Hardware Design I nt9| o

8.13 PCI Interface
The PCI busisafull PCI Local Bus Specification, Revision 2.1, 32-bit, 33 MHz compliant
interface. The busis provided on a standard set of PCB fingersto allow it to be used as a plug-in
card in a standard PCI socket. The connector is of the universal type so can be plugged into both a
3.3V systemand 5V system. Signalling levels used are 3.3 V but the logic is 5 V-tolerant. When
used as aplug-in card the EBSA-285 will draw power from the PCI socket onthe 5 V fingers. High
speed decoupling (12 x 0.01 pF) is provided on the unused 3 V supply fingers to provide a good
3V signal return path.
When the card is used as a central function, anumber of the reserved pins are used to provide the
four sets of interrupt, request and grant pins required. The use of these pins follows that proposed
by the PICMG standard. The PCI pins are used as shown in Table 8-3.
Table 8-3. Use of Reserved PCI Pins

Pin Not Central Function Central Function

B9 PRSNT #1 pci_req3_|

B10 Reserved pci_reql_|

B11 PRSNT #2 pci_gnt3_|

B18 pci_req_| fbg_pci_req_|

A6 pci_irg_| (Output) pci_inta_| (Input)

Al4 Reserved pci_gntl_|

Al7 fbg_pci_gnt_| fbg_pci_gnt0_|

A19 Reserved pci_req2_|

A26 idsel pci_gnt2_|

A15 pci_rst_I (Input) pci_rst_I (Output)

When the card is not acting as PCI-Bus arbiter it must be set in the X-Bus mode by setting the
appropriate jumpers (SHT17).

8.14 PCI Bus Arbiter

The PCI arbiter can be used when the EBSA-285 is configured as the central function in a system.
It interfaces viathe PCI interface giving four system wide interrupts and four pairs of request and
grant lines. For further details see Section 8.13.

8.15 JTAG

The JTAG port (SHT18) provides a connection for the JTAG interface. Thisis used for boundary

scan testing of the SA-110 and the 21285, which are connected in the TDO/TDI ring. It can also be
used to program flash memory. A system reset, srst_|, allows the system to be reset by a device
connected to the JTAG port.

A pair of 74ACT244 buffers isolate the logic from direct connection to JTAG signals (except for
srst_|, which is not buffered). The TTL outputs from the buffers are level-shifted to 3.3V by a
QS3384 (SHT3).

8-10 StrongARM** EBSA-285 Evaluation Board Reference Manual

intel.

8.16

8.17

Figure 8-1.

Theory of Operation/Hardware Design

Clocks

The EBSA-285 uses the following oscillators:

* 3.6864 MHz TTL compatible oscillator (SHT3): The oscillator islevel convertedto 3.3V (SHT3)
then drives the SA-110 PLL input and atimer in the 21285 through a pair of series termination
resistors (SHT20). These series termination resistors should have impedance matched etch
lengths. The PLL on the SA-110 generates the core clocks according to the settings on the
CCCFG[3:0] links. The 21285 timer can be used to provide timer ticks to an operating system.

* 24 MHz TTL compatible oscillator (SHT13): When used in a backplane the link connecting this
oscillator to pci_clk must be removed.

¢ 50 MHz TTL compatible oscillator (SHT5): Thisdrivesthe 21285 core clock viaa seriesresistor
(SHT20). Provision has been made in the etch for a 50 W termination resistor to allow
replacement of the oscillator with afrequency generator during device verification.

* The 21285 generates six clock outputs for driving FCLK (fbg_fclk_o0), MCLK (fbg_mclk) and
four SDRAM arrays (fbg_sdclk_[3:0]). The impedance and etch length of all these signalsis
identical, providing minimum skew for clock equalization.

— FCLK is looped to FCLK_IN.

— MCLK on the 21285 drives MCLK on the SA-110. The 21285 stops the clock in the high
state in order to introduce stalls in SA-110 cycles.

— The SDCLK]3:0] pins are connected to CK[3:0] on the SDRAMSs. All have matched
lengths and loads, each signal being terminated by a series resistor @f 3SB2ZLK3 is
used to clock the onboard array (parity or unbuffered memory depending on build option)
and one of the DIMM arrays.

Reset

There are a number of sources of reset (see Figure 8-1) on the EBSA-285. Depending upon the
mode of the card, resets behave differently.

Reset Circuits

<>

o
+3.3V 8
(&
R177
+3.3V 21285 SA-110
R153 PCI_RST_L
PCI_RST
LNK_PCI_CFN
N PCI_CFN
J17 ¢
N nRESET ¢ nRESET
MST_RST_L
GND -
Enable PCI_RST_L {87581 MST RST L
J10
SRST_L
JTAG = Power-on 5V10 3.3V | fiasH RST L To X-bus
and de- level R FLASH_RST_L

bounce logic converter and Flash

J9 LNKRSTL
' . —D@—) FLASH_RST To X-bus

StrongARM** EBSA-285 Evaluation Board Reference Manual 8-11

u
Theory of Operation/Hardware Design I nt9| o

8.17.1

8.17.1.1

8.17.1.2

8-12

Host Bridge

In this mode, the 21285 is configured to be central function; the EBSA-285 is responsible for
providing the system wide reset. All resources on the EBSA-285 must be reset and the PCI bus
must be reset by asserting pci_rst_I. The resources to be reset on the EBSA-285 are:

* SA-110

e 21285

* Flash ROM

¢ X-Businterface

The sources of reset in this mode are
¢ Automatically at power on (SHT18)
¢ By apush button (SHT17 and 18)
¢ Under remote control, by a debug box attached to the JTAG connector (SHT18)
* PCI reset under software control
* By the 21285: to reset the complete system viapci_rst_|
* On atime-out from the watchdog timer, WDT

Power-On Reset

The power on reset circuitry is used to ensure a graceful power up for the EBSA-285. It is

generated from an R-C network and schmidt trigger arrangement. When power is applied to the
EBSA-285, VDD is ‘soft started’ and de-bounced by the R-C network and schmidt triggers to
generate a 5 V active-low signal 5v_flash_rst_|. This signal is then level converted to 3.3 V by the
QS3384 (SHT3) to become flash_rst_I. This signal, in central function mode, will become
mst_rst_| via a jumper (SHT17).

mst_rst_| is the master reset for the EBSA-285 in central function mode. It is used to reset the
SA-110 (SHT3) and the 21285 (SHT5).

The flash is reset by flash_rst_|.
The X-Bus expansion uses an active-high version of flash_rst_| which is generated (SHT3) by
using an inverting schmidt buffer. This is a 5 V level part so the active-high version flash_rst has

5 V signalling levels. This is necessary because some Super I/O chips have an active-high reset pin
as a legacy from the ISA bus.

Switch Reset
A 2-pole 0.1 inch pitch connector is provided to allow an external normally-open switch to be added

to generate Ink_rst_l. In a lab environment a reset can be generated by shorting the two poles. The
signal is de-bounced by the same circuitry as the power up reset to ensure a clean reset pulse.

StrongARM** EBSA-285 Evaluation Board Reference Manual

I n o Theory of Operation/Hardware Design

8.17.1.3 JTAG Connector Reset

Thesignal srst_| comes from an external device viathe JTAG port. Unlike the standard JTAG
signals, it is not buffered. This signal uses the same de-bounce circuitry as the switch reset.

8.17.1.4 Watch Dog Timer Reset

If the WDT times out and causes a reset, there needs to be a system wide reset. A WDT reset
occurs when the WDT is enabled in the 21285 and the CPU alows the timer to time out, which
should only happen during a software failure.

On aWDT reset the 21285 assertsmst_rst_|. In central function mode this will reset the SA-110
and reset the flash ROM viathe jumper by asserting flash_rst_|. This signal will beinverted by a
schmidt trigger and will reset any active-high peripherals on the X-Bus expansion headers.

The QS3384 output acts as an open drain output and so will not back-drive the reset circuitry.

8.17.1.5 PCI Reset

On power up the 21285 holds pci_rst_| asserted so holding the system, with the exception of the
EBSA-285, in reset. To de-assert pci_rst_| the SA-110 must set a bit in a 21285 control register.

8.17.2 Add-in Card

In this mode the 21285 is configured to run in non-central-function mode; an external host bridge
providesthe system wide reset. The EBSA-285 resources must be reset on an assertion of pci_rst_|.
The 21285, flash ROM and X-Bus interface are reset directly by pci_rst_| but the SA-110 is reset
by amst_rst_| generated by the 21285. This can be used to hold the CPU in reset while the flash
ROM is being programmed.

8.17.2.1 PCI Master Reset

When a PCI master asserts reset the EBSA-285 should be held in reset. Inthismode pci_rst_|isan
input to the 21285. When it is asserted the 21285 asserts mst_rst_| which resets the SA-110. The
flash ROM and X-Busarereset by pci_rst_|, whichiswired to thelocal flash_rst and flash rst_| by
jumper JIO(SHT17).

8.17.2.2 Blank Programming Mode

When the EBSA-285 is placed in blank programming mode the CPU isheld in reset by mst_rst 1,
which is generated by the 21285, while the system programs the flash ROM with an image. When
the programming is complete the system needs to be powered down and changed from blank
programming mode.

StrongARM** EBSA-285 Evaluation Board Reference Manual 8-13

u
Theory of Operation/Hardware Design I nt9| o

8.18

8.18.1

8.18.2

8-14

Power

The EBSA-285 requires 5V and 12 V from an external source. Power comes onto the card either
through a PC-style 12-way connector (SHT13) or through the PCI fingers. The EBSA-285 never
draws power from the 3.3V PCI fingers, even when it is plugged into a 3.3 V PCI connector.
Onboard regulators generate 3.3V and 2V from 5 V.

Most of the devices on the card use 3.3 V, which is the main power plane on the EBSA-285. 3.3V
is generated by a Maxim MA X767 regulator, providing 3A at 3.3 V.

5V isused by the soft 1/0O and the oscillators.

The current requirement from the 3.3V rail isasfollows:
* SA-110 (worst case 430 mA)

The 21285

SDRAM (worst case all refresh @ 3x480 mA)

Flash ROM (operating current @ 4x50 mA)

7 LVT buffers (7x5 mA)

3.3V Generation

The 3.3V rail isregulated from the 5V rail by aMaxim MAX767 (SHT15), whichisa5V to
3.3V synchronous step-down power supply controller.

The 3.3 V output of the MAX767 is generated by an internal, current mode, pulse width
modulation (PWM) step-down regulator. The PWM regulator is configured to operate at 200 KHz,
which provides maximum conversion efficiency for the MAX767. The MAX767 also hasa3.3V,
5mA reference voltage on pin 8. Fault protection circuitry shuts off the output should the reference
lose regulation or the input voltage go below anomina 4 V.

The MAX767 requires afew external components to convert the 5V supply into an accurate,
regulated 3.3 V output. External components include two N-channel MOSFETS, arectifier, and an
LC output filter. The gate drive signal for the high side MOSFET, which must not exceed the input
voltage, is provided by aboost circuit that uses a 0.1 pF capacitor. The synchronous rectifier keeps
efficiency high by clamping the voltage across the rectifier diode. An external low-value current
sense resistor sets the maximum current limit. An external capacitor of 0.01 pF setsthe
programmabl e soft start, reducing in-rush surge currents upon start up.

2.0-V Generation

The 2 V power is used to power the SA-110 core. 2 V isregulated from the 3.3 V rail by aLinear
Technology LT1086 (SHT15). The LT1086 is alow dropout regulator with an adjustable output.
The output voltage is set to 2 V by R166 and R178.

StrongARM** EBSA-285 Evaluation Board Reference Manual

INlgl.

8.18.3

8.19

8.20

8.21

Theory of Operation/Hardware Design

Power Sequencing

The SA-110 requires two voltage supplies; a3.3 V supply to power its primary input/output buffers
and a2V supply to power its core. The 3.3 V supply must be stable earlier than the core voltage.
This requirement prevents any latch-up within parasitic structures on the SA-110, and is satisfied
by deriving the core voltage from the 3.3 V supply. Thisis the only power sequencing restriction.

Decoupling

The EBSA-285 uses tantalum el ectrolytic capacitors for bulk decoupling of the power rails, and
ceramic capacitors for decoupling of individual ICs. The bulk decoupling capacitors, which are a
mixture of 10 uF and 47 uF parts, are evenly distributed around the card. The individual
decoupling capacitors are 0.1 pF and are located close to the power and ground pins of the ICs that
they decouple.

The 21285 high speed clocks and the PCI connector have local high speed decoupling in the form
of 0.01 uF capacitors.

Each SDRAM DIMM has four 22 puF decoupling capacitors as well as the on-DIMM decoupling
and bulk decoupling.

There are twelve 0.01 puF decoupling capacitors between the PCI 3.3 V fingersand ground. Thisis
to provide an ac return and is required even though the 3.3 V fingers are not used to supply power.

Jumpers and Test Points

A range of jumpers and test points provide for configuration and monitoring of the EBSA-285.
Details are supplied in Appendix A, and on SHT17 of the circuit diagrams.

Expanding the EBSA-285

The buffered X-Bus interface provides all the X-Bus signals from the 21285, a buffered version of
the data bus, a buffered subset of the address bus A[11:2], plusground railsand 5V for the
expansion card. The format of the connectors allows the use of a mezzanine card that plugsinto the
8x2 0.1 inch headers. Theinterface can be used for PC type | SA-style peripherals. Address lines
may be used for self-decoding devices and to decode internal register access. There is enough
address information to place a PC style Super I/O chip on the expansion bus.

An X-Bus chip select, fbg_xcs2 | isused to decode the onboard Soft 1/0. Chip select
xbus xcs0 irg | isavailable as aninterrupt for any COM ports placed on the X-Bus, while
xbus xcsl | is programmed as a disable/enable line for self decoding devices.

The X-Busdoes not have aclock, so if aperipheral requiresa clock then one should be provided on
the expansion card.

StrongARM** EBSA-285 Evaluation Board Reference Manual 8-15

u
Theory of Operation/Hardware Design I nt9| o

8.22

8-16

The Printed Circuit Board

The printed circuit board is an 8-layer board with six signalling layers, a 3.3 V power plane and a
ground plane. It is routed using 0.005 inch track and gap rules with a nominal etch impedance of
88 Q for the outer layers and 58 Q for the inner layers.

The power planeis not split despite the different power requirements of the components. This was
done to maintain signal integrity. Power other than 3.3 V wasrouted as a signal but with the largest
copper area as possible, so ignoring the track sizing of other signals.

During layout, the critical components were placed first. The 21285 needed to be near the PCI
fingers to satisfy the etch length requirements of the PCI specification. The SA-110 was placed
close to the 21285 due to the large number of signals passing between the two components. The
pinout of the 21285 is such that there is alogical flow of signals between the two devices.

The buffersfor the main buses and control signalswere placed as close to the 21285 and SA-110 as
possible. Thisis because the signals are unterminated and should, therefore, be kept as short as
possible to maintain signal integrity. Where series termination resistors were needed, they were
placed as close to the outputs of these buffers as possible. The address, data and SDRAM buffers
were placed first.

The SDRAM DIMMs had to be placed along the top edge of the card because of their physical size.

The oscillators were placed as close to the output destination as possible, so the 50 MHz crystal
was placed near the 21285 and the 3.68 MHz crystal as close to the SA-110 as possible.

The switch mode power supply was placed as close to the PCI fingers as possible so that the 5V
from the PCI did not need to be routed too far. The power connector for an off card PC style power
supply was then placed as close to the switch mode supply as possible. The placement of the
components for the switch mode power supply followed the recommendations made in the data
sheet for the Maxim MAX767 part.

LEDs, image selection switch and seria port, which must be accessible to the user, were placed
aong the bulkhead edge so that they could be accessed from outside a PC style chassis.

The remaining components were placed where they were most convenient.

Thefirst netsto be routed were the various clocks, SDRAM and the SA-110, making sure that they
were impedance and length matched. Any test points that were to be placed on these nets were
placed as large vias at appropriate points. Test point etch lengths were kept to a minimum.

The oscillator outputs were series terminated at source and then routed to keep the etch length to a
minimum.

The signals between SA-110 and 21285, and the signals between the 21285 and PCI fingers were
routed next as they were short, and simple to route.

Next to be routed were the other high speed SDRAM signals, buf_dgm[3:0], buf_cmd[2:0],
buf_cg[3:0] and buf_ma[12:0].

The power signals, 2V, 12 V and Vdd, were placed on the outer layers and had the copper area
used as large as possible.

All un-terminated signals were kept as short as possible, placing the termination resistors within
3cm of the output of the signal driver.

StrongARM** EBSA-285 Evaluation Board Reference Manual

In

8.23

®

Theory of Operation/Hardware Design

Design Improvements

A new design that was done with reference to the lessons learned from the EBSA-285 would have
anumber of changes.

The most fundamental change would be to use only 3.3 V, with the exception of the SA-110 core.
The areas of the design affected would be the soft I/0O and oscillators. The oscillators could be
replaced by a 3.3 V variant and the soft 1/0 latches and buffers could also be changed for
equivalentsin 3.3 V families such asthe LCX or LV X from National Semiconductor, which have
5 V-tolerant inputs and outputs.

The buffersfor the SDRAM control and address lines (SHT7) could probably be omitted, the other
buffers are required to either control flow or provide signal level conversion.

The decoupling on the EBSA-285 was conservative, providing more decoupling than was required
to ensure correct function in all possible modes.

The series termination was also conservative, with the result that the termination resistors for the
SDRAM control and address lines could probably be omitted.

Any design that did not need to provide the flexibility of the EBSA-285 could remove al the
jumpers with the possible exception of the one that enables blank programming mode.

More Vdd lines should be routed to the X-Bus expansion headers.

A 3.3V supply should also be routed to the X-Bus expansion headers. Thiswould alow 3.3V
peripheralsto be attached without requiring the 3.3 V to be generated on the expansion card.

Known limitations of the card/21285 are:

¢ X-Bus peripherals and the internal PCI arbiter are mutually exclusive functions (functions
implemented with pin sharing on the 21285).

* The 3.3V power rail will ways be derived from a5 V source (backplane or connector). The
EBSA-285 cannot supply its 3.3 V rail from the 3.3 V pins on the PCI connector.

* The EBSA-285 cannot program flash ROM viathe PCI when in system mode.
¢ flash_rstisa5V signal and flash rst Iisa3.3V signal.

StrongARM** EBSA-285 Evaluation Board Reference Manual 8-17

intel.

Configuration Guide

This appendix describes:

The default configuration of the board

The settings for all links and jumpers

The pinouts of all connectors

The meaning of al LEDs.
The cables required for connection to the board

How to upgrade the SDRAM DIMMs

Locations of all jumpers and connections are shown in Figure A-1. Table A-1 provides a brief
description of each jumper and connector.

Figure A-1. Jumper and Connector Locations

J16
J17

J15

J14

J19

(010 F) \

L

Key: Option selector
Fixed connector

22[e
24 (e
2312

22 [e
24 |
23 L°

.
.
o

N w— N w—

—|

59 [J

>Pin 1

J4

J1

J3

J2

€ L0ooo

StrongARM** EBSA-285 Evaluation Board Reference Manual

Configuration Guide

A.l Default Configuration

This section covers configuration of the EBSA-285 for its mgjor functions. The rationale behind
the jumper settings for these functionsis shown graphically in Figure A-2. Snapshots of jumper

settings for each of the relevant functions are provided in:
¢ Add-in card: Figure A-3 (X-bus enabled)
* Host bridge: Figure A-4 (X-bus enabled)
Figure A-2. Primary Jumper Settings

In

tel.

J15

J1

;

1
i
socket m

2-3

2-3

2-3

2-3

J14
o < |
Emulator -m

Central 10 socket EI
function D

<

__ as a6
Not | J10 U9 J14
cenfial =3 [ookt
uncrion
ooy TTLLITT

S Looo

A-2 StrongARM** EBSA-285 Evaluation Board Reference Manual

u
I nt9I ® Configuration Guide

10O

Figure A-4. EBSA-285 Configured as a Host Bridge

£10PD

StrongARM** EBSA-285 Evaluation Board Reference Manual A-3

Configuration Guide

A.2

INlgl.

Description of Jumpers and Connectors

While reading this section, it may be useful to refer to the EBSA-285 schematic set. Table A-1
provides a brief description of all jumpers and connectors, and indicates where the relevant circuit

detail isto be found.

Table A-1. General Information on EBSA-285 Jumpers and Connectors

Ref Schematics Description

J1 | Sheet 18 JTAG connector

J2 | Sheet 13 Power connector (bench test)

J3 | Sheet 4 X-Bus expansion header

J4 | Sheet4 X-Bus expansion header

J5 | Sheet4 X-Bus expansion header

J6 | Sheet4 X-Bus expansion header

J7 | Sheets 9 & 13 | Onboard PCI clock (Reserved - DO NOT FIT)

J8 | Sheet4 X-Bus expansion header

J9 | Sheets 9 & 17 | Selection of central function mode

J10 | Sheets 9 & 17 | Selection of flash reset source

J11 | Sheet 12 Secondary SDRAM DIMM socket (for 2-array DIMMs only)
J12 | Sheet 11 Primary SDRAM DIMM socket (for 2/4-array DIMMSs)

J14 | Sheets 9 & 17 | Arbiter/X-Bus selection headers

J15 | Sheets 9 & 17 | 21285 mode-configuration

J16 | Sheet 17 Flash EPROM selection

J17 | Sheet 17 Core clock frequency selection and software flags

J18 | Sheet 21 COMO serial port connector

J19 | Sheet 17 Bulkhead hex switch for flash image selection

J20 | Sheet 4 Logic analyzer test point for SA-110 bus interface clock (fbg_mclk)

A2l

X-Bus Expansion Headers

Figure A-5 showsthe pinout of the X-Bus expansion headers J3, J4, J5, J6 and J8. Signals are listed
in Table A-2 to Table A-5.

Figure A-5. X-Bus Headers Pinout

ZIIIIIIII:L6

OE B EEEBERBHN
1 15

g8Toee

StrongARM** EBSA-285 Evaluation Board Reference Manual

Table A-2. X-Bus Connector J3

Configuration Guide

Pin Signal Function
2 xbus_xcs1_| Chip select for daughter card device
4 fbg_xcs2_| Chip select for daughter card device
xbus_xcs0_irq_| | Interrupt request from daughter card device
nc
10 | nc
12 | nc
14 | flash_rst For daughter-board chips that require a high level reset signal
16 | flash_rst_| For daughter-board chips that require a low level reset signal

Table A-3. X-Bus Connectors J4/J5

Pin Signal Function
2 xbuf_buf_d0/d8 Buffered X-Bus data
xbuf_buf_d1/d9 “
xbuf_buf_d2/d10 “
xbuf_buf_d3/d11 “
10 | xbuf_buf_d4/d12
12 | xbuf_buf_d5/d13 | Buffered X-Bus data
14 | xbuf_buf_d6/d14
16 | xbuf_buf_d7/d15 “
Table A-4. X-Bus Connector J6
Pin Signal Function
2 fbg_xd_wren_| X-Bus data write enable (from 21285 [Footbridge])
fbg_xior_| X-Bus read strobe
fbg_xiow_| X-Bus write strobe
vdd
10 | buf_a2 Buffered X-Bus address
12 | buf_a3
14 | buf_a4 “
16 | buf_a5 “

Table A-5. X-Bus Connector J8

Pin Signal Function
buf_a6 Buffered X-Bus address
buf_a7
buf_a8
buf_a9
10 | buf_al0 “
12 | buf_beO Buffered X-Bus enable signal
14 | buf_bel Buffered X-Bus enable signal
16 | buf_all Buffered X-Bus address

StrongARM** EBSA-285 Evaluation Board Reference Manual

u
Configuration Guide I nu ®

A.2.2 Configuration Jumpers

A.2.2.1. CPU Core Clock Frequency Selection

The header links that determine the SA-110 core clock frequency are shown in Figure A-6.
Selection of specific frequenciesis explained in Figure A-7.

Figure A-6. J17 Pinout Showing Default Jumper Configuration

IBUF6* LNK_CCCFGO\ gA.110 core

IBUF5 LNK_CCCFG1 clock frequency
LNK_CCCFG2 | select

"t LNK_cocFas) (Hnkin=0)

LNK_RST_L _

(Connection

for reset switch)

Ocoee

* IBUF6 link fitted for software
access to PCI (see Section 3.6,
Soft Input/Output Register) I

l GND

Figure A-7. J17 Core Clock Selection Jumpers

= mmm) L mmm o)l
I I I I Fcore = 88.3MHz I I I - Fcore = 191.3MHz

2 2
n a
I I I Fcore = 95.6MHz . I I - Fcore = 202.4MHz
n a
I I I Fcore = 99.4MHz I I Fcore = 213.4MHz
n n n
| N | | N | a
I I Fcore = 106.7MHz I Fcore = 228.1MHz
_"eN =) (default)

Fcore = 242.8MHz

Fcore = 150.9MHz Fcore = 257.6MHz

I I I Fcore = 143.5MHz
: I

|]
|]
III " EEO

Fcore = 169.3MHz Fcore = 287.0MHz
| I B | | B B B

|
| | .
==
O

Fcore = 161.9MHz Fcore = 276.0MHz

|
m =
m =
O

zeoee

Note: SA-110 microprocessors operate at any one of 16 core clock frequencies between 88.3 MHz and
287 MHz, with the upper limit determined by the speed grade of the CPU fitted. The EBSA-285
fitsa 233 MHz part, thereby limiting the maximum frequency of the core clock to 228.1 MHz. The
card is delivered with this frequency selected.

A-6 StrongARM** EBSA-285 Evaluation Board Reference Manual

I n ® Configuration Guide

A22.2. Arbiter/X-Bus Selection

Selection of the 21285's internal arbiter or the X-Bus is made by jumpering pins 1-3 or 2-3 on J15.

Jumpers on J14, and pins 17-24 on J15, reroute the signal paths for the selected configuration. In

X-Bus mode, chip selects, write-enable and read and write strobes are directed to the X-Bus, and

the X-Bus interrupt request is connected to the 21285. In arbiter mode, PCI arbitration request and
grant paths are made between the PCI bus and the 21285.

Jumper settings and their effect are given in Table A-6.

Note: The aforementioned links operate as a block; all must be set to arbiter mode or all to X-Bus mode.

Figure A-8. J14/315 Pinout

22[e @ o o o o o o]l
24|e o o o o o o 0|3
23 e & & o o o o o 2
Table A-6. Arbiter/X-Bus Selection Jumpers
Ref Link | Direction Signal/function
Ji15 2-3 | Input fbg_ma7 (Select X-Bus [ma7=1])
Ji4 2-3 | Input pci_gnt_I (grant of 21285 bus master request)
“ 5-6 | Output pci_req_l (21285 bus master request to PCI bus)
8-9 | Input xbus_xcs0_irg_| (XCSO0 configured as X-Bus interrupt input)
“ 11-12 | Output xbus_xcs1_| (X-Bus chip select)
“ 14-15 | Output fbg_xcs2_| (soft I/O enable)
“ 17-18 | Output fbg_xd_wren_| (X-Bus data buffer direction control)
20-21 | Output fbg_xior_I| (X-Bus Read strobe)
23-24 | Output fbg_xior_I (X-Bus Write strobe)
J15 1-3 | Input fbg_ma7 (Select the 21285's internal PCI arbiter [ma7=0])
Ji4 1-3 | Output pci_gnt0_1 (bus grant 0 to PCI bus [conn. A17])
“ 4-6 | 1/0 fbg_pci_req_| (self-grant to fbg_pci_gnt_| on 21285)
7-9 | Input pci_req_| (bus master request 0 from PCI bus [conn. B18])
10-12 | Input pci_reql_| (bus master request 1 from PCI bus [conn. B10])
13-15 | Input pci_req2_| (bus master request 2 from PCI bus [conn. A19])
“ 16-18 | Output pci_gntl_l (bus grant 1 to PCI bus [conn. A14])
“ 19-21 | Output pci_idsel_gnt2_1 (bus grant 2 to PCI bus [conn. A26])
22-24 | Output pci_gnt3_|I (bus grant 3 to PCI bus [conn. B11])
J15 | 17-18 | PRSNT 1 Power requirement detection when add-in board (tied to 0V)
“ 20-21 | PRSNT 2 “
“ 23-24 | IDSEL Connected to PCI fingers
J15 | 16-18 | PCI-REQ3 | When arbiter selected
“ 19-21 | PCI-GNT3 | When arbiter selected
22-24 Connects GNT2 to IDSEL on PCI fingers

StrongARM** EBSA-285 Evaluation Board Reference Manual A-7

Configuration Guide

A.2.23. Flash/EPROM Selection

J15 isaso used to configure the functionality as outlined in Table A-7.

Table A-7. Flash/EPROM Socket Selection

tel.

Ref Link Option
Jis 4-6 Normal operation of flash ROM (ma6 = 1)
5-6 Blank ROM mode (ma6 = 0)
7-9 8-bit Emulator socket (ma4 = 1)
8-9 32-bit flash ROM (ma4 = 0)
10-12 Intel reserved test modes (ma3 = 1)
11-12 “ (ma3 = 0)
13-15 “ (ma2 =1)
14-15 “ (ma2 = 0)

J16 is used to route the chip select to the emulator socket or flash block, as shown in Table A-8.

Table A-8. Flash/EPROM Socket Selection (J16)

Ref Link Option
J16 1-2 Emulator socket
2-3 Flash

Table A-9 shows the links that should be jJumpered to enable the different modes.

Table A-9. Jumper Combinations for ROM Selection

For this mode

Jumper these links

and these links

32-bit flash ROM

J15, 4-6, and 8-9,

J16, 2-3

Blank flash ROM

J15, 5-6, and 8-9,

J16, 2-3

8-bit emulator

J15, 4-6, and 7-9,

J16, 1-2

StrongARM** EBSA-285 Evaluation Board Reference Manual

intel.

A.2.2.4.

Configuration Guide

Selection of the 21285 as the Central Function

Table A-10 shows the configuration of the two jumpers that effect the selection of Central
Function. J9 controls the CFN signal to the 21285. J10 is used to route the reset signal correctly for
the selected mode.

Table A-10. Selection of Central Function

Header | Jumper Action
J9 In Ink_pci_cfn is negated at power up. 21285 is NOT Central Function.
J9 Out | Ink_pci_cfn is asserted. 21285 is Central Function.
J10 1-2 pci_rst_| supplies reset (reset from PCI).
J10 2-3 mst_rst_| supplies reset (reset from power up, switch®, JTAG connector, or watchdog timer).

a. Viaajumper or reset switch attached to J17. See Figure A-6.

Thelegal combinations for J9 and J10 are given in Table A-11.

Table A-11. Jumper Settings for Selection of Central Function

A.2.25.

A.2.2.6.

A2.2.7.

A.2.2.8.

Mode J9 J10
Host Bridge Out 2-3
Add-in card In 1-2

Reserved Mode
When not plugged into a PCI backplane, the EBSA-285 must supply the PCI clock it would otherwise

have picked up from the PCI dot. When fitted, J7 connects an onboard 24 MHz oscillator to the PCI
clock line. Thisis required in manufacture when the board is powered up inisolation.

Boot Image Selection

Boot image selector J19 on the bulkhead provides a hexadecimal code that is read from the X-Bus
at power up. Boot image selection is covered in Chapter 7.

SA-110 Clock Probe Connection

Two pin header J20 provides alogic analyzer test point for monitoring fbg_mclk.

Test Points

Table A-12 provides a description of test points provided for monitoring the EBSA-285.

Table A-12. Description of Test Points

Ref Schematics Description

TP1 | Sheet 15 +3.3V level

TP2 | Sheet 15 +2V level

TP3 | Sheet 4 cpu_write (this is the nR/W signal from the SA-110 or 21285)
TP4 | Sheet 4 21285 clock signal fbg_fclk_0

TP5 | Sheet 4 SDRAM clock signal fbg_sdclkO

TP6 | Sheet4 cpu_nrsto (the nRESET_OUT signal from the SA-110)

StrongARM** EBSA-285 Evaluation Board Reference Manual A-9

u
Configuration Guide I nu ®

A.3 Connectors

A.3.1 Serial Port Connector

COMO0 RS232 port is connected to a 9-way male D-type connector on the bulkhead. Pinout is
shown in Figure A-9.

Figure A-9. Serial Port Connector Detail

nc
RxD

XD
nc

GND

6108€®

A.3.2 JTAG Connector

The pinout of the JTAG connector is shown in Figure A-10.
Figure A-10. JTAG Connector J1 Pinout

1 2
+5V GND
TRST_L n.c.
TDI GND
TMS GND
TCK GND
TDO SRST L o
GND 8

A.3.3 Power Connector

J2 isthe standard PC/AT 12-pin male connector for power.

A-10 StrongARM** EBSA-285 Evaluation Board Reference Manual

INlgl.

A4
A4l

Cables for External Connection

Serial Port

Configuration Guide

COMOiswired asaDTE (Data Terminal Equipment) port with TxD, RxD and GND only. Use a
null-modem cable to connect aterminal or host system to this port. Wiring detail for suitable
standard null-modem cablesis given in Table A-13 and Table A-14, but note that none of the

Table A-13. Null-Modem Cable

handshake signals are required.
9-way Connector A Pin | 25-way Connector B Pin | 9-way Connector B Pin Description

5 7 5 GND - GND
3 3 2 TxD - RxD

78 5 8 RTS-CTS

6,1% 20 4 DSR, DCD - DTR
2 2 3 RxD - TxD

gl 4 7 CTS-RTS

4t 6,8 6,1 DTR - DSR, DCD

a. Not required on EBSA-285

Table A-14. Sun Null-Modem Cable

A.4.2

9-way Connector A Pin 25-way Connector B Pin Description
2 2 RxD - TxD
3 3 TxD - RxD
5 7 GND - GND
7-8 - RTS - CTS
- 4-5 RTS - CTS
4-6-1 - DTR-DSR-DCD
- 20-6-8 DTR-DSR-DCD
JTAG Port

Thewiring of the JTAG port is given in Table A-15. The JTAG port operatesat 5V TTL levels.

Table A-15. JTAG Cable

Pin Type Description
1 - Pulled up to 5 V by a 33R resistor
2 |- GND
3 Input TRST_L
4 - Not connected
5 Input TDI
6 - GND
7 Input T™MS
8 - GND
9 Input TCK
10 |- GND
11 | Output | TDO
12 | Input SRST_L - when 21285 is CFN, asserting this signal resets the board
13 |- Connected to pin 1
14 | - GND

StrongARM** EBSA-285 Evaluation Board Reference Manual

A-11

u
Configuration Guide I nu ®

A.5 Upgrading the SDRAM DIMMs

The EBSA-285 requires 168-pin 64-bit unbuffered SDRAM DIMMs. It can support a maximum of
four, 32-bit arrays. 64-bit DIMMs typically provide either two or four 32-bit arrays. If afour-array
DIMM isused, it must be fitted in J12, and J11 must be left empty. If two-array DIMMs are used,
either one or two may be fitted but J12 must be populated first. Table A-16 lists DIMMs that are
known to work with the EBSA-285.

Table A-16. DIMMs For Use With The EBSA-285

Manufacturer Part Number Size Arrays Mode
Samsung KMM366S203BTN-G2 16Mbyte 2x8Mbyte 1
Samsung KMM366S403BTN-G2 32Mbyte 4x8Mbyte 1
IBM 13N1649NCC-10T 8Mbyte 2x4Mbyte 1
IBM 13N2649JCC-10T 16Mbyte 2x8Mbyte 1
IBM 13N4649JCC-10T 32Mbyte 4x8Mbyte 1
IBM 13N4649CCC-10T 32Mbyte 2x16Mbyte 1
Hitachi 526C464EN-10IN/C 32Mbyte 4x8Mbyte 1
Hitachi 526C264EN-10IN/C 16Mbyte 2x8Mbyte 1
Micron MT8LSDT264AG-66CL2 16Mbyte 2x8Mbyte 1
Micron MT16LSDT464AG-66CL2 32Mbyte 4x8Mbyte 1
*Kingston KTC-2428/32 32Mbyte 4x8Mbyte 1
*Kingston KTC-2428/64 64Mbyte 2x32Mbyte 4
*Kingston KTC-2428/128 128Mbyte 4x32Mbyte 4

* Limited test time as DIMMs had to be returned.

A-12 StrongARM** EBSA-285 Evaluation Board Reference Manual

intel.

The Design Database B

B.1

B.2

If you received this Reference Manual as part of the SA-110/21285 Evaluation Board Kit
(21A85-01) or as part of the SA-110/21285 Design Kit (QR-21A85-11) you will also have received
machine-readable media, either on CDROM or 3.5 inch floppy disk, containing hardware and
software design databases for the EBSA-285.

This appendix gives an overview of the material supplied on the first release of the disks. The disks
themselves include other relevant documentation. Later releases of the disks may include
additional information and you should check the README files and release notes for details.

Hardware Material

The hardware design database includes:
* EBSA-285 schematics (PostScript and PDF formats)
* EBSA-285 board assembly drawings (PostScript and PDF formats)
* EBSA-285 board mechanical drawings (PostScript and PDF formats)
¢ EBSA-285 board layer plots (PostScript and PDF formats)
* EBSA-285 netlist (ASCII text format)
* EBSA-285 partslist (ASCII text format)
¢ EBSA-285 design database for VIEWIogic CAE systems (tar file)
* EBSA-285 reference manual (PostScript and PDF versions of this document)

Software Material

There are two sets of software material for the EBSA-285. Thefirst isthe firmware tree for the
EBSA-285 onboard software and Flash Management Utility. The second is the uHAL software
portability library.

All of the software requiresan ARM** 2.1 (or later) SDT to build. It can be built either using
ARM’s V2.1 Project Manager or using GNU make. Key images are supplied pre-built.

The EBSA-285 firmware tree consists of these components:

¢ Flash Management Utility (FMU) - Sources for building 8-, 16- and 32-bit mode flash utilities
that can either be run from DOS or loaded and run viathe ARM remote debugger.

* Angel Remote Debug Stub - Incremental sourcesto ARM’s official released Angel sourcetree.
These sources will migrate into an ARM release and will be superseded by such arelease. The
EBSA-285 Angel sources include the Primary Boot Loader (PBL). A variant of Angel is built
with the PBL code embedded in it.

¢ Onboard Self-tests - Sources for the onboard self-test. This code performs a number of self
tests (for example, memory and flash tests).

* Standard Include Files - Including assembler macros for functions such as memory
initialization for all of the above code.

StrongARM** EBSA-285 Evaluation Board Reference Manual B-1

|]
The Design Database I nu ®

B-2

The following tested, pre-built Angel images are included:

¢ Angel (‘PBL variant) - This variant of Angel is built for flash block 0 and contains the PBL. If
flash block 0 is selected as the boot image or if a corrupt or non-existent image is chosen as the
boot image then the PBL will default to running this version of Angel. This Angel variant
enables clock switching and the Echoic.

¢ Angel (‘Block 2’ variant) - This variant of Angel is built for flash block 2 and can be started by
the PBL if image 2 is selected. It turns on clock switching and Echoic.

* Onboard self-test - Thisimage runs from flash block 1.

The following tested, pre-built FMU images are included:

¢ fmu.exe- ThisisaDOS executable image which can be used to program images into the
EBSA-285's flash ROM when the EBSA-285 is plugged into a PCl dlotin aPC

¢ fmu.axf - Thisversion of the FMU can be loaded and run via the ARM remote debugger

UHAL isaportability library that builds for a number of StrongARM**-based boards. uHAL 0.5
has been ported to EBSA-285 and will build images that can either be loaded and run using Angel
or that can be blown into flash and run directly from there. The uHAL source tree includes a
number of example images:

¢ Benchmarking code - There are severa benchmarks, for example, a bubble-sort.

¢ “hello world” - There are several very simple programs, including one that prints “hello
world” and another that shows the system timer running.

* UC/OS - uHAL contains a port of uC/OS as an example of an OS ported to run against the
uHAL API.

uHAL 0.5 hasits own documentation. This includes a description of the APl and aFAQ
(Frequently Asked Questions) which includes board-specific information.

StrongARM** EBSA-285 Evaluation Board Reference Manual

intel.

Index

A

Add-in Card 8-13, A-2, A-3
Add-in card 1-5
Angel 1-8, 6-3
Antistatic precautions 1-4
Arbiter 8-10

overview 2-5
ARM Image Format (AIF) 5-1
ARM SDT

using with EBSA-285 1-8

B

Binary Image (BIN) 5-1
Boot image selection

image 0 6-1

images other than 0 6-1
Bus arbiter 8-10

overview 2-5

C

C library support 5-3
Cables
JTAG port A-11
null-modem 1-7, A-11
serial port A-11
Cacheing
Flash 4-8
1/0 4-8
SDRAM 4-8
software Dcache flush algorithm 4-8
the CSR 4-8
Clock
sources 2-7, 8-11
Configuration
default A-2
jumper locations A-1
jumper settings A-2, A-3
of aterminal 1-
of the serial port 6-3
options 1-7
Configuring cacheable/non-cacheable space 4-8
Connectors
JTAG A-10
power A-10
serial port A-10
cpu 2-1, 8-4
CSR
cacheing 4-8

D

Debug
Angel 1-8, 6-3
Decoupling 8-15
Design database B-1
Design improvements 8-17
Diagnostics 6-3

description of tests 6-3
DIMMs 1-4, 8-6

organization 8-6

upgrading A-12
Disabling the flash ROM alias 4-1

E

EBSA-285
block dia%ram 2-2
facilities 3-1

EPROM socket 8-7

Expansion 2-6

F

Flash
accessing 4-1
as shipped 3-1
block addresses 3-1
cacheing 4-8
contents 2-8
disabling the alias 4-1
executable imagg 7-4
imagebuildin% -1
image format 6-2
image header 6-2
image selection 1-8
non-executable image 7-4
organization 3-1, 8-7
programming 7-1, 8-7
Flash ROM interface 8-7
FMU 7-1
when to specify the block number 7-4
when to specify the ‘NoBoot’ optior-4
Functional Specificatio2-1

H
Host Bridge8-12, A-2, A-3

Images

StrongARM** EBSA-285 Evaluation Board Reference Manual

Index-1

building 5-1, 5-2
run-time environment 5-1, 5-3
Installation
example 1-6
Interfacing of logic levels 8-2
Interrupts
assignment 3-2
overview 2-4
sources of 8-9
110
cacheing 4-8
serial port 2-4, 6-3, 8-9
soft 1/0 2-4, 3-3, 8-
subsystem 2-4

J
JTAG 2-5, 8-10

L

LEDs
driving 3-3
sequence at power up 1-7
L oadable debuggable images
building 5-1
run-time environment 5-1

M

Memory
EPROM emulator 2-4
flash ROM 2-3
SDRAM 2-3
Memory-map
SDRAM 3-1, 5-1, 5-3
switching 2-4
X-Bus 3-2
Modes of operation 1-4
Add-in card 1-5

P

PCl interface
connector 8-10
use of reserved pins 8-10
Physical Description 1-3
Power
current requirement 8-14
onboard generation 2-8
requirements 2-7
2.0-V generation 2-8, 8-14
3.3-V generation 2-8, 8-14
Power sequencing 8-15
Power up
LED sequence 1-7
Primary Boot Loader (PBL) 6-1

Index-2

Principa Buses 8-3
Printed circuit board 8-16
Programmer’s Guid&-1

R

Reset
circuit 8-11
sequence afteft-1
sources o2-7, 8-11
state afte3-3

S
SA-1102-1, 8-4
modes of operatiof-4
SDRAM 8-4
address bu8-5
array configuratiorB-6
cacheingd-
clocks8-5
control signals8-5
data bus3-5
interface signal§-4
memory-map3-1
upgradingA-12
Soft 1/10
bit assignmenB8-3
Standalone flash imag&s2
building 5-2
run time environmenb-3

T

Timer
assignmen8-2
reference3-2

U

UART
baud rate divisord-7
initializing 4-7
Unpackingl-4

Vv

Visual inspectionl-4
Voltage Domain8-2

X

X-Bus

memory map3-2
X-Bus expansior8-8, 8-15
X-Bus interface8-7

StrongARM** EBSA-285 Evaluation Board Reference Manual

intel.

7 interna timers 2—72
UART timing 4-
21285 2-1, 8-4 ming
initiaizing the UART 4-7

StrongARM** EBSA-285 Evaluation Board Reference Manual Index-3

intel.

Support, Products, and Documentation

If you need technical support, aProduct Catalog, or help deciding which documentation best meets
your needs, visit the Intel World Wide Web Internet site:

http://www.intel .com

Copies of documents that have an ordering number and are referenced in this document, or other
Intel literature may be obtained by calling 1-800-332-2717 or by visiting Intel's website for
developers at:

http://developer.intel.com

You can also contact the Intel Massachusetts Information Line or the Intel Massachusetts Customer
Technology Center. Please use the following information lines for support:

For documentation and general information:

Intel Massachusetts Information Line

United States: 1-800-332-2717
Outside United States: 1-303-675-2148
Electronic mail address: techdoc@intel.com

For technical support:

Intel Massachusetts Customer Technology Center

Phone (U.S. and international): 1-978-568-7474
Fax: 1-978-568-6698
Electronic mail address: techsup@intel.com

o
T
oc
o
=
o
a
|

	StrongARM** EBSA-285 Evaluation Board
	Copyright Page
	Contents
	Figures
	Tables
	Introduction 1
	1.1 How to Use This Document
	1.2 Notation
	1.3 References
	1.4 Physical Description
	1.5 Unpacking the Card
	1.6 Understanding the Different Modes
	1.6.1 Add-in Card
	1.6.2 Host Bridge
	1.6.3 Example Installation
	1.6.4 Other Configuration Options

	1.7 Powering Up for the First Time
	1.8 Running the Onboard Diagnostics
	1.9 Using the ARM** SDT with your EBSA-285
	1.10 Support for Angel Over the Ethernet
	1.10.1 Description
	1.10.2 Low-Level Angel Interface
	1.10.3 Initialization
	1.10.4 Host/Client Interaction
	1.10.5 Areas of Difference

	Functional Specification 2
	2.1 CPU
	2.2 21285
	2.3 The Memory Subsystem
	2.3.1 SDRAM
	2.3.2 Flash ROM
	2.3.3 EPROM Emulator
	2.3.4 Memory-Map Switching

	2.4 I/O Subsystem
	2.5 Interrupts
	2.6 PCI Interface
	2.7 PCI Bus Arbiter
	2.8 JTAG
	2.9 Expansion
	2.10 Clocks
	2.11 Resets
	2.12 Power Requirements
	2.13 Onboard Power Generation
	2.14 Onboard Software

	Programmer’s Guide 3
	3.1 Flash Memory
	3.2 SDRAM Memory
	3.3 X-Bus Memory-Map
	3.4 Interrupt Assignment
	3.5 Timer Assignment
	3.6 Soft Input/Output Register
	3.7 The Reset State of the System

	Software Configuration and Initialization 4
	4.1 Disabling the Flash ROM Alias
	4.2 Accessing the Flash ROM
	4.2.1 Programming the Flash from the SA-110
	4.2.2 Programming the Flash from the PCI Interface

	4.3 Determining the Card Configuration
	4.4 Initializing the X-Bus
	4.5 Initializing the PCI Bus Arbiter
	4.6 Setting the INITIALIZE_COMPLETE Bit
	4.7 Initializing the SDRAM
	4.8 Re-initializing the SDRAM
	4.9 Initializing the PCI Interface
	4.10 Initializing the 21285 UART
	4.11 Configuring Cacheable/Non-Cacheable Space

	Software Development Environment 5
	5.1 Loadable Debuggable Images
	5.1.1 Building
	5.1.2 Run-Time Environment
	5.1.2.1 Memory Map
	5.1.2.2 ARM C Library Support
	5.1.2.3 Exception Vectors
	5.1.2.4 Access to I/O Devices

	5.2 Standalone Flash Images
	5.2.1 Building
	5.2.2 Run-Time Environment
	5.2.2.1 Memory Map
	5.2.2.2 C Library Support
	5.2.2.3 Exception Vectors
	5.2.2.4 Access to I/O Devices

	Onboard Software 6
	6.1 Primary Boot Loader
	6.2 Format of Images in Flash ROM
	6.3 Angel
	6.4 Diagnostics
	6.4.1 Preparing to Run the Diagnostics
	6.4.2 Description of Tests

	Flash Management Utility 7
	7.1 Using the FMU
	7.1.1 When to Specify the Block Number
	7.1.2 When to Specify the ‘NoBoot’ Option

	Theory of Operation/Hardware Design 8
	8.1 General
	8.2 An Introduction to the Schematics
	8.3 Voltage Domains
	8.4 Interfacing Techniques
	8.5 Principal Buses
	8.6 CPU
	8.7 21285
	8.8 SDRAM Interface
	8.8.1 Multiplexed Address Bus
	8.8.2 Bank Address Bus
	8.8.3 Data Bus
	8.8.4 CMD
	8.8.5 Chip Selects
	8.8.6 SDRAM Clocks
	8.8.7 DIMMs

	8.9 Flash ROM Interface
	8.10 X-Bus Interface
	8.10.1 Soft I/O
	8.10.2 X-Bus Expansion Headers

	8.11 The Serial Port
	8.12 Interrupts
	8.13 PCI Interface
	8.14 PCI Bus Arbiter
	8.15 JTAG
	8.16 Clocks
	8.17 Reset
	8.17.1 Host Bridge
	8.17.1.1 Power-On Reset
	8.17.1.2 Switch Reset
	8.17.1.3 JTAG Connector Reset
	8.17.1.4 Watch Dog Timer Reset
	8.17.1.5 PCI Reset

	8.17.2 Add-in Card
	8.17.2.1 PCI Master Reset
	8.17.2.2 Blank Programming Mode

	8.18 Power
	8.18.1 3.3�V Generation
	8.18.2 2.0-V Generation
	8.18.3 Power Sequencing

	8.19 Decoupling
	8.20 Jumpers and Test Points
	8.21 Expanding the EBSA-285
	8.22 The Printed Circuit Board
	8.23 Design Improvements

	Configuration Guide A
	A.1 Default Configuration
	A.2 Description of Jumpers and Connectors
	A.2.1 X-Bus Expansion Headers
	A.2.2 Configuration Jumpers
	A.2.2.1. CPU Core Clock Frequency Selection
	A.2.2.2. Arbiter/X-Bus Selection
	A.2.2.3. Flash/EPROM Selection
	A.2.2.4. Selection of the 21285 as the Central Function
	A.2.2.5. Reserved Mode
	A.2.2.6. Boot Image Selection
	A.2.2.7. SA-110 Clock Probe Connection
	A.2.2.8. Test Points

	A.3 Connectors
	A.3.1 Serial Port Connector
	A.3.2 JTAG Connector
	A.3.3 Power Connector

	A.4 Cables for External Connection
	A.4.1 Serial Port
	A.4.2 JTAG Port

	A.5 Upgrading the SDRAM DIMMs

	The Design Database B
	B.1 Hardware Material
	B.2 Software Material

	Index
	Support, Products, and Documentation

