
Universal Serial Bus (USB) Client
Device Validation for the
StrongARM™ SA-1100
Microprocessor
Application Note

November 1998

Order Number: 278244-001

Application Note

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The StrongARM may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product o rder.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel’s website at http://www.intel.com.

Copyright © Intel Corporation, 1998

*Third-party brands and names are the property of their respective owners.

ARM and StrongARM are trademarks of Advanced RISC Machines Limited.

Debugging over Ethernet Using ARM™ SDT
Contents
1.0 Introduction...5

1.1 Test Description ..5
1.2 Document Scope...5
1.3 References Documents...5
1.4 System Configuration ..6

1.4.1 Required Materials ...6
1.4.2 2.2 Setup ..7

1.5 Procedure..7
1.5.1 Loading Host Software ...7
1.5.2 Testing Procedure ..8

2.0 Description of the UDC Controller code ...8

3.0 Description of the USB Test Suite..21

4.0 SA-1100 Microprocessor Assembly Code..29

Figures

1 SA-1100 USB Controller Test Setup ...7
2 Endpoint 0 Routine..10
3 Endpoint 0 Idle Routine ...11
4 Set Address Routine ...12
5 Get Descriptors Routine ..13
6 Set Descriptors Routine ..13
7 Endpoint 0 Input Routine...14
8 Endpoint 0 Output Routine ..15
9 Endpoint 0 End Routine ..16
10 Endpoint 1 Routine (OUT)...18
11 Endpoint 2 Routine (IN)...20
12 Sending a Reset Packet..21
13 Host Starts Setup Transaction ..22
14 Assigning the UDC Controller a Specific Address...23
15 Ensuring the UDC Controller was able to set its Address23
16 Requesting the GET_DESCRIPTOR Information ...24
17 Sending Multiple Bulk Data Packets ...25
18 Testing the Data Toggling Mechanism..26
19 Error Recovery from Missing Acknowledgment ..27
20 Error Recovery from Corrupt Data ..28

Tables

1 Reference Documents...5
Application Note iii

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor

tel’s

ral,

he
d

the
uage

ing
1.0 Introduction

This section provides a description of the tests used for validating the proper operation of In
StrongARM™** SA-1100 universal serial bus (USB) device controller and provides a list of
related documentation.

1.1 Test Description

This document describes a series of tests used for validating the proper operation of the
StrongARM SA-1100 USB device controller at the component and application level. In gene
the USB devices consist of three components:

• A serial interface engine (SIE), which is implemented in silicon and is responsible for the
transmission and reception of USB structured data.

• A hardware and firmware combination responsible for data transfer between the SIE and the
device endpoints and their corresponding pipes.

• The third element corresponds to the actual functionality that the device brings to the system,
for example, mouse functionality.

These tests confirm the functionality of first two components mentioned above. The first test
verifies the operation of the SA-1100’s USB registers, interrupt bits, data FIFO’s, and reset. T
second test verifies that the USB controller can be configured, transfer bulk data packets, an
perform multiple transactions.

1.2 Document Scope

This document details the procedures that are performed to test the functionality of the USB
controller on the SA-1100, called the UDC. Any required equipment, along with the setup of
equipment, is listed with the test procedure. This document also contains the assembly lang
and flow charts used to control the SA-1100 microprocessor.

1.3 References Documents

Other documents that may be helpful while reading this document are described in the follow
table:

Table 1. Reference Documents

Title Web Address

Universal Serial Bus Revision 1.1 http://www.usb.org

Universal Serial Bus System Architecture http://www.mindshare.com/html/
list_of_books.html

StrongARM™** SA-1100 Microprocessor Technical Reference Manual http://developer.intel.com

ARM Software Development Toolkit User Guide http://www.arm.com

Traffic Generator http://www.catc.com

Inspector http://www.catc.com
Application Note 5

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
1.4 System Configuration

This section describes the required hardware and software, and an overview of the SA-1100 USB
test setup.

1.4.1 Required Materials

The following hardware and software are required for testing the StrongARM SA-1100 USB
device controller:

• Personal Computer with IEEE1284 bidirectional parallel port card

— CPU - Pentium® processor or Pentium® II processor

— CPU speed - 100 Megahertz or greater

— RAM - 8 Megabytes or greater

— Hard drive space - 200 Kilobytes or greater

• Windows* 3.1, Windows95,* or Windows NT 4.0* operating system

• SA-1100 Development Board (DE-1S110-OA) with Angel 1.05 ROMs

• ARM Software Development Toolkit (Version 2.11a)

• CATC Traffic Generator (Version 2.0)

• CATC Inspector Advanced USB Bus & Protocol Analyzer (Version 2.2)

• USB Cable (A-type)

• USB Cable (B-type)
6 Application Note

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor

00
1.4.2 2.2 Setup

The test environment must be configured as shown in Figure 1 with the bi-directional parallel port
of the USB Traffic Generator connected to the IEEE 1284 parallel port card of the PC. The USB
Traffic Generator is connected to the USB Inspector via the A-type USB Cable. The USB Inspector
is then connected to the SA-1100 development board via the B-type USB Cable. The CATC
Inspector does not cause any interference to the bus traffic because it is transparent to the network.

1.5 Procedure

The following sections describe the procedures for loading the host software and testing the
SA-1100 USB device controller.

1.5.1 Loading Host Software

Use the following procedure to load the host software:

1. Turn on the PC and install the CATC traffic generator software. This software sends USB
packets across the universal serial bus.

2. Install the CATC Inspector software. This software provides a visual inspection of the USB
traffic.

3. Install the ARM™** software development toolkit. This toolkit runs software on the SA-11
that controls data transfers to and from the USB device controller on the SA-1100.

Figure 1. SA-1100 USB Controller Test Setup

A6171-01

StrongARM™** SA-1100
Development Module

IEEE 1284
Parallel Port Cable

USB Cable
'B' Type

CATC Traffic
Generator

CATC Traffic Inspector

USB Cable
'A' Type

** StrongARM is a trademark of Advanced RISC Machines, Ltd.

A 300
Application Note 7

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor

age

rigger

 on

gen”.

e

w in

lled

bled
he
ata

DC).
sses

A

t,
1.5.2 Testing Procedure

Use the following procedure for testing:

1. Start the ARM SDT Project Manager.

a. Open the project called “udc_lab.apj”.

b. Compile the project by clicking on the Force Build icon.

c. Execute the project by clicking the Execute icon—this will download the software im
to DRAM on the SA-1100 development board and begin running the UDC controller
code.

2. Start the CATC Inspector.

a. Select the Recording Options… menu item from the SETUP menu, then select the t
option to be the Event Trigger.

b. Click on the Setup… button when it becomes highlighted. Select the Frame Number
option and enter 1 in the Frame # box—this will cause the CATC Inspector to trigger
the Start Of Frame packet #1 and capture the test packets that follow.

c. Click OK to get back to the main menu.

d. Click the RECORD button to begin recording USB traffic.

3. Start the CATC Traffic Generator.

a. Click on the File Open icon and open up the traffic data file called “test_usb_sa1100.

b. Click on the Generator button, and select the Download menu (download all possibl
packets in Memory Partition #0 and then exit).

c. Select the Playback menu item from under the Generator button.

d. Press the Start button—this will start the USB test suite of packets.

4. Compare the results captured by the CATC Inspector with the proper results shown belo
Section 3.0.

2.0 Description of the UDC Controller code

This section describes the major portions of the assembly code that makes up the project ca
“udc_lab.apj.”

1. Initialization of the UDC: In this portion of the code, the program resets the UDC, which
ensures that the USB Device Controller is initialized to the proper state. The UDC is disa
and then re-enabled, which confirms that the UDC can be paused by software control. T
Max_Packet registers is set, which holds the value of the maximum number of bytes of d
per packet that can be transferred to and from the UDC core.

2. Initialization of the DMAs: Within the DMA Controller of the SA-1100, DMA0 is
configured to receive data (data is moved from the USB into a receive FIFO within the U
The DMA0 moves data from the receive FIFO to memory, where the SA-1100 core proce
the data. This movement of data is called an OUT transaction since, from the view of the USB
host, data is ultimately sent from the USB host out to the USB client. Also within the DM
Controller of the SA-1100, DMA1 is configured to transmit data (DMA1 moves data from
memory to the transmit FIFO within the UDC, where it will subsequently be moved to the
USB). This movement of data is called an IN transaction since, from the view of the USB hos
8 Application Note

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
data is ultimately sent into the USB host from the USB client.
After initialization, the program polls the UDC Service Request bit in the SA-1100 Interrupt
Controller Pending Register located in the System Control Module. Once the UDC service
request bit is seen, program flow jumps to one of the three endpoints routines described in
steps a, b, and c:

a. Endpoint 0 routine (Control/Status): Once the program determines that an Endpoint 0
interrupt has occurred, a software state machine is used to decide what to do. If the state
machine is in the idle state and a setup packet is received, the program parses the packet to
determine which standard device made the request. If the task is to request information
from the device, the program will enter the Endpoint 0 IN data phase of the state machine.
If the task is to send information to the device, the program will update the state machine
to enter the Endpoint 0 OUT data phase. During the IN data phase, the setup information
is put into the Endpoint 0 bi-directional FIFO and sent to the host when requested. During
the OUT data phase, any data received in the Endpoint 0 bi-directional FIFO will be
gathered and parsed and handled appropriately. The last phase of the state machine is the
End Transfer phase which configures the proper status and control bits and proper
handshaking.
Application Note 9

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
.

Figure 2. Endpoint 0 Routine

A6132-01

EP0

EP0_IDLE

Clear SE
SE
set
?

IDLE
phase

?

Yes

No

No

Yes

EP0_INEP0_IN
phase

?

No

Yes

EP0_OUTEP0_OUT
phase

?

No

Yes

EP0_END

DONE

EP0_END
phase

?

No

Yes
10 Application Note

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
Figure 3. Endpoint 0 Idle Routine

A6133-01

EP0_IDLE

DONE

Get data from EP0 FIFO

Decode standard
device request

SETUP
packet

received
?

No

Yes

DONE
Standard

device
request

?

Yes

No

GET
DESC

Get
description

?

No

Yes

SET
ADDR

DONE

Set
Address

?

No

Yes

SET
DESC

Set
Descriptor

?

No

Yes

other device
requests here

Decode request type
Application Note 11

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
Figure 4. Set Address Routine

A6134-01

SET
ADDR

Decode
address

EP0_PHASE = IDLE

Set
address

Address
set
?

Yes

No

DONE
12 Application Note

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
Figure 5. Get Descriptors Routine

A6135-01

Get
DESC

Decode
descriptor

EP0_PHASE = EP0_IN

DONE

DONE

Configuration
descriptor

?

No

Yes

other
descriptors
here

Figure 6. Set Descriptors Routine

A6136-01

Set
DESC

Decode
descriptor

EP0_PHASE = EP0_OUT

DONE

DONE

Configuration
descriptor

?

No

Yes

other
descriptors
here
Application Note 13

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
Figure 7. Endpoint 0 Input Routine

A6145-01

EP0_IN

EP0_STATE = IDLE

Fill FIFO for
transmission

DONE

EP0
stalled

?

No

Yes

Point to next set of data

EP0_STATE = EP0_END

DONE

Sent
all data to

host
?

Yes

No

DONE
14 Application Note

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
Figure 8. Endpoint 0 Output Routine

A6146-01

EP0_OUT

EP0_STATE = IDLE

Get data from
EP0 FIFO

DONE

EP0
stalled

?

No

Yes

Point to next place
to receive data

EP0_STATE = EP0_END

DONE

Received
all data

?

Yes

No

DONE
Application Note 15

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
Figure 9. Endpoint 0 End Routine

A6144-01

EP0_END

DONE

EP0_STATE = IDLE
EP0

stalled
?

No

Yes

EP0_STATE = IDLE
Premature

SETUP
end

?

No

Yes

Set data end bit

Is
IPR
clear

?

No

Yes

Clear stall bit

Clear SE bit
16 Application Note

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
b. Endpoint 1 routine (OUT): Once the program determines that an Endpoint 1 interrupt
has occurred, the RPC bit is checked to see if a data packet has been received and if the
error/status bits are valid. If the data packet has errors, the program ignores the received
data and prepares to receive the data again. If the data packet does not have any errors,
then any residual data that the DMA0 did not service is gathered from the Receive FIFO
and put into memory. DMA0 is adjusted to point to a new storage location to receive the
next packet whether it is the old packet of data again or a new packet of data.
Application Note 17

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
Figure 10. Endpoint 1 Routine (OUT)

A6147-01

EP1 (OUT)

DONE

Read endpoint 1
control/status register

Empty residual
data from FIFO

Got an error, so
adjust DMA0 to

receive data again

Clear SST bit

Clear RPC bit

Is
RPC
set
?

No

Yes

Disable DMA0

Is
RPE
Set
?

No

Yes

Is
SST
set
?

No

Yes

DONE

Is
RPC
set
?

No

Yes

Enable DMA0
18 Application Note

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
c. Endpoint 2 Routine (IN): Once the program determines that an Endpoint 2 interrupt has
occurred, the TPC bit is checked to see if a data packet has been transmitted and the error/
status bits are valid. If the data packet has errors, the program must adjust DMA1 to
resend the packet again. If the data packet does not have any errors, then DMA1 is
adjusted to point to the next data packet to be sent.
Application Note 19

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
Figure 11. Endpoint 2 Routine (IN)

A6148-01

EP2 (IN)

DONE

Read endpoint 2
control/status register

Adjust DMA1 to
send next data

Got an error, so
adjust DMA1 to
send data again

Clear SST bit

Clear TPC bit

Is
TPC
set
?

No

Yes

Disable DMA1

Is
TUR or TPE

set
?

No

Yes

Is
SST
set
?

No

Yes

DONE

Is
TPC
set
?

No

Yes

Enable DMA1
20 Application Note

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor

 FIFO

 host.

ake
3.0 Description of the USB Test Suite

This section describes the USB test packets in the file called test_usb_sa1100.gen .

1. In this test, the host sends a reset packet for 10 milliseconds. The reset packet pulls both the
UDC+ and UDC- pins low for more than 2.5 microseconds. The reset is shown in packets #1
through packet #3.

2. In this test, the host starts a setup transaction, beginning with packet #6, to the device. The
address is 0, which is the default address of an uninitialized USB device, and the endpoint is 0,
which is the setup/control endpoint. Packet #7 is decoded as the GET_DESCRIPTOR device
request, where the host requests information about the USB device. The device responds by
describing specific functional information about itself, such as a mouse, keyboard, or storage
device. This ensures that the UDC Controller’s can receive setup data in the Endpoint 0
and tests the control/status bits of the Endpoint 0 Control/Status Register.
The UDC controller sends Packet #10 back to the host with the first 8 bytes providing
descriptor information. Packet #13 is the 9th byte of the descriptor information sent to the
These two packets test the UDC Controller’s ability to load device information into the
Endpoint 0 FIFO multiple times. Finally, packets #15 through packet #17 are the handsh
transaction for the device request transfer.

Figure 12. Sending a Reset Packet
Application Note 21

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
Figure 13. Host Starts Setup Transaction
22 Application Note

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
3. The next phase of the test assigns the UDC controller a specific address. Packets #19 through
packet #24 are assigned the address of 0x55 with a handshake to acknowledge the transaction.

4. The next series of tests ensures that the UDC controller is able to set its address and ignore any
USB traffic that is not specifically addressed to it. Packets #26 through packet #30 tests that
the UDC ignores a setup, IN, and OUT transaction all to address 0 and endpoint 0. Packets #31
through packet #33 test that the UDC ignores an IN and OUT transaction to address 0 and
endpoint 2 and endpoint 1, respectively.

Figure 14. Assigning the UDC Controller a Specific Address

Figure 15. Ensuring the UDC Controller was able to set its Address
Application Note 23

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
5. This test verifies the GET_DESCRIPTOR information with the address to which the UDC
Controller was assigned, which is 0x55. This test is contained within packets #35 through
packet #46.

6. This test sends multiple bulk data packets to the UDC Controller and verifies that they were
received correctly by transmitting the data back to the host.
In packets #48 through packet #50, the host sends 64 bytes of data to the UDC Controller. This
tests the receive FIFO operation as well as the status/control bits of the Endpoint 1 status/
control register.
Packets #51 through packet #53 request data from the UDC Controller by the host. This tests
the transmit FIFO operation and the status/control bits of the Endpoint 2 status/control register.

Figure 16. Requesting the GET_DESCRIPTOR Information
24 Application Note

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
7. Packets #54 through packet #59 are an OUT and IN data transfer with the DATA token toggled
from DATA0 of the previous transfer to DATA1 in this transfer. This data transfer tests not
only receiving and sending multiple data packets, but also tests the data toggling mechanism.

Figure 17. Sending Multiple Bulk Data Packets
Application Note 25

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor

ed
, the
dgment
e host

y
8. This transaction tests the USB controller’s ability to handle error recovery from a simulat
missing acknowledgment from the device to the host. In packets #72 through packet #74
host sends data to the device, however, even though the device sends back an acknowle
in packet #74, the host ignores it. This simulates a missing or corrupt handshake, and th
sends the data again with a packet identifier of DATA0 again. Once the UDC senses the
DATA0 packet identifier again, it disregards the data packet, since the device has alread
received the data without error, and issues another ACK handshake in packet #77.

Figure 18. Testing the Data Toggling Mechanism
26 Application Note

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
9. Packets #78 through #82 test the error recovery mechanism when the host does not
acknowledge sent data. This test simulates corrupt data received by the host. The host requests
the data again in packet #80 and the device recognizes this by the packet identifier being
DATA0 again, instead of normally toggling to DATA1.

Figure 19. Error Recovery from Missing Acknowledgment
Application Note 27

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
Figure 20. Error Recovery from Corrupt Data
28 Application Note

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
4.0 SA-1100 Microprocessor Assembly Code

;--
; test code for the USB Controller on the SA-1100
; 10/21/98
;--

AREA |udc_lab|, CODE, READWRITE

ENTRY

;---
; define variables
;---

MAX_IN_PKT_MINUS1 EQU 0x3F
MAX_OUT_PKT_MINUS1 EQU 0x3F

EP0_IDLE EQU 0
EP0_IN_DATA_PHASE EQU 1
EP0_OUT_DATA_PHASE EQU 2
EP0_END_XFER EQU 3

DDAR EQU 0x0
DCSR EQU 0x4
CLEAR EQU 0x8
READO EQU 0xc
DBSA EQU 0x10
DBTA EQU 0x14
DBSB EQU 0x18
DBTB EQU 0x1c

DMA_OUT_COUNT_MAX EQU 0x400
DMA_IN_COUNT_MAX EQU 0x400

;---
; Initialization
;---

bl udc_rst ; init the UDC by reset

; DMA0 init
MOV r0, #0xb0000000 ; DMA0 base address
MOV r1, #0x0000002b
STR r1, [r0, #CLEAR] ; Disable DMA channel 0
MOV r1, #0x80000000 ; base of UDC
ADD r1, r1, #0x00000a00 ; address of TX/RX FIFO’s
ADD r1, r1, #0x00000015 ; device=1,read(dev to mem)
Application Note 29

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
8 byte burst
STR r1, [r0, #DDAR] ; set up DMA0 for UDC read

; DMA1 init
MOV r0, #0xb0000000 ; DMA1 base address
ADD r0, r0, #0x00000020 ; offset for DMA1
MOV r1, #0x0000002b
STR r1, [r0, #CLEAR] ; Disable DMA channel 1
MOV r1, #0x80000000
ADD r1, r1, #0x00000a00
ADD r1, r1, #0x00000004 ; device=0,write(mem to dev)

8 byte burst
STR r1, [r0, #DDAR] ; set up DMA1 for UDC write

; Set up pointers to TX test data and RX memory

MOV r2, #DMA_OUT_COUNT_MAX
MOV r0, #0xb0000000 ; DMA0 set to receive data

(OUT)
ADD r0, r0, #0x00000000 ; offset for DMA0
LDR r1, =MBASE ; address of RAM buffer
ADD r1, r1, #0xc0000000 ; Create Physical address
STR r1, [r0, #DBSA] ; Start address = MBASE
STR r2, [r0, #DBTA] ; set OUT Xfer count to Max

MOV r2, #DMA_IN_COUNT_MAX
MOV r0, #0xb0000000 ; DMA1 set to transmit data

(IN)
ADD r0, r0, #0x00000020 ; offset for DMA1
LDR r1, =MBASE ; address of RAM buffer
ADD r1, r1, #0xc0000000 ; Create Physical address
STR r1, [r0, #DBSA] ; Start address = MBASE
STR r2, [r0, #DBTA] ; set IN Xfer count to Max

MOV r1, #0x11 ; Turn on DMA machines
MOV r0, #0xb0000000
STR r1, [r0, #0x04] ; Turn on receive DMA - DMA0 (OUT)

; Once you have started (primed) the XMIT FIFO, there is no way to flush
; those primed bytes out except by UDC reset or by actual transmission on the USB!
; so don’t turn on DMA1 until a data packet has been received.
; STR r1, [r0, #0x24] ; Turn on transmit DMA - DMA1 (IN)

bl initLED
mov r0, #0xA ; write an ’A’ to the LED
bl writeLED
30 Application Note

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
;---
; main loop
;---

UDCL0 MOV r0, #0x90000000
ADD r0, r0, #0x00050000
LDR r1, [r0, #0x20]
TST r1, #0x00002000 ; Look for UDC interrupt pending
BNE udcsvc
ldr r1, =OUTCOUNT ; get OUT count address
ldr r2, [r1] ; get OUT packet count
TEQ r2, #8 ; Got 8 OUT packets yet?
MOVEQ r2, #0 ; If so, reset counter
STREQ r2, [r1]
BLEQ pktcheck ; If so, go check packets
B UDCL0 ; otherwise, loop

SWI 0x11 ; Finished

;---
; UDC Interrupt Service Routine
;---

udcsvc STMEA r13!, {r0-r7}
MOV r8, #0x80000000 ; Load base of UDC
mov r0, #0xB0000000 ; Load base of DMA
LDR r9, [r8, #0x30] ; Get the 2nd level source

ORR r0, r0, r0 ; delay

STR r9, [r8, #0x30] ; Clear request bits

TST r9, #0x20 ; Look for usb reset
BEQ ep0

bl udc_rst ; Branch to UDC reset routine
; (even though after host reset, UDC is on)

usbrst1 ldr r11, [r8, #0x30] ; Get the 2nd level source
tst r11, #0x20 ; see if Reset Int. Request is still active?
beq done ; branch if no
orr r11, r11, #0x20 ; Set the RSTIR bit for write-to-clear
str r11, [r8, #0x30] ;
ORR r0, r0, r0
ORR r0, r0, r0 ; delay
ORR r0, r0, r0
ORR r0, r0, r0
b usbrst1 ; make sure RSTIR is clear
Application Note 31

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
;---
; Endpoint 0 routine
;---

ep0 TST r9, #0x01 ; Look for endpoint 0 interrupt
BEQ ep1

ep0_sr LDR r11, [r8, #0x10] ; Read ep0 CSR

ep0_sr0 TST r11, #0x20 ; Look for SE
BEQ ep0_sr1
MOV r12, #0x80
STR r12, [r8, #0x10] ; Clear SE
ORR r12, r12, r12 ; Delay
ORR r12, r12, r12 ; Delay
ORR r12, r12, r12 ; Delay
ORR r12, r12, r12 ; Delay
ORR r12, r12, r12 ; Delay
ORR r12, r12, r12 ; Delay
LDR r11, [r8, #0x10] ; Get ep0 CSR
B ep0_sr0 ; make sure SE cleared

ep0_sr1 LDR r10, =EP0_STATE
LDR r12, [r10] ; use state to decide what to do
CMP r12, #EP0_IDLE
BEQ do_idle
CMP r12, #EP0_IN_DATA_PHASE
BEQ do_idp
CMP r12, #EP0_OUT_DATA_PHASE
BEQ do_odp
CMP r12, #EP0_END_XFER
BEQ do_exfr
B done

do_idle TST r11, #0x01 ; Look for OPR
BEQ done
LDR r1, [r8, #0x20] ; Get write count for ep0
AND r1, r1, #0xff ; Filter out upper 1’s
MOV r2, #0x0 ; Init counter
LDR r3, =DEVICE_REQ ; Pointer to device request array

idle0 TEQ r2, r1 ; Start loop
LDRNE r4, [r8, #0x1c] ; load data from UDCD0 FIFO
STRNEB r4, [r3, r2] ; Store byte, r3=base, r2=offset
ADDNE r2, r2, #0x01 ; Increment loop counter
BNE idle0 ; Branch until all bytes are read

LDRB r4, [r3, #0x06] ; Get length of requested xfer
LDR r10, =SETUP_CNT
STR r4, [r10] ; Save into SETUP_CNT variable
32 Application Note

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
TEQ r4, #0x0 ; Clear OPR only if SETUP_CNT != 0
MOVNE r12, #0x40
STRNE r12, [r8, #0x10] ; Clear OPR

LDRB r4, [r3, #0x0] ; Get request type
AND r4, r4, #0x60 ; Only care about bits 6:5
MOV r4, r4, LSR #5
TEQ r4, #0x00 ; Decide how to process request
BEQ idle1 ; Only check for standard devices for now

; CMP r4, #0x?? ; Expand here . . .
; BEQ label

B done

idle1 LDRB r4, [r3, #0x01] ; Get brequest
TEQ r4, #0x06 ; Check for GET DESCRIPTOR
BEQ getdesc
TEQ r4, #0x05 ; Check for SET ADDRESS
BEQ setaddr

; CMP r4, #0x?? ; Expand here . . .
; BEQ label

B done

getdesc LDRB r4, [r3, #0x03] ; Get wValue high
TEQ r4, #0x02 ; Only check for Config Desc
BEQ idle3

; TEQ r4, #0x?? ; Expand here . . .
; BEQ label

MOV r12, #0x10 ; Set data end out by default
B done

idle3 MOV r12, #0x00 ; This might get overwritten below
LDR r10, =MORE_SETUP_CNT
STR r12, [r10]
LDR r10, =SETUP_CNT
LDR r5, [r10] ; Get setup cnt & check it
LDR r10, =CONFIG_DESC_SIZE
LDR r6, [r10]
CMP r5, r6
BLE idle4
MOV r12, #0x01 ; Note: too much data requested
LDR r10, =MORE_SETUP_CNT
STR r12, [r10]
LDR r10, =SETUP_CNT
STR r6, [r10] ; Overwrite SETUP_CNT variable

idle4 MOV r12, #EP0_IN_DATA_PHASE
LDR r10, =EP0_STATE
STR r12, [r10] ; Change states
LDR r12, =CONFIG_DESC
LDR r10, =ROM_ADDR
Application Note 33

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
STR r12, [r10] ; Save start address of data to send
B do_idp ; This is where the fifo gets loaded

setaddr LDRB r4, [r3, #0x02] ; Get wValue low, which is 7 bit address
AND r4, r4, #0x7F ; Filter out upper bits
str r4, [r8, #0x04] ; Store 7 bit addr. in UDC address register
LDR r12, =UDC_ADDR ; storage location for UDC address
str r4, [r12] ; save UDC address
MOV r12, #0x50
STR r12, [r8, #0x10] ; Clear OPR bit and Set DE bit

; (since no data phase)
chkaddr orr r12, r12, r12 ; delay

orr r12, r12, r12 ; delay
orr r12, r12, r12 ; delay
ldr r12, [r8, #0x04] ; Get 7 bit address
cmp r4, r12 ; compare to saved address
bne chkaddr ; make sure addr. is set in UDC core

MOV r12, #EP0_IDLE
LDR r10, =EP0_STATE
STR r12, [r10] ; Change states
B done ; No data phase, so done

do_idp TST r11, #0x04 ; Look to see if the EP0 is Stalled
BEQ idp0
MOV r12, #EP0_IDLE
LDR r10, =EP0_STATE
STR r12, [r10] ; Return to idle if stalled
MOV r12, #0x04
STR r12, [r8, #0x10] ; Clear stall bit

idp0 TST r11, #0x20 ; Look for premature setup end
BEQ idp1
MOV r12, #EP0_IDLE
LDR r10, =EP0_STATE
STR r12, [r10] ; Return to idle if SE set
MOV r12, #0x80
STR r12, [r8, #0x10] ; Clear SE bit

idp1 TST r11, #0x02 ; Make sure IPR is CLEAR!
BNE done ; Do nothing if IPR is set
MOV r1, #0x08 ; This might get overwritten below
LDR r10, =SETUP_CNT
LDR r5, [r10]
CMP r5, r1 ; See if descriptor is bigger than maxp
MOVLT r1, r5 ; adjust the loop variable
MOV r2, #0x0 ; Init index
LDR r10, =ROM_ADDR
LDR r3, [r10] ; Get pointer to start of data
34 Application Note

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
idp2 TEQ r2, r1 ; See if we’re done
LDRNEB r12, [r3, r2] ; Get next byte
STRNE r12, [r8, #0x1c] ; Place in FIFO
ADDNE r2, r2, #0x01 ; Increment loop
BNE idp2

ADD r3, r3, r1 ; Adjust ROM_ADDR for next time
LDR r10, =ROM_ADDR
STR r3, [r10]

SUBS r5, r5, r1 ; Adjust SETUP_CNT
LDR r10, =SETUP_CNT
STR r5, [r10]

BNE idp3 ; Skip if SETUP_CNT != 0
LDR r10, =MORE_SETUP_CNT
LDR r12, [r10]
TEQ r12, #0x0
MOVNE r12, #EP0_END_XFER ; Change state to EP0_END_XFER
LDRNE r10, =EP0_STATE
STRNE r12, [r10]
MOVEQ r12, #0x10 ; Set Data End if MORE_SETUP_CNT==0
STREQ r12, [r8, #0x10]
MOVEQ r12, #EP0_IDLE ; Change state to EP0_IDLE
LDREQ r10, =EP0_STATE
STREQ r12, [r10]

idp3 MOV r12, #0x02 ; Set IPR
ORR r12, r12, r12 ; Delay
ORR r12, r12, r12 ; Delay
ORR r12, r12, r12 ; Delay
ORR r12, r12, r12 ; Delay
STR r12, [r8, #0x10]

B done

do_odp
; Nothing for now

B done

do_exfr TST r11, #0x04 ; Look to see if the EP0 is Stalled
BEQ exfr0
MOV r12, #EP0_IDLE
LDR r10, =EP0_STATE
STR r12, [r10] ; Return to idle if stalled
MOV r12, #0x04
STR r12, [r8, #0x10] ; Clear stall bit
Application Note 35

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
exfr0 TST r11, #0x20 ; Look for premature setup end
BEQ exfr1
MOV r12, #EP0_IDLE
LDR r10, =EP0_STATE
STR r12, [r10] ; Return to idle if SE set
MOV r12, #0x80
STR r12, [r8, #0x10] ; Clear SE bit

exfr1 TST r11, #0x02 ; Make sure IPR is CLEAR!
MOVEQ r12, #0x10 ; Set Data end
STREQ r12, [r8, #0x10]
B done

;---
; Endpoint 1 routine - OUT data xfer from host to UDC
;---

ep1 TST r9, #0x02 ; Look for endpoint 1 interrupt
BEQ ep2

LDR r11, [r8, #0x14] ; Read ep1 CSR

TST r11, #0x02 ; Look for RPC
BEQ ep2

ep1_sr0 MOV r0, #0xb0000000 ; DMA base
MOV r4, #0x7F ; Disable DMA0
STR r4, [r0, #0x8] ; 0x00=offset for DMA0 + 0x8=for clear
LDR r1, [r0, #0x10] ; DBSA for DMA0-Points to next empty

mem loc
SUB r1, r1, #0xc0000000 ; Convert real addr to virtual address

ep1_sr1 TST r11, #0x04 ; Look for RPE
BEQ ep1_sr2
ORR r12, r12, r12 ; Got a valid RPE,
ORR r12, r12, r12 ; Must do some Packet Error Handling or
ORR r12, r12, r12 ; Receive FIFO Overrun Handling here..
ORR r12, r12, r12 ; RPE bit will be cleared when RPC cleared

; assume DATA toggle and handshake error..
ldr r2, [r0, #0x14] ; get DMA transfer count
rsb r2, r2, #DMA_OUT_COUNT_MAX ; MAX count - DMA count = # of bytes DMA’ed
sub r1, r1, r2 ; adjust DMA addr ptr back by the # of bytes
b ep1_sr3 ; skip emptying FIFO

ep1_sr2 TST r11, #0x20 ; Look for RNE
LDRNE r12, [r8, #0x28] ; Get byte from FIFO - empties residual data
STRNEB r12, [r1] ; Make byte visible
ADDNE r1, r1, #1 ; Increment counter
LDRNE r11, [r8, #0x14] ; Get ep1 CSR
36 Application Note

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
BNE ep1_sr2 ; Loop if Receive FIFO is not empty

; got a good data packet, so count it
ldr r12, =OUTCOUNT ; get address of OUT count variable
ldr r4, [r12] ; get count
add r4, r4, #1 ; increment count
str r4, [r12] ; save count

; Adjust DMA0 (OUT) pointer and xfer count
ep1_sr3 add r1, r1, #0xc0000000 ; Convert virtual addr to real addr

str r1, [r0, #0x10] ; set new adjusted DMA address
MOV r2, #DMA_OUT_COUNT_MAX
str r2, [r0, #0x14] ; set new adjusted DMA transfer count

ep1_sr4 TST r11, #0x08 ; Look for SST
BEQ ep1_sr5
MOV r12, #0x08
STR r12, [r8, #0x14] ; Clear SST
ORR r12, r12, r12 ; SST is due to host sending more data

than
ORR r12, r12, r12 ; maximum packet size (UDCOMP)
ORR r12, r12, r12 ; Delay
ORR r12, r12, r12 ; Delay
ORR r12, r12, r12 ; Delay
LDR r11, [r8, #0x14 ; Get ep1 CSR
B ep1_sr4 ; make sure SST cleared

ep1_sr5 MOV r12, #0x02
STR r12, [r8, #0x14] ; Clear RPC
ORR r12, r12, r12 ; Delay
ORR r12, r12, r12 ; Delay
ORR r12, r12, r12 ; Delay
LDR r11, [r8, #0x14] ; Get ep1 CSR
TST r11, #0x02 ; Look for RPC
BNE ep1_sr5 ; make sure RPC cleared

mov r1, #0x11 ; Enable DMA0
str r1, [r0, #0x4] ; 0x00=offset for DMA0 + 0x4=for set

;start DMA1 (IN) after we have received an OUT data packet
mov r1, #0x11 ; Enable DMA1
str r1, [r0, #0x24] ; 0x20=offset for DMA1 + 0x4=for set

;---
; Endpoint 2 routine - IN data xfer from UDC to host
;---
Application Note 37

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
ep2 TST r9, #0x04 ; Look for endpoint 2 interrupt
BEQ done

LDR r11, [r8, #0x18] ; Read ep2 CSR

ep2_sr0 TST r11, #0x02 ; Look for TPC
BEQ done

MOV r3, #0x0 ; assume packet was sent successfully
; (i.e. don’t need to resend)

ep2_sr2 TST r11, #0x0C ; Look for TUR or TPE
BEQ ep2_sr4
ORR r12, r12, r12 ; Got a valid TUR or TPE
ORR r12, r12, r12 ; Must set DMA1 ptr back to top of

; data to be resent
mov r3, #MAX_IN_PKT_MINUS1 ; get # of bytes that was transmited minus 1
add r3, r3, #0x1 ; get number of bytes that was transmited

; Adjust DMA1 (IN) pointer and xfer count
ep2_sr4 MOV r0, #0xb0000000 ; DMA base address

MOV r1, #0x0000007F ; Disable DMA1
STR r1, [r0, #0x28] ; 0x20=offset for DMA1 + 0x8=for clear
ORR r12, r12, r12 ; Delay
ORR r12, r12, r12 ; Delay
mov r2, #DMA_IN_COUNT_MAX ; get max DMA1 xfer count
ldr r1, [r0, #0x34] ; get current DMA1 xfer count
sub r1, r2, r1 ; calc no. of bytes moved from mem. to FIFO
cmp r1, #0x00 ; was there any bytes transfered?
beq ep2_sr5 ; skip if not
str r2, [r0, #0x34] ; restore DMA1 xfer count = DMA_IN_COUNT_MAX
mov r2, #MAX_IN_PKT_MINUS1 ; get # of bytes that was transmited minus 1
add r2, r2, #0x1 ; get number of bytes that was transmited
sub r1, r1, r2 ; calc number of bytes the FIFO was primed
ldr r2, [r0, #0x30] ; get current DMA1 address
sub r2, r2, r1 ; subtract # of bytes the FIFO was primed
sub r2, r2, r3 ; subtract whole packet (if an error)
str r2, [r0, #0x30] ; restore DMA1 address

ep2_sr5 TST r11, #0x10 ; Look for SST
BEQ ep1_sr6
MOV r12, #0x10
STR r12, [r8, #0x18] ; Clear SST
ORR r12, r12, r12 ; SST is due to host sending more data than
ORR r12, r12, r12 ; maximum packet size (UDCOMP)
ORR r12, r12, r12 ; Delay
ORR r12, r12, r12 ; Delay
ORR r12, r12, r12 ; Delay
LDR r11, [r8, #0x18] ; Get ep1 CSR
38 Application Note

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
B ep1_sr5 ; make sure SST cleared

ep2_sr6 MOV r12, #0x02
STR r12, [r8, #0x18] ; Clear TPC
ORR r12, r12, r12 ; Delay
ORR r12, r12, r12 ; Delay
ORR r12, r12, r12 ; Delay
LDR r12, [r8, #0x18] ; Get ep2 CSR
TST r12, #0x02 ; Look for TPC
BNE ep2_sr6 ; Branch if TPC not cleared

; Don’t enable DMA1 (IN) until after you have received another OUT data packet
; Unless you had an error.

ep2_sr7 TST r11, #0x1C ; Look for SST or TUR or TPE
BEQ done
mov r1, #0x11 ; Enable DMA1
str r1, [r0, #0x24]

;---
; End of service routine for UDC
;---

done STR r9, [r8, #0x30] ; Clear request bits
LDMEA r13!, {r0-r7} ; get non banked registers from stack
B UDCL0

;---
; Subroutines
;---

;remember: this will invalidate any data in either XMIT/RCV FIFO’s
udc_rst MOV r8, #0x80000000 ; UDC base address

ldr r12, [r8] ; Read UDC Control Reg
tst r12, #0x02 ; Look for UDC Active
bne udc_rst ; Loop until not active

udc_off mov r12, #0x01 ; Disable UDC
STR r12, [r8] ; write to register
ORR r12, r12, r12 ; Delay
ORR r12, r12, r12 ; Delay
ORR r12, r12, r12 ; Delay
ldr r12, [r8] ; look at the UDCCR
cmp r12, #0x41 ; disabled?
BNE udc_off ; Loop if not disabled

udc_on MOV r12, #0x00 ; Enable UDC & all interrupts
STR r12, [r8] ; write to register
ORR r12, r12, r12 ; Delay
ORR r12, r12, r12 ; Delay
ORR r12, r12, r12 ; Delay
Application Note 39

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
ldr r12, [r8] ; look at the UDCCR
cmp r12, #0x00 ; enabled?
BNE udc_on ; Loop if not enabled

maxpout MOV r12, #MAX_OUT_PKT_MINUS1
STR r12, [r8, #0x08] ; set OUT MaxP
ORR r12, r12, r12 ; Delay
ORR r12, r12, r12 ; Delay
ORR r12, r12, r12 ; Delay
ldr r12, [r8, #0x08] ; look at OUT MaxP
cmp r12, #MAX_OUT_PKT_MINUS1; Correct?
BNE maxpout ; Loop if not correct

maxin MOV r12, #MAX_IN_PKT_MINUS1
STR r12, [r8, #0x0c] ; set IN MaxP
ORR r12, r12, r12 ; Delay
ORR r12, r12, r12 ; Delay
ORR r12, r12, r12 ; Delay
ldr r12, [r8, #0x0c] ; look at IN MaxP
cmp r12, #MAX_IN_PKT_MINUS1 ; Correct?
BNE maxin ; Loop if not correct

mov pc, lr ; Return from subroutine

;---
pktcheck

mov r0, #0x1 ; assume good comparison
ldr r1, =MBASE ; get address of MBASE
ldr r2, =OUTPKT1 ; get address of first packet
mov r5, #0x0 ; init index
mov r6, #508 ; check 127 long words (so, 508/4=127)

pktchkloop
ldr r3, [r1, r5] ; get data sent via USB
ldr r4, [r2, r5] ; get golden data
cmp r3, r4 ; compare the two
movne r0, #0x0 ; if not equal, show BADPKT sign
bne writeLED ; go show it
teq r5, r6 ; See if we’re done
addne r5, r5, #0x4 ; if no, increment index
bne pktchkloop ; if no, loop

; r0 = data to display on the LED in register.
writeLED

mov r5, #0x80000000 ; base address of MCP
add r5, r5, #0x60000 ;
mov r6, #0x00010000 ; set the write bit
orr r6, r6, r0 ;
str r6, [r5, #0x10] ; display to LED

mov pc, lr ; Return from subroutine

;---
40 Application Note

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
initLED
mov r3, #0x80000000 ; base address of MCP
add r3, r3, #0x60000 ;
mov r6, #0x00052000 ; turns on MCP
add r6, r6, #0x800 ;
add r6, r6, #0x00F ;
str r6, [r3] ; put 0x0005280F into reg 0x80060000

initLED2
ldr r6, [r3, #0x18] ; get status
tst r6, #0x1000 ; test CWC
beq initLED2 ; wait for a one

mov r6, #0x38000 ; turn on two codec leds (red and
green)

add r6, r6, #0x7F ;
str r6, [r3, #0x10] ; put 0x0003807F into reg 0x80060010

mov pc, lr ; Return from subroutine

;---
; Data spaces
;---

OUTPKT1
DCB 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F
DCB 0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1A,0x1B,0x1C,0x1D,0x1E,0x1F
DCB 0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28,0x29,0x2A,0x2B,0x2C,0x2D,0x2E,0x2F
DCB x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3A,0x3B,0x3C,0x3D,0x3E,0x3F

OUTPKT2
DCB 0x40,0x41,0x42,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4A,0x4B,0x4C,0x4D,0x4E,0x4F
DCB 0x50,0x51,0x52,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5A,0x5B,0x5C,0x5D,0x5E,0x5F
DCB 0x60,0x61,0x62,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6A,0x6B,0x6C,0x6D,0x6E,0x6F
DCB 0x70,0x71,0x72,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7A,0x7B,0x7C,0x7D,0x7E,0x7F

OUTPKT3
DCB 0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8A,0x8B,0x8C,0x8D,0x8E,0x8F
DCB 0x90,0x91,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9A,0x9B,0x9C,0x9D,0x9E,0x9F
DCB 0xA0,0xA1,0xA2,0xA3,0xA4,0xA5,0xA6,0xA7,0xA8,0xA9,0xAA,0xAB,0xAC,0xAD,0xAE,0xAF
DCB 0xB0,0xB1,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,0xB9,0xBA,0xBB,0xBC,0xBD,0xBE,0xBF

OUTPKT4
DCB 0xC0,0xC1,0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xCB,0xCC,0xCD,0xCE,0xCF
DCB 0xD0,0xD1,0xD2,0xD3,0xD4,0xD5,0xD6,0xD7,0xD8,0xD9,0xDA,0xDB,0xDC,0xDD,0xDE,0xDF
DCB 0xE0,0xE1,0xE2,0xE3,0xE4,0xE5,0xE6,0xE7,0xE8,0xE9,0xEA,0xEB,0xEC,0xED,0xEE,0xEF
DCB 0xF0,0xF1,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,0xF9,0xFA,0xFB,0xFC,0xFD,0xFE,0xFF

OUTPKT5
DCB 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F
DCB 0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1A,0x1B,0x1C,0x1D,0x1E,0x1F
DCB 0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28,0x29,0x2A,0x2B,0x2C,0x2D,0x2E,0x2F
DCB 0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3A,0x3B,0x3C,0x3D,0x3E,0x3F
Application Note 41

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
OUTPKT6
DCB 0x40,0x41,0x42,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4A,0x4B,0x4C,0x4D,0x4E,0x4F
DC0 x50,0x51,0x52,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5A,0x5B,0x5C,0x5D,0x5E,0x5F
DCB 0x60,0x61,0x62,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6A,0x6B,0x6C,0x6D,0x6E,0x6F
DCB 0x70,0x71,0x72,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7A,0x7B,0x7C,0x7D,0x7E,0x7F

OUTPKT7
DCB 0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8A,0x8B,0x8C,0x8D,0x8E,0x8F
DCB 0x90,0x91,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9A,0x9B,0x9C,0x9D,0x9E,0x9F
DCB 0xA0,0xA1,0xA2,0xA3,0xA4,0xA5,0xA6,0xA7,0xA8,0xA9,0xAA,0xAB,0xAC,0xAD,0xAE,0xAF
DCB 0xB0,0xB1,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,0xB9,0xBA,0xBB,0xBC,0xBD,0xBE,0xBF

OUTPKT8
DCB 0xC0,0xC1,0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xCB,0xCC,0xCD,0xCE,0xCF
DCB 0xD0,0xD1,0xD2,0xD3,0xD4,0xD5,0xD6,0xD7,0xD8,0xD9,0xDA,0xDB,0xDC,0xDD,0xDE,0xDF
DCB 0xE0,0xE1,0xE2,0xE3,0xE4,0xE5,0xE6,0xE7,0xE8,0xE9,0xEA,0xEB,0xEC,0xED,0xEE,0xEF
DCB 0xF0,0xF1,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,0xF9,0xFA,0xFB,0xFC,0xFD,0xFE,0xFF

MBASE DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

MBASE2 DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
42 Application Note

USB Client Device Validation for the StrongARM™ SA-1100 Microprocessor
OUTCOUNT DCD 0
UDC_ADDR DCD 0
EP0_STATE DCD EP0_IDLE
SETUP_CNT DCD SETUP_CNT
MORE_SETUP_CNTDCD 0
CONFIG_DESC_SIZEDCD9
DEVICE_REQDCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
CONFIG_DESCDCB 0x09, 0x02, 0x2e, 0x00, 0x01, 0x01, 0x00, 0x80, 0x32

DCB 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00
CONFIG_DESC_OLDDCB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
ROM_ADDR DCD 0
BB DCD 0

END
Application Note 43

stomer
Support, Products, and Documentation
If you need technical support, a Product Catalog, or help deciding which documentation best meets
your needs, visit the Intel World Wide Web Internet site:

http://www.intel.com

Copies of documents that have an ordering number and are referenced in this document, or other
Intel literature may be obtained by calling 1-800-332-2717 or by visiting Intel’s website for
developers at:

http://developer.intel.com

You can also contact the Intel Massachusetts Information Line or the Intel Massachusetts Cu
Technology Center. Please use the following information lines for support:

For documentation and general information:

Intel Massachusetts Information Line

United States: 1–800–332–2717

Outside United States: 1–303-675-2148

Electronic mail address: techdoc@intel.com

For technical support:

Intel Massachusetts Customer Technology Center

Phone (U.S. and international): 1–978–568–7474

Fax: 1–978–568–6698

Electronic mail address: techsup@intel.com

	Universal Serial Bus (USB) Client Device Validation for the StrongARM™ SA-1100 Microprocessor
	Copyright Page
	Contents
	Figures
	Tables
	1.0 Introduction
	1.1 Test Description
	1.2 Document Scope
	1.3 References Documents
	1.4 System Configuration
	1.4.1 Required Materials
	1.4.2 2.2 Setup

	1.5 Procedure
	1.5.1 Loading Host Software
	1.5.2 Testing Procedure

	2.0 Description of the UDC Controller code
	3.0 Description of the USB Test Suite
	4.0 SA-1100 Microprocessor Assembly Code
	Support, Products, and Documentation

