
EBSA-110 and EBSA-285 Flash
ROM Access Via JTAG
Application Note

October 1998

Order Number: 278205-001

Application Note

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The EBSA-110 and EBSA-285 may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product o rder.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel’s website at http://www.intel.com.

Copyright © Intel Corporation, 1998

*Third-party brands and names are the property of their respective owners.

**ARM and StrongARM are trademarks of Advanced RISC Machines, Ltd.

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
Contents
1.0 Introduction...1

1.1 New System Development ..1
1.2 JTAG - Joint Test Action Group ..2

1.2.1 IEEE 1149.1 Utilization...2
1.2.2 Extended Use of JTAG Test Circuitry ..2

1.3 StrongARM** Evaluation Boards...3
1.3.1 EBSA-110...3
1.3.2 EBSA-285...3

1.4 How to Use This Document...3

2.0 About JTAG - An Introduction ..4

2.1 What Is IEEE Standard 1149.1 ...4
2.2 Why Use JTAG..4
2.3 Test Circuit Implementation...5

2.3.1 Fundamentals...5
2.3.2 JTAG Interface ...7
2.3.3 Registers ..7
2.3.4 Endian Issues...8
2.3.5 Instruction Register ..8
2.3.6 Boundary Scan Register ..8
2.3.7 Bypass Register ...8
2.3.8 Identification Register...9

2.4 The JTAG Instruction ..10
2.5 Using IEEE 1149.1 JTAG..11

2.5.1 System Analysis ...11
2.5.2 State Machine ..11
2.5.3 Navigating States ...11
2.5.4 Loading Registers ..12

2.6 General Considerations...13
2.6.1 Requirements ...13
2.6.2 Access of Tristate Outputs or Bidirectional Designs13
2.6.3 Irrelevant Device Pins and Use of JTAG..13

3.0 Evaluation Boards, Devices, and Using JTAG...14

3.1 Nomenclature ..14
3.2 Device Background Information ..14

3.2.1 SA-110 Microprocessor..14
3.2.2 21285 System Core Logic IC ...14

3.3 Using the System Architecture ..15
3.3.1 EBSA-110...15
3.3.2 EBSA-285...17
3.3.3 BSR Signals Analysis and Use ..18
3.3.4 Special Address Lines..18
3.3.5 Memory Mapping..18
3.3.6 CPU Memory Cycle on the EBSA-110 ...19
3.3.7 CPU Memory Cycle on the EBSA-285 ...20
Application Note iii

3.3.8 TAP Connector... 21
3.3.9 Suggested Cable Connections... 21

4.0 Program Implementation.. 22

4.1 Structures and Libraries ..22
4.2 Initializing JTAG and System Checks ... 23

4.2.1 Cable Connections and Power... 23
4.2.2 Asserting Resets .. 23
4.2.3 Device Counting... 24
4.2.4 Identification Check.. 24
4.2.5 Recognizing the Connected Board .. 24
4.2.6 Loading BYPASS/EXTEST .. 24

4.3 Accessing the Flash Memory .. 25
4.3.1 BSR Modeling in Software ... 25
4.3.2 Flash ID Check... 25
4.3.3 Block Size .. 25
4.3.4 Flash Type ... 25
4.3.5 Software Functions .. 26
4.3.6 Program Image Types.. 26
4.3.7 Speed Optimizations .. 27
4.3.8 Power-Down Caution ... 28

4.4 Future Development..28
4.4.1 ECP Ideas .. 28

5.0 Integrated Circuit JTAG Information... 29

6.0 User Guide for ROM_PGM.EXE ..34

6.1 Requirements.. 34
6.2 Syntax ... 34
6.3 Defaults ... 35
6.4 Usage.. 35
6.5 Error Conditions .. 35

6.5.1 Fatal Errors ..36
6.5.2 Non-Fatal Errors... 38

6.6 Completion Times ... 38

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
Figures

1 Typical JTAG Daisy-Chain ..2
2 JTAG State Machine ...5
3 IEEE 1149.1 JTAG Standard Circuit Implementation..6
4 JTAG Register View ..8
5 TAP Signals Example..12
6 EBSA Daisy-Chain ..15
7 Reset System on the EBSA-110 ...16
8 Reset System on the EBSA-285 ...17
9 Simplified EBSA-110 Memory Read-Write..19
10 Simplified EBSA-285 Memory Read-Write..20

Tables

1 TAP Pin Names...7
2 JTAG Registers Description ..7
3 Identification Register Format ...9
4 JTAG Commands..10
5 Transceiver Cable Connections ..21
6 ROM_PGM.EXE Libraries, Structures, and Main Module...................................22
7 Image Header Format (FMU) ..26
8 SA-110/21285 JTAG Instructions..29
9 SA-110/21285 JTAG Identity Codes ...29
10 BSR: Data Bus Cells ...30
11 BSR: Address Bus Cells..31
12 SA-110 BSR: Miscellaneous Cells ..32
13 21285 BSR: Miscellaneous Cells ..33
Application Note v

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
1.0 Introduction

This document describes the software and hardware required to access Flash memory, via JTAG, on the
EBSA-110 and EBSA-285 StrongARM** evaluation boards. It includes information about a software
tool allowing program images to be downloaded from a PC, to the Flash memory on these boards.

This application note is based on the development work of a JTAG-based programming utility, for
the Flash memory on the EBSA-110 and EBSA-285 platforms. It complements the existing Flash
Management Utility (FMU).

1.1 New System Development

All microprocessor systems require a boot mechanism from the reset address. This program is
typically kept in ROM. However, it is becoming increasingly attractive to replace ROM with Flash
technology for the following reasons:

• It is non-volatile; contents are preserved when powered down (same as ROM).

• Can be reprogrammed in-situ to cater for upgrades, different uses, added features etc.

• Can be selectively reprogrammed by Flash block (typically 64 KB blocks in byte-wide
devices).

Systems often had socketed ROMs to allow programming at the manufacturing stage prior to
assembly, or in the case of EPROMs, removal for erasure and reprogramming. In System
Programming (ISP) is an increasingly popular alternative. This technology allows boards to be
populated without sockets, which saves cost, saves space (through enabled use of smaller package
types), and improves reliability. Even these systems may require the boot-block to be
preprogrammed into the device before assembly, and require expensive rework should the boot
image get corrupted or require upgrading.

JTAG is a potential solution to the problem of programming a blank Flash part, in system, prior to
any normal processor code execution. It also fits well with the demands of increasing system
complexity, miniaturization and automation during the development, verification, manufacture and
deployment of new products. This issue (not the JTAG ISP) is well documented in the IEEE 1149.1
JTAG Standard.
Application Note 1

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

t.
rts.

ntly
ration.
in
ion.
 a

ad
ever,
1.2 JTAG - Joint Test Action Group

Rather than use conventional test equipment, the JTAG standard describes the design of special
on-component test circuitry. This can access the external pins of an IC and its’ internal circuits, when
placed in a designated test mode. Some devices support only the access of pins through JTAG, but not
the internal circuitry. The JTAG register associated with the functional pins of a device is called the
Boundary Scan Register. A collection of these from a serial link of parts is known as the Boundary
Scan Chain. During normal device operation, the JTAG logic is transparent to the system.

Tests are achieved by providing stimuli and sampling the response. General operational tests may
be applied to verify that parts behave correctly. The JTAG standard also suggests that entire
hierarchical systems could be tested, using “daisy-chained” devices as illustrated in Figure 1.

JTAG fundamentals are described in more detail in Section 2.0. Please consult the full IEEE 1149.1
JTAG specification for more comprehensive information.

1.2.1 IEEE 1149.1 Utilization

JTAG compliant integrated circuits are gaining popularity, especially those with a high pin coun
Various semiconductor manufacturers now provide a range of IEEE 1149.1 compliant logic pa

1.2.2 Extended Use of JTAG Test Circuitry

Whilst primarily intended for manufacturing test, the JTAG boundary scan technology inhere
provides an ISP interface for Flash technology. The main disadvantage is slow speed of ope
However, using JTAG to program a small primary boot loader with minimal driver capability,
order to get a system running and load a more substantial image, is a very feasible proposit
Providing a simple JTAG programming utility from the parallel port on a PC allows this to be
useful tool for developers, manufacturing, and potentially end-users.

The utility described in this document is slow because of PC parallel port limitations. Downlo
time is also affected by the complexity of accessing memory in a systems' architecture. How
JTAG programming is usable, especially for image sizes of a few kilobytes.

Figure 1. Typical JTAG Daisy-Chain
2 Application Note

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
1.3 StrongARM** Evaluation Boards

The SA-110 and SA-1100 StrongARM processors, along with the 21285 core logic device for the
SA-110, are JTAG compliant devices. Two SA-110 based platforms were used to develop this
application note and associated JTAG software utility.

1.3.1 EBSA-110

The EBSA-110 is the original SA-110 verification vehicle. It consists of an SA-110, fast-static and
EDO / burst-EDO DRAM system, plus a programmed I/O subsystem. The boot path is through a
link selectable ROM or Flash device, byte packed from 8 to 32 bits. All I/O access, byte packing
and memory control is done via a pair of Complex Programmable Logic Devices (for example, the
Altera MAX 7000* family CPLDs). ROM execution includes programming the Flash boot block.

The JTAG interface can be used on the SA-110 to generate appropriate bus cycles to program the
Flash parts.

This platform is no longer produced. Please check your StrongARM sales channel for product
availability.

1.3.2 EBSA-285

The EBSA-285 superseded the EBSA-110 as a general-purpose evaluation and porting vehicle.
The board provides SDRAM support, a ROM / Flash boot path, a PCI interface and some ancillary
logic, in a device known as the 21285 core logic. The 21285 can operate as a device in a PC
system, or as the central function, configuring the PCI. A passive PCI backplane (EBSA-BPL) is
available to support the latter case.

While the SA-110 JTAG interface could be used to generate bus cycles to the 21285, and hence the
Flash port for programming, it is much simpler to bypass the SA-110 and apply the Flash
programming vectors directly to the pins of the 21285 device.

1.4 How to Use This Document

This document provides a detailed overview of the software and hardware required to program
Flash memory over JTAG on both the EBSA-110 and EBSA-285 evaluation board designs. The
following information is provided.

• Section 2.0 outlines JTAG and its operation.

• Section 3.0 outlines the hardware platforms and memory cycles required to access Flash on the
EBSA-110 and EBSA-285 boards. A summary of the JTAG to PC cable requirements is
included.

• Section 4.0 describes the software design.

• Section 5.0 summarizes documentation errata relevant to the JTAG interface.

• Section 5.0 provides JTAG circuit information for the SA-110 and 21285 devices.

• Section 6.0 provides a user guide for the programming utility including a summary of the error
messages.
Application Note 3

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
2.0 About JTAG - An Introduction

The purpose of this section is to provide an introduction for engineers unfamiliar with the JTAG
testing system. It is not a complete definitive reference.

2.1 What Is IEEE Standard 1149.1

The Joint Test Action Group (JTAG) is a committee board of delegates from a number of the
world’s leading electronic equipment companies and semiconductor manufacturers. It was formed
by the IEEE to help establish and govern a methodical approach to implementing on-component
testing circuitry. The IEEE 1149.1 Standard for JTAG, titled Standard Test Access Port and
Boundary-Scan Architecture, mostly contains details for integrated circuit designers wishing to
incorporate the test circuitry.

2.2 Why Use JTAG

When testing some modern design circuit assemblies, problems can arise with conventional test
equipment, whether it is automated or not. The difficulties originate from the continuing trend to
design products physically smaller, calling for assembly techniques using surface mount components.
Prime examples of these are BGAs (Ball Grid Arrays), flat pack devices, and small outline IC
packages. Device pin counts are increasing and lead spacing is decreasing. Accessibility of pins and
the mechanical durability of solder joints cause these problems to arise in product verification.

Electrical continuity between device leads and the PCB can become questionable, especially after
cumbersome and heavy probes are attached. Mechanical stresses can easily break a soldered joint
and lift a pin away from the board when a probe is removed. A second concern is whether or not
device pins can be accidentally made short circuit by the probes, damaging the device at test power
up. This is attributed to the fine spacing of the leads.

A more appropriate way of testing devices and systems is called for. This means including test
circuitry on the semiconductor devices, known as a Boundary Scan Test Architecture. This can
access the physical pins for monitoring purposes. By strategically setting logical states on pins, and
sampling the response, the electrical continuity of signal paths can be checked on the circuit board.
General device testing may also be done to check behavioral responses to stimuli data.

A standardized test circuit was adopted by the JTAG committee. It is designed to allow normal
operation of the IC, unless a test mode is activated. This forms a circuit given the acronym of
BILBO - Built In Logic Block Observer.
4 Application Note

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
2.3 Test Circuit Implementation

2.3.1 Fundamentals

The JTAG system is designed into a device, as a group of registers of various size and use,
controlled by a logic block and instruction decoder. A dedicated connection port provides external
access to the test circuitry.

The internal controller block governs the operation of the JTAG circuit, which provides the
necessary internal enable signals for the multiplexers and registers. It conforms to a state machine,
shown in Figure 2. The states are best described in the IEEE 1149.1 JTAG Standard.

The design is semi-static allowing the current state to be retained unless a reset, power loss, or the
next JTAG clock transaction occurs.

Figure 2. JTAG State Machine
Application Note 5

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
Figure 3 shows a diagram of a typical digital integrated circuit device, with JTAG circuitry
included. Notice that the test circuit is separate from the functional core of the IC, and only the
external pins of the device are shared by both parts, with the exception of the TAP pins.

Figure 3. IEEE 1149.1 JTAG Standard Circuit Implementation
6 Application Note

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
2.3.2 JTAG Interface

The external interface to the test circuitry is known as the Test Access Port (TAP), and consists of
four mandatory functional pins and an optional reset input. Table 1 details these connections.

Pull-ups on the TMS and TCK inputs give a degree of immunity from electrical noise, and default
the JTAG logic to a predictable state.

2.3.3 Registers

Figure 3 shows the arrangement of registers in a typical JTAG implementation.

Register access is dependent upon the JTAG instruction executed. External data between TDI and
TDO is serially transferred, least significant bit first. The difference in register sizes cause data
packet lengths to be variable. All registers (with exception to the Bypass Register) are parallel
accessed for data load functions, but this is unavailable to the JTAG user.

During Test Logic Reset state, the TAP controller selects either the Bypass or Identification
Register to be connected between TDI and TDO. This is a safety feature, as these registers have
minimal system impact.

Information about the JTAG registers is presented in Table 2.

Table 1. TAP Pin Names

Pin Name Type Purpose

Test Data In, TDI Input, with
pull-up To input data into the device upon rising edges of TCK transitions.

Test Data Out,
TDO

Tristatable
Output To output data from the device upon falling edges of TCK transitions.

Test Mode
Select, TMS

Input, with
pull-up

To signal the intention to proceed onto the next stage of the JTAG state
machine, upon rising edges of TCK transitions.

Test Clock, TCK Input To provide a strobe signal to sample data into, and clock data out of the
device.

Test Reset,
TRST

Input, with
pull-up

To reset the JTAG circuitry to a known initial condition. It has the same
effect as the Test Logic Reset state. This input is asynchronous to TCK
and is active low.

Table 2. JTAG Registers Description

Register Name Purpose

Instruction
Register, IR To hold the current instruction opcode value, for the intended task.

Boundary Scan
Register

To hold the data read from, or to be written to device pins, and is likely to be the largest
register length in the JTAG device. It is divided into shift register stages called cells, and can
contain various cell types; output, input, internal, linkage, and control.

Bypass Register

To shorten the length of a JTAG daisy-chain, for all subsequent Shift Data-Register loads.
When a BYPASS instruction has been loaded into a specific device, this register is
connected between the TDI-TDO data path, effectively reducing register size to one cell for
that component.

Test data
Register
(Optional)

To hold specific data for manufacturers testing purposes. In some devices, these registers
may provide additional functionality to the part.

Identification
Register
(Optional)

To hold a 32-bit composite word of predefined data, containing a manufacturer’s number, a
part number, and version information. The least significant bit is always set to logic 1, intended
to be used by automated JTAG processes to identify the data as being from this register.
Application Note 7

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

data

-chain,

a
ilized

ates of

the
 time,

educe
o reach
g

ain.
2.3.4 Endian Issues

All IEEE 1149.1 JTAG compliant designs require registers to be little endian, where the least
significant bit or cell is “nearest the TDO pin”, as depicted in Figure 4.

2.3.5 Instruction Register

The Instruction Register is typically 8-bits in length or smaller, and contains valid instruction
in the Update-IR state. During a Shift-IR loading sequence, data can be clocked through this
register out of TDO. Instructions can be passed to any subsequent devices in the JTAG daisy
in this way.

Note that in the Capture-IR state, the previous instruction will be overwritten each time with
predetermined binary value of '01' for the two least significant bits. Remaining bits may be ut
as status flags or are set to fixed logic states.

2.3.6 Boundary Scan Register

The largest of the registers is the Boundary Scan Register, which reads and writes logical st
JTAG device pins. It is implemented as a shift-register of macrocells containing several
multiplexers and flip-flops. In the Update-DR state, it contains valid stimuli data. In the
Capture-DR state, response data is sampled. This means that data clocked into a device in
Shift-DR state can accordingly set pin outputs in the following Update-DR state. At the same
the clocking action will shift out sampled pin data from the previous Capture-DR state.

Note that output cells can be overwritten to predetermined “safe” logic states. This is
implementation specific.

2.3.7 Bypass Register

The Bypass Register is only one shift register stage. It is used in daisy-chained systems to r
the number of register stages that need to be clocked through. This allows specific test data t
the intended device more quickly. The Bypass Register is NOT effective for instruction loadin
sequences, therefore Instruction Register lengths cannot be shortened in the JTAG daisy-ch

Figure 4. JTAG Register View

A4692-01

TDI TDOBit
n

Bit
n-1

Bit
n-2

Bit
n-3

Bit 3 Bit 2 Bit 1 Bit 0

MSB LSBRegister implementation
8 Application Note

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
2.3.8 Identification Register

The ID register holds a formatted 32-bit data word containing device information. It can be used to
distinguish JTAG parts in a daisy-chained system. The register structure is explained in Table 3.

The Manufacturer’s Identity code field is formed by taking the most significant byte of the JEDEC
code unique to the manufacturer, and discarding its parity bit. This determines the seven least
significant bits. The remaining four bits hold a binary count value of the number of 0x7F
continuation bytes in the original code. JEDEC codes are governed by the EIA / JEDEC office.
Information can be found in their publication, JEP106.

Table 3. Identification Register Format

Bit field Usage Description

0 Pre-set to logic 1 An identity packing bit intended for distinguishing that this is valid data.

1..11 Manufacturer’s
Identity code

An 11-bit compressed version of a standard JEDEC number uniquely
identifying the manufacturer.

12..27 Part number A 16-bit word of unique value for a particular device.

28..31 Version number A 4-bit word holding the silicon revision number of the particular IC.
Application Note 9

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
2.4 The JTAG Instruction

JTAG instructions can be either public or private. The public type are available to all users. The
private instructions are intended for reserved use by manufacturers and may invoke special tests.
Table 4 describes the JTAG commands.

Not all of the JTAG instructions may be implemented into a given device. The IEEE 1149.1
standard requires inclusion of EXTEST, SAMPLE / PRELOAD and BYPASS commands in all
compliant designs.

Most commands are given device specific opcode values, with the exception of EXTEST and
BYPASS which are predefined.

Table 4. JTAG Commands

Command
Name Nature Register

Selected Purpose

EXTEST
Mandatory,
public, opcode
value of 0.

Boundary Scan
To permit external tests where data is asserted to
drive output pins, and response is sampled from input
pins.

SAMPLE /
PRELOAD

Mandatory,
public. Boundary Scan

To take a sample of the logical state of the device
pins, without asserting test data, that is, transparent to
the normal operation of the device. Not meant for
real-time work!

BYPASS

Mandatory,
public, opcode
binary value of
all 1’s.

Bypass
To shortcut the data path, reducing the number of
data register stages in a JTAG daisy-chain. It does not
affect normal IC operation.

INTEST Optional, public. Boundary Scan To permit internal tests where stimuli data is asserted
at inputs, and response is sampled at output pins.

HIGHZ Optional, public. Bypass To force all output pins into high impedance state.

IDCODE Optional, public. Identification To present the 32-bit device specific identity code.

USERCODE Optional, public
or private. User defined To execute customized functions.

CLAMP Optional, public. Bypass
To force all output pins into a predetermined state
governed by the contents of the Boundary Scan
Register.

RUNBIST Optional, public. User defined
To execute a self-test on the internal core circuitry of
the device. External signals are controlled to suppress
any interfering activity.
10 Application Note

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

 and

st
2.5 Using IEEE 1149.1 JTAG

2.5.1 System Analysis

Before JTAG can be used, the precedence order of devices in the application daisy-chain should be
examined. Each IEEE 1149.1 compliant device will have permitted architectural variations, such as
in register lengths and register omissions. The Boundary Scan Register will be architecturally
unique for a given device type, and information about this can be found in BSDL “descriptive
language” files. Instruction opcodes will be different for each device type, except for EXTEST
BYPASS, which are predefined. All of this information needs to analyzed carefully.

2.5.2 State Machine

The state machine diagram shown in Figure 2 aids the applications engineer in using the JTAG te
circuitry. There are only three basic actions performed by this state machine, in general:

• Do nothing; Reset-idle.

• Load a new instruction.

• Load new data into a selected data register.

Most of the states perform internal action, such as initializing and updating registers. Other states
are regarded as temporary, which exit or wait between the operative ones. From the JTAG user’s
point of view, the Shift-DR and Shift-IR states are of most concern. These allow new data to be
clocked into the selected register from TDI, and captured data to be clocked out of TDO.

The typical sequence of events is to load an instruction, and then load the data into the register
selected by the command.

2.5.3 Navigating States

By toggling the state of the TMS pin and strobing TCK, the state machine can be traversed. After
power up or assertion of TRST, the circuitry waits in Test Logic Reset state for as long as TMS is
logic high, and TCK is strobed. Before the JTAG circuitry is activated, Run-Test / Idle state must
be entered.
Application Note 11

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
2.5.4 Loading Registers

To begin loading a register, the appropriate Select-xx-Scan state must be entered. The Instruction
Register is exclusively loaded by following the Select-IR-Scan sequence of the state machine
diagram. All other registers are loaded by the Select-DR-Scan path.

The data word or instruction word is loaded in the Shift-xx state, one bit at a time per strobe of
TCK, keeping TMS logic low. An important point to note is that the last bit of the word is clocked
in when leaving the Shift-xx state. Care should be taken to meet this requirement.

Figure 5 shows a typical sequence of signal events to load a four bit command word (10 decimal)
into the Instruction Register. The Pause-xx and Exit2-xx temporary states are not used in this
example. Note that the old Instruction Register contents are clocked out of TDO - see Section 2.3.5
for a description of this data. On the final bit load, TCK transaction 16 presents bit 0 of the new
instruction word on TDO. A similar procedure is followed to load a data register, except
transaction 4 is omitted.

Figure 5. TAP Signals Example
12 Application Note

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

hould
eans
2.6 General Considerations

2.6.1 Requirements

Requirements for the clock signal, TCK, are quite loosely defined by the IEEE 1149.1 JTAG
Standard. Specifications include the maximum operating frequency, full timing details of the
implementation, standard logic threshold levels, and TDO drive / fan-out characteristics. To the
JTAG user, only the maximum TCK frequency and minimum assertion time of TRST will be of
concern, assuming that all set-up and hold timings are met for the TAP signals.

To permit normal function of the integrated circuit, the onboard JTAG boundary scan circuitry
must be forced into an inactive condition by execution of the BYPASS or IDCODE commands, or
by forcing a reset state by assertion of TRST.

2.6.2 Access of Tristate Outputs or Bidirectional Designs

An important concern is presented in the case of devices with tristate outputs or bi-directional
technologies. Care must be exercised when accessing such pins in test mode, to avoid possible
contention between external signals and output drivers. This means examining the design of each
JTAG device for the enabling signals of each output pin driver, and controlling these as
appropriate.

2.6.3 Irrelevant Device Pins and Use of JTAG

In most JTAG applications, only a subset of available pins in the Boundary Scan Register will need
to be used. The irrelevant pins will still need consideration. Logic levels on inputs may be regarded
as “don't care”, because all inputs are high impedance and need not be controlled. Outputs s
be treated so that they retain their quiescent states, as exercised in normal operation. This m
active low outputs remain logic high, and active high outputs remain logic low.
Application Note 13

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
3.0 Evaluation Boards, Devices, and Using JTAG

Section 1.0 and Section 2.0 outlined the application problem and the IEEE 1149.1 JTAG Standard.
This section describes the necessary specifics for implementing software to access Flash memory,
via JTAG, on the EBSA-110 and EBSA-285. It should be read in conjunction with the following
documents from Intel:

• 21285 Core Logic for the SA-110 Microprocessor Data Sheet (Order number 278115-001)

• EBSA-285 Evaluation Board Reference Manual (Order number 278136-001)

• SA-110 Microprocessor Technical Reference Manual (Order number 278058-001)

• EBSA-110 Schematic Directory

• EBSA-285 Schematic Directory

Note: Please consult Section 5.0 for documentation errata.

3.1 Nomenclature

• 32-bit data is referred to as a ’Dword’.

• The JTAG programming software is known as “the software”.

• The Boundary Scan Register is abbreviated to ’BSR’.

• 4-byte hexadecimal values are shown in the format: ’xxxx.xxxx’.

3.2 Device Background Information

3.2.1 SA-110 Microprocessor

The StrongARM** microprocessor is based on Version 4 of the ARM** architecture. It is
optimized for use in low power, high performance applications.

The CPU has 32-bit wide data and address buses, which may be disabled externally to allow other
system peripherals to access specific devices. Control bus signals are used for Flash memory
programming and need to be appropriately asserted or de-asserted by the software.

The Boundary Scan Register of this device is 130 stages long, and the Instruction Register holds
five bits. The SA-110 supports six JTAG instructions. Section 5.0 has information about this part.

3.2.2 21285 System Core Logic IC

The 21285 is a device providing core logic to simplify systems design with the SA-110. The main
features of the device include an interface to a PCI bus system, and a memory controller for
different types of SDRAM.

The Boundary Scan Register of this device is 360 stages long, and the Instruction Register holds
four bits. The 21285 supports six JTAG instructions. Section 5.0 has information about this part.
14 Application Note

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
3.3 Using the System Architecture

The JTAG device chain on the EBSA-110 and the EBSA-285 is illustrated in Figure 6.

3.3.1 EBSA-110

The EBSA-110 has only a single JTAG device in the daisy-chain; the SA-110. Flash memory
communications must be performed via this part.

The ’CTA’ and ’CTB’ programmable logic system control blocks must be used to access the Flash
by emulating CPU memory read and write cycles. The drawback of working around the system
architecture is a greater overhead of processing data. Only a small amount of this is data to or from
the Flash memory.

The CTB device operates several data bus buffers, which are arranged to act as byte packing stages.
This allows only a byte-wide ROM memory to be required in the design.

Dwords may be read from Flash, being automatically assembled by the byte packing stages, from
four contiguous bytes. Data is constructed in two steps, where the first set of packing buffers make
two 16-bit words from four 8-bit bytes. The second set of buffers assemble a Dword from two
16-bit words. Two read modes are supported; single-beat (non-sequential) and multi-beat (burst).

Only single bytes may be written to the Flash, presenting the data on the low order byte lane and
controlling the byte select lines, PAKA[1:0]. Dwords can be formed by separately writing the four
bytes in contiguous memory address space.

Figure 6. EBSA Daisy-Chain
Application Note 15

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
SRST on the JTAG TAP must be asserted low to halt the SA-110. The nRSTO output of this device
should be set logic low initially, to reset other components in the EBSA-110 system. To allow the
Flash and system logic parts to function, this reset output must be subsequently taken high. Control
of the nRSTO signal is achieved via the BSR. Figure 7 shows the reset system in detail.

Figure 7. Reset System on the EBSA-110
16 Application Note

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
3.3.2 EBSA-285

The SA-110 precedes the 21285 in the EBSA-285 JTAG daisy-chain. Flash memory should be
accessed via the latter device, whilst the CPU is placed into BYPASS mode. This provides the
simplest programming method.

The board has four Flash parts, which are byte wide and arranged in parallel. They are simply
interfaced to the system, allowing easy memory communication.

The SA-110 should be held in reset state by asserting the nRESET pin low via the respective 21285
output pin. This grants address and data bus access. SRST should be set logically high and jumpers
J9 and J10 should be left open. Jumper J17 has a connection for an external reset push-button
which should also be left open. These settings permit the Flash memory to operate, otherwise the
Flash stays in reset state where it does not drive its’ outputs.

In between the 21285 and Flash memory are LVT16244 buffers on the data and address buses. The
’bus-hold’ feature of these buffers will operate when the Flash outputs are tristated, that is, when
held in reset. Since the bus-hold technology is like a transparent latch, the jumper problem can be
verified by reading the held data. Please refer to the manufacturers data for more details.

The reset system for the EBSA-285 is illustrated in Figure 8.

Figure 8. Reset System on the EBSA-285
Application Note 17

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
3.3.3 BSR Signals Analysis and Use

Please consult Section 2.3.6 for a description of the BSR functionality.

The JTAG device used for communications is loaded with the EXTEST command. This needs to
be performed only once for the whole series of Flash operations that follow. These operations are
accomplished by loading several sequences of data in the format of the BSR.

The appropriate BSDL file should be carefully analyzed for signals relevant to the Flash memory
device. The evaluation board schematics will provide information about which lines to control.
These will include data and address buses, chip enable, read/write enable, output enable, and some
internal controls. Note that some higher order address bits perform a few of these signal functions.

From BSDL files for the SA-110 and 21285 devices, the following tables have been drawn up:

• Data bus cells for both SA-110 and 21285

• Address bus cells for both SA-110 and 21285

• Control cells for the SA-110

• Control cells for the 21285

3.3.4 Special Address Lines

On the EBSA-110, memory reads automatically present Dword data on D[31:0]. For memory
writes, data must be presented on D[7:0] and the PAKA[1:0] byte select lines must be used,
programmed via A[23:22]. A binary code on the address lines will generate the same effect on the
byte select lines.

An example addressing sequence of writing two consecutive Dwords on the EBSA-110 is shown below:

On the EBSA-285, address lines A[1:0] are set to ’00’ in the Dword mode. The 21285 device routes
CPU address lines A[3:2] to the Flash memory address pins A[1:0], respectively. This gives an
incremental address of four, owing to that many bytes per Dword.

ROM_WE_L and ROM_OE_L are generated by respective high-order address lines, A[31:30]. To
facilitate different ROM widths in a system, A[29:28] are used by the 21285 to deal with their
addressing, but are not required in this case. The remaining lines, A[23:4], address the Flash memory.

3.3.5 Memory Mapping

For simplicity of accessing Flash memory via JTAG on the evaluation boards, the following address
information should be applied. These values ignore all high-order address line control signal bits as
described in Section 3.3.4. (This does not mean that the software should ignore controlling them!)

• EBSA-110 Flash memory can be addressed from 0x8000 0000 up to 0x800F FFFF (20-bits).

• EBSA-285 Flash memory can be addressed from 0x0000 0000 up to 0x004F FFFF (22-bits).

The origin of these address values can be explained. In normal operation, the address map
quadrants 1 and 3 will swap upon the first detected CPU memory write. For the EBSA-110 this is
also true when programming via JTAG, but it is automatic. However, for the EBSA-285, this is not
the case since programming is achieved via the 21285 device and does not involve the CPU.

• 0x8000 0000, <Dword 1, byte 0> • 0x8000 0004, <Dword 2, byte 0>

• 0x8040 0000, <Dword 1, byte 1> • 0x8040 0004, <Dword 2, byte 1>

• 0x8080 0000, <Dword 1, byte 2> • 0x8080 0004, <Dword 2, byte 2>

• 0x80C0 0000, <Dword 1, byte 3> • 0x80C0 0004, <Dword 2, byte 3>
18 Application Note

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
3.3.6 CPU Memory Cycle on the EBSA-110

Appropriate timing diagrams of Flash memory access are given in the EBSA-110 reference manual.
However, these diagrams contain more information than needed and are somewhat difficult to read. A
simplified timing diagram is given in Figure 9, which is suitable for accessing Flash via JTAG.

Figure 9. Simplified EBSA-110 Memory Read-Write
Application Note 19

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
3.3.7 CPU Memory Cycle on the EBSA-285

The timing diagrams for the EBSA-285 are straightforward, but they may be further reduced as
shown in Figure 10. This allows faster throughputs of data to be realized in the code
implementation, when using the software.

Figure 10. Simplified EBSA-285 Memory Read-Write
20 Application Note

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
3.3.8 TAP Connector

The TAP is buffered from the host PC parallel port, on the evaluation board. The physical
connection is made by a 14-way IDC connector. The pinout is shown in the two rightmost columns
of Table 5.

The connector originates from an existing microprocessor board produced by Advanced RISC
Machines, Ltd. To respect conventions, this pinout has been adopted for the EBSA-110 and
EBSA-285. A newer 20-way connector (Multi-ICE Standard) may be used on future boards.

3.3.9 Suggested Cable Connections

During the development of the software, the following connections were used in the prototype
communications cable. Details are given in Table 5. Note that this part is not commercially
available.

Approximately two meters of standard 14-way IDC was used, terminated with a matching female
connector. The PC parallel port plug should be a male 25-way D-type connector, housed in an IDC
shell hood.

A 2K pull-down resistor should be fitted between GND and the POWER_OK input pin 10, in the
D-type connector assembly, on the cable.

Note: Pins not listed in this table are regarded as “No connection”.

Table 5. Transceiver Cable Connections

From D-Type Pin Description To IDC Pin(s) Description

2 Data, PD[0]. (TCK) 9 TCK

3 Data, PD[1]. (TMS) 7 TMS

4 Data, PD[2]. (TRST_L) 3 TRST_L

5 Data, PD[3]. (SRST_L) 12 SRST_L

8 Data, PD[6]. (TDO) 5 TDI

9 Data, PD[7]. Wired back
to pin 12, (SENSE_OUT) - -

10 ACK signal, Status bit 6.
(POWER_OK) 1, 13

+5V output via a 33R limit
resistor on the evaluation
board.

11 BUSY signal, Status bit 7.
(TDI) 11 TDO

12 PE signal, Status bit 5.
From pin 9, (SENSE_IN) - -

17-25 GND (Linked pins) 2, 6, 8, 10, 14 GND
Application Note 21

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
4.0 Program Implementation

4.1 Structures and Libraries

The rom_pgm.exe software is comprised of four hierarchical libraries and a main module. With
exception to jtag_bscan.c, each one has a header file containing a small global structure of status
and data information. Some libraries contain procedures for diagnostics and code development, but
are not invoked unless you call them in modified source code. Table 6 briefly summarizes each of
the libraries and the main module.

Most functions are 8-bit unsigned char types, returning an exit code. This is either a zero for
no-error, or non-zero (1) for error. The program includes simple error trapping which will flag up
messages, and exit all called routines until the main module is reached. The code is not designed to
handle recovery from errors.

Note: In the following section, ’port’ refers to the PC parallel port.

Please refer to the source code listings for specific information.

Table 6. ROM_PGM.EXE Libraries, Structures, and Main Module

Library or
Module

Source-Name

Global
Structure Description

rom_pgm.c ProgSet
Main module containing the user interface along with the program
functionality algorithms for memory block read, write, delete, and so
forth.

jtag_pp.c Sig Contains the parallel port toggling functions and cable
connections/power test function.

jtag_ops.c JTAG Handles most of the initialization of JTAG, and navigates the state
machine as appropriate.

jtag_bscan.c N/A
Loads/unloads data and sets control signals in the BSR. Shifts the
assembled BSR bit vectors in and out of JTAG devices. It is an extension
to the library code in jtag_ops.c.

flashrom.c FLASH Contains routines for Flash memory communications, and dealing with
the system architecture for either evaluation board.
22 Application Note

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
4.2 Initializing JTAG and System Checks

To ensure that the JTAG system is correctly set up, the following steps should be performed by the
software in the given chronological order, before Flash memory is accessed.

In rom_pgm.exe, JTAG initialization is achieved by these procedures:

• Main module: rom_pgm.c, Statement: switch(Stage), case: 5.

This places JTAG devices into EXTEST or BYPASS and also asserts an appropriate reset,
depending upon the board connected.

• Library: jtag_pp.c, Routine: CommsTest().

This checks for cable presence and power-okay, returning a fault flag.

• Library: jtag_ops.c, Routine: InitJTAG().

This initializes the JTAG system and validates the connected board. If criteria are met, the program
is ready for Flash memory accessing.

• Library: jtag_ops.c, Routine: GetDeviceIDs().

This reads the JTAG identification register, and sets the operation specifics of the software to work
with the board.

4.2.1 Cable Connections and Power

The following basic checks should be carried out:

• Is the transceiver cable connected between the specified/default port and the evaluation board?

• Is the target board +5V power healthy?

The port output should be reset to a value of 0x80, waiting for a few seconds. This allows the
evaluation board power supply decoupling capacitors to discharge, as a precaution.

Detecting the cable on the port is achieved via a signal loop-back path, made in the connections for
this purpose. As SENSE_OUT will be set logic high, testing SENSE_IN allows cable presence at
the PC to be determined.

Verifying the +5V power on the target board is done by testing the POWER_OK input bit.

4.2.2 Asserting Resets

Please refer to Section 3.3 for more information about handling system resets.

The objective is to halt normal system activity but allow the parts required to function. JTAG reset
requires two signals to be appropriately asserted, which are SRST_L and TRST. The previous
value of 0x80 on the port output satisfies this.

The software should then release TRST, respecting the minimum assertion time, giving a port
output value of 0x86. TMS can be left low since TCK is not strobed at this point.
Application Note 23

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
4.2.3 Device Counting

Device counting allows a simple check to determine which JTAG instructions should be loaded
into the devices, in the daisy-chain. This must be done in order to get the ID codes from the parts.

Having reset the JTAG circuitry, the devices present will be in Test Logic Reset state. The software
must set TMS low and strobe TCK once, to exit this state.

Counting is achieved by placing all possible devices into BYPASS mode. To do this, an oversized
stream of logic 1’s is clocked in during the Shift-IR state. The number of these to be clocked in
must be more than the combined IR length of devices expected in the daisy-chain. (rom_pgm.exe
uses 32). All bypass registers should then be flushed out with logic 0’s. Device counting begins by
setting TDI logic high and strobing TCK, until a logic 1 emerges at TDO. The number of clocks
required is the number of devices in the daisy-chain.

4.2.4 Identification Check

By loading the IDCODE instruction for each device in the daisy-chain, the parts on a board may be
identified against known values. After clocking out the 32-bit data words, the upper four bits of
each ID code should be masked off for the comparison. This is the silicon revision number, which
will vary. However, the full code may be presented on the screen as useful information.

4.2.5 Recognizing the Connected Board

The combination of correct ID values for the parts and device count gives enough evidence to
decide what board is connected. Unrecognized boards should cause the software to abort further
action. From here on, the operation of the software must be customized to handle the differences
between the two boards.

4.2.6 Loading BYPASS/EXTEST

At this point, the corresponding BYPASS and EXTEST modes should be entered by the software,
for corresponding devices shown below:

• EBSA-110: SA-110 enters EXTEST.

• EBSA-285: SA-110 enters BYPASS, and the 21285 enters EXTEST.

Apart from a few system specific nuances, the JTAG system has now been initialized and is ready
to work with the Flash memory.
24 Application Note

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

o their
t is,

e. This
s data
cells.

 type. It
sh, as

pers
s is

his is
s 16
iving

e the
nsult

ts
4.3 Accessing the Flash Memory

4.3.1 BSR Modeling in Software

A bit vector of length and format of the BSR should be modeled in software by a one dimensional
unsigned char array. Each location should hold either a 1 or 0. A suggestion is to have two arrays
for incoming and outgoing vectors.

The software procedure for outgoing transactions should “fit” the address and data values int
respective cells. All control signals should be set appropriately for the desired operation, tha
tristate control buffers set for a write to Flash and memory control signals asserted.

Once the BSR bit vector has been assembled, it is then dispatched in the Shift-DR JTAG stat
is done one bit at a time per TCK strobe, using a program loop. Simultaneously, the previou
from Flash is shifted in and this will require processing to extract the data from the bit vector

4.3.2 Flash ID Check

Flash memory device ID should be checked to determine whether the parts are the expected
is also useful during software development to check if the code is correctly accessing the Fla
the ID word is a known value given in the manufacturer's data sheet.

For the EBSA-285, the procedure DetermineFlashType() in flashrom.c also checks for the jum
discussed in Section 3.3.2. If the jumper error occurs, the latched data will be 0x9090.9090. Thi
the 'INTELLIGENT_ID' Flash command last written to the device.

4.3.3 Block Size

The EBSA-110 uses only one Flash part, giving a physical memory size of 1MB by 8-bits. (T
accessed through the 32-bit to 8-bit byte packing system). Since the memory device contain
sub-blocks, this gives a block size of 64KB. On the EBSA-285, there are four Flash devices g
sixteen 256KB sized blocks, accessed using a 32-bit data path.

4.3.4 Flash Type

The EBSA boards use Intel 28F008SA-L parts. Information important to the JTAG user will b
Flash instruction set, 'Write State Machine' operation, and some timing diagrams. Please co
the data sheet for details.

It is worth noting that some Flash instructions automatically output the status register conten
upon subsequent memory reads.
Application Note 25

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

will be
ge
ngth,

er 64
es not
h
ult.

n
4.3.5 Software Functions

The functionality of rom_pgm.exe is made up of several algorithms of basic Flash operation
macros. These reside in the main module. This layer of software should be independent of system
architecture and of memory device type.

The libraries, flashrom.c and jtag_bscan.c, contain driver code for accessing and working the Flash
memory devices. Two fundamental procedures are written to emulate CPU memory read and write
cycles. Using these to access Flash, the operation macros are implemented for:

• Read Dword data

• Write Dword data

• Delete block

• Identify Flash type

4.3.6 Program Image Types

The rom_pgm.exe software does not care what the image format is, providing that binary files are
used. Images may be copied to any block, but may not run if they have been built for a specific
block. Since the target address given in the headers of some file types is not used, the software
cannot handle images larger than a single block size, that is, chained images are not supported.
Raw data images and AIF files are treated the same, where the message “Invalid image file”
displayed. The image shall still be copied, but the full block size default will be used. An ima
with an FMU header is treated differently. The filename is shown on the screen with image le
and only that number of bytes will be copied.

A standard AIF image file includes a 128 byte header. The existing FMU software adds a furth
byte header to the beginning of an AIF file. The rom_pgm.exe JTAG programming software do
do this, but will identify valid FMU headers and use parts of them when present in a file throug
inheritance. The task of writing an extra code utility to rebuild files with a header is not too diffic

The FMU image header format is given in Table 7. The size of this is 64 bytes, and uses little-endia
format. More information can be found in the appropriate evaluation board reference manuals.

Table 7. Image Header Format (FMU)

Inclusive Byte Position Description

0..3 Image type word. Always a value of 0xEB00002E.

4 Image number.

5..7 Three byte signature. Always a value of 0x00AA55.

8..11 Mapping information word.

12..15 Checksum word.

16..19 Image length word.

20..35 Filename of 16 bytes; ASCII characters.

36..39 Boot flags word.

40..63 Reserved bytes (24).
26 Application Note

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

ber
an

s this

that is,
4.3.7 Speed Optimizations

The slowest factor of the software appears to be with the PC parallel port hardware, giving a
maximum data throughput limit of 200KB per second. The ’C’ language macros for I/O, outp() and
inp(), were thought to be the cause but assembler versions of these functions were tried, giving no
better results.

A number of software optimizations have been implemented to give the best possible results within
reason. The fundamental optimizations are shown in Example 1.

Code optimizations have been made to routines in jtag_bscan.c library, where loading and
unloading of the BSR bit vector array is done. The code has been reduced to the minimum needed
by resetting all cells to logic 0, then only dealing with the important signals. This reduces the
number of conditional statements and therefore overhead time.

In the flashrom.c library, FlashWriteCyc() and FlashReadCyc() routines were originally made to
emulate “at speed” CPU memory cycles. Optimizations simplified these to the minimum num
of signal transactions, since the working speed of the JTAG software is very much slower th
normal conditions. The diagrams in Section 3.3.6 and Section 3.3.6 show the reduced waveforms.

Writing to the screen using printf statements within program loops is reduced to a minimum, a
is a relatively slow 'C' function.

In general, the best results are achieved in reviewing the fundamental level of the software,
the signal toggling port functions. This is because they are called so frequently, and quickly
compound the delay.

Example 1. Fundamental Speed Optimizations

unsigned char WritePin(unsigned char Pin, unsigned char Value)

{

/* This function will change the logic state of the pin specified,

to a specified state */

unsigned char State;

/* Get the current state of the data register, if not known initially.

This means subsequent pin writes only take one I/O port instruction

instead of two. A global flag, Sig.NewWrite, is used to determine if

the function has not been initially called. Speed optimization. */

if (Sig.NewWrite == TRUE)

{

Sig.Last_out = inp(Sig.Current_Port + OFFS_OUT);

/* Set non-zero - initialization not needed again */

Sig.NewWrite = FALSE;

}

Application Note 27

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
/* With last port out data, clear the bit, then update */

State = ((Sig.Last_out & ~(1 << Pin)) | ((Value & 1) << Pin));

outp((Sig.Current_Port + OFFS_OUT), State);

/* Update the signals status info byte */

Sig.Last_out = State;

/* Return the status byte */

return(Sig.Last_out);

}

void TCK_Strobe()

{

/* This clocks the JTAG TCK line hi-lo. NOTE: Assume TCK is low

initially from reset condition. Therefore, only two I/O routines

are called, not three in the case of "ultra-safe code" */

WritePin(B_TCK, H);

Sig.Last_out = WritePin(B_TCK, L);

}

4.3.8 Power-Down Caution

When the target board is powered down, and a number of PC parallel port outputs are set logic
high, the evaluation board can sink current. This is not desirable as damage to equipment could
result! The software should clear the port outputs as necessary, using a value of 0x80, or 0 in the
case of program exit. This has been catered for in rom_pgm.exe.

4.4 Future Development

In a further attempt to speed up the JTAG communications, research into alternative parallel port
modes could be done. Most of today’s PC machines support two additional port modes. These are
Enhanced Parallel Port (EPP) and Extended Capabilities Port (ECP) modes. The latter is more suitable.

4.4.1 ECP Ideas

Although ECP supports a handful of submodes, no speed increase is likely with the present system
setup. Submodes 0 and 2 are suggested, which are ’Compatible’ and unidirectional (outgoing)
’FIFO’ modes respectively.

Submode 3, ’ECP parallel port mode’, will require additional hardware and protocol handling as it
is incompatible with the present system setup. ECP features automatic DMA accesses to fill or
empty address and data FIFOs. Bidirectional data flow is supported. Feasible data throughputs of
up to 500KB per second can be achieved.

Information about ECP may be found in semiconductor manufacturer’s data books on Super I/O
integrated circuits.
28 Application Note

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
5.0 Integrated Circuit JTAG Information

Note: Opcodes are stated as binary values. Only six JTAG instructions have been implemented into these
two devices.

Table 8. SA-110/21285 JTAG Instructions

Instruction Opcode Value;
SA-110

Opcode Value;
21285 Description

EXTEST 00000 0000
To permit external tests where data is asserted to
drive output pins, and response is sampled from input
pins.

SAMPLE /
PRELOAD 00001 0001

To take a sample of the logical state of the device
pins, without asserting test data, that is, transparent to
the normal operation of the device. Not meant for
real-time work!

BYPASS 11111 1111
To shortcut the data path, reducing the number of
data register stages in a JTAG daisy-chain. It does not
affect normal IC operation.

IDCODE 00110 0100 To present the 32-bit device-specific identity code.

CLAMP 00100 0011
To force all output pins into a predetermined state
governed by the contents of the Boundary Scan
Register.

HIGHZ 00101 0010 To force all output pins into high impedance state.

Table 9. SA-110/21285 JTAG Identity Codes

Device Manufacturers ID Number; Bits 1 to 11 Part Number; Bits 12 to 27

SA-110 0000 0110 101 (0x35) 0001 0000 0010 1100 (0x102C)

21285 0000 0110 101 (0x35) 0100 0001 1001 0100 (0x4194)
Application Note 29

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
Table 10. BSR: Data Bus Cells

Signal Name Input Cell (SA-110) Input Cell (21285) Output Cell
(SA-110)

Output Cell
(21285)

D[0] 65 357 64 358

D[1] 63 355 62 356

D[2] 61 353 60 354

D[3] 59 351 58 352

D[4] 57 349 56 350

D[5] 55 347 54 348

D[6] 53 345 52 346

D[7] 51 343 50 344

D[8] 49 336 48 337

D[9] 47 334 46 335

D[10] 45 332 44 333

D[11] 43 330 42 331

D[12] 41 328 40 329

D[13] 39 326 38 327

D[14] 37 324 36 325

D[15] 35 322 34 323

D[16] 33 315 32 316

D[17] 31 313 30 314

D[18] 29 312 28 312

D[19] 27 309 26 310

D[20] 25 307 24 308

D[21] 23 305 22 306

D[22] 21 303 20 304

D[23] 17 301 16 302

D[24] 15 295 14 296

D[25] 13 291 12 292

D[26] 11 289 10 290

D[27] 9 287 8 288

D[28] 7 285 6 286

D[29] 5 283 4 284

D[30] 3 281 2 282

D[31] 1 279 0 280
30 Application Note

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
Table 11. BSR: Address Bus Cells

Signal Name Output Cell (SA-110) Output Cell (21285) Input Cell (21285 Only)

A[0] 112 259 258

A[1] 111 257 256

A[2] 110 255 254

A[3] 109 253 252

A[4] 108 251 250

A[5] 107 249 248

A[6] 106 247 246

A[7] 105 245 244

A[8] 104 243 242

A[9] 103 241 240

A[10] 102 239 238

A[11] 101 237 236

A[12] 100 235 234

A[13] 99 233 232

A[14] 98 231 230

A[15] 97 229 228

A[16] 96 227 226

A[17] 95 225 224

A[18] 94 223 222

A[19] 93 221 220

A[20] 92 219 218

A[21] 91 217 216

A[22] 90 215 214

A[23] 89 213 212

A[24] 88 211 210

A[25] 87 209 208

A[26] 86 207 206

A[27] 85 205 204

A[28] 84 203 202

A[29] 83 201 200

A[30] 82 199 198

A[31] 81 197 196
Application Note 31

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
Note: The signals, MAS[1:0], are set this way to safely select byte 0 on D[7:0].

Table 12. SA-110 BSR: Miscellaneous Cells

Signal Name Cell Purpose

’Control’ 19 Output direction control for D[31:0]. Set this high for a write output, low
for a read.

’Control’ 68 NMCLK output drive enable. Set high always.

NWAIT 75 Input from CTA_WAIT signal.

NMCLK 76
Negated MCLK. (IEEE 1149.1 compliant). Toggle this line with the
compliment MCLK, to work the system state machines in CTA and CTB
logic blocks, for the EBSA-110 design.

MCLK 78
Memory clock output. Note: This cell is not IEEE 1149.1 compliant as it
will drive the output whenever SNA input pin is high. See description for
NMCLK.

MAS[1] 113 Byte mask line. Set high always.

MAS[0] 114 Byte mask line. Set low always.

’Control’ 115 Output drive enable for A[31:0]. Set high always.

RSTOUT 116 CPU Reset output. Set low to initialize, then set high for further
operations.

NRW 123 Read-Write output. Toggle this line; write when high, read when low.

SEQ 126 Sequential address. Compliment of NMREQ. Set high always.

NMREQ 127 Memory request output. Toggle this line low for a accessing Flash, and
conversely.

’Control’ 129 NMREQ and SEQ output drive enable. Set high always.
32 Application Note

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
Table 13. 21285 BSR: Miscellaneous Cells

Signal Name(s) Cell(s) Purpose

CS_L[3:0] 36, 38, 40, 42 Chip selects [3:0], active low. Set high always.

ROM_CE_L 54 ROM enable line. Toggle this low to activate Flash and conversely.

XIOW_L 57 X-Bus write strobe, active low. Set high always.

XIOR_L 59 X-Bus read strobe, active low. Set high always.

XCS_L[2:0] 63, 65, 67 X-Bus chip selects [2:0], active low. Set high always.

TX 73 Transmit data from UART. Set high always.

PCI_GNT_L 75 PCI grant, active low. Set high always.

REQ_L 84 Bus master request, active low. Set high always.

’Control’ 121, 151 Output direction controls, AD[31:16] and AD[15:0] respectively. Set high
always.

’Control’ 126 Output direction control, FRAME_L. Set high always.

’Control’ 129 Output direction control, IRDY_L. Set high always.

’Control’ 132 Output direction control, TRDY_L, DEVSEL_L, STOP_L. Set high
always.

’Control’ 140 Output direction control, PERR_L. Set high always.

’Control’ 143 Output direction control, SERR_L. Set high always.

’Control’ 146 Output direction control, PAR. Set high always.

PCI_IRQ_L 167 PCI interrupt. Set high always.

’Control’ 171 Output direction control, CBE_L[3:0]. Set high always.

PAD_NIRQ 190 Interrupt request. Set high always.

PAD_NFIQ 192 Fast interrupt request. Set high always.

’Control’ 264, 265
Output direction controls, PAD[31:15] and PAD[14:0] plus
PAD_MAS[1:0], respectively. Normally these are set logic low, but if the
address lines are to be read, toggle them high.

PAD_ABE 267 External CPU address bus tristate enable. This allows the 21285 to
request use of the bus. Always set logic low.

PAD_DBE 294 External CPU data bus tristate enable. This allows the 21285 to request
use of the bus. Always set logic low.

’Control’ 317, 338, 359 Output direction controls for D[31:16], D[15:8] and D[7:0] respectively.
Set these low for a write output, high for a read.
Application Note 33

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

age

ck
table.

s
is

hion,
print
a and

ad

fault
ntly
und,
ll
 file
6.0 User Guide for ROM_PGM.EXE

6.1 Requirements

The software is very easy to use, but only works from a PC compatible running DOS. Note, it cannot
run from the MS-Windows 3.1/95/NT DOS window utility. This is due to features of the operating
system which inhibits rom_pgm.exe from accessing required PC hardware, properly and quickly.

A transceiver cable is required, with connections given in Table 5.

The software is designed to work with both the EBSA-110 and the EBSA-285, automatically
deducing which board is connected. Other system configurations will be rejected.

6.2 Syntax

The program uses command line parameters to specify filenames and paths, port, and desired
operation. The syntax for the command line is:

c:\rom_pgm <command> </b:block_number> <image_filename> </p:port_name>

A basic help screen may be invoked by typing:

c:\rom_pgm /helporc:\rom_pgm /?

The operations performed by this software via <command> are:

’CHK’ Checks the availability of Flash blocks sequentially, starting from the specified block.
Pressing the <esc> key will abort the check on the current block. Note that the software
will try to look for a valid image header, and if it succeeds, then the image name will be
displayed with its size. If it fails then a default sequential search through the first 256 bytes
only will be performed. Upon finding data not equal to 0xFF, the message “Invalid im
found” will be shown.

'DEL' Erases a specified Flash block. The software will ask for verification. It will warn if blo
0 is specified as this is the boot block, and erasing this will render the board un-boo

'TST' Writes a test pattern if the block desired is verified empty. If true, a test pattern of
“<pattern count> AAAA...ZZZZ 0000...9999 aaaa...zzzz”, is written as many times a
will fit in the specified block. The action is aborted if the block is occupied or <esc>
pressed (where only a portion of test data will be written).

'VRD' Verbose Read. Displays the contents of a block in a typical hex memory viewer fas
where the LSB of each Dword is at offsets 0, 4, 8 and 0x0C. Pressing <return> will
up the next screen of memory data. Hitting <space> will jump one screen full of dat
print up the next, which is faster. Hitting <esc> will abort the operation. A column of
ASCII print tables is given which is useful to identify image names. A percentage-re
indicator is given for guidance.

'RD' Reads out images from the given block to a binary image file specified, or to the de
filename. The software tests for a valid image header, and if detected will subseque
get the image length, copying that number of bytes to the file. If no image header is fo
then an “Invalid image: Copying xxx Kbytes block to file...” message is shown and the fu
block size is copied. A progress indicator is given. Pressing <esc> will abort, but the
will be incomplete!
34 Application Note

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

ck is
 and

hich

e
ed.

8 and
’WR’ Writes an image to a given block from the specified filename order fault filename. Before
an image write can be done, the software reads in a portion of the source file, testing it for
a valid image header. If one is found, then the image length is determined and that number
of bytes will be written to the Flash, otherwise an “Invalid image: Copying xxx Kbytes to
memory” message is displayed, and the full block size will be copied. The target blo
verified empty, and if not true, the process is aborted. A progress indicator is given,
pressing <esc> will abort. This will mean that the written image is not complete!

Valid values of </b:block_number> are 1 to 15. Illegal values will display an error message w
terminates the program.

Image filenames given must have the extensions of *.aif, *.axf, or *.img. Path names may be
specified, but the total string length of this must not exceed 80 characters. File operations ar
automatically disabled for the TST, CHK, VRD, and DEL commands, since they are not need

Valid constants for </p:port_name> are, 'LPT1' or 'LPT2'. PC parallel port addresses of 0x37
0x278 are used, respectively. Standard port mode is used.

6.3 Defaults

The <image_filename> and </p:port_name> fields are optional. The default filename is
flashrom.img. The default port is LPT1.

6.4 Usage

• With the power off on both PC and EBSA board, connect the transceiver cable between PC
parallel port LPT1 and the 14-way IDC JTAG TAP connector.

• Power up, then check communications by using the VRD command on any block apart from
boot block 0 (unless there is nothing in it anyway).

c:\rom_pgm vrd /b:4

• The software will display a banner and perform some checks that take a few seconds. If all is
okay, then the desired operation will commence, otherwise error messages are displayed.

• Use the WR command to program a valid image into the Flash from a specified file.

• Use the RD command to read back a block to a given file.

6.5 Error Conditions

The software performs some fundamental error checking. When errors occur, messages are
displayed and the program terminates. Most of these messages should be self explanatory. Below is
a list with a brief explanation, where appropriate.
Application Note 35

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
6.5.1 Fatal Errors

1. Messages from module: rom_pgm.exe, routine: main()

• Could not open the working file [xx...xx]

A file I/O error had occurred, possibly from a file or path not existing or a path was not correct.

• Failed to initialize JTAG successfully

• Failed to read JTAG device identification(s)

• Failed ’BYPASS’/’EXTEST’ instructions and reset

A fundamental JTAG error occurred with the devices as they have not responded to the IEEE
1149.1 state machine operation. The software could not assert the appropriate system reset.

• Failed to identify FLASH devices successfully

The Flash parts do not respond as expected. The devices may not be the Intel 28F008SA-L type, or
something stopped them from working, such as a reset jumper.

• Failed to complete desired operation

The operation you requested from the software could not be completed due to a previous and more
significant error condition.

• An unknown error has occurred!

An unusual error has occurred in the software, which is not identified.

2. Messages from module: rom_pgm.exe, routine: Commands()

• Error! No command specified or wrong syntax

• Error! Block number specified is too large

• Error! No block number specified or wrong syntax

The user caused an error by incorrectly specifying the command line arguments when invoking
rom_pgm.exe.

3. Message from module: rom_pgm.exe, routine: ReadBlock()

• Error! File write operation failure!

A file I/O error occurred, possibly from a media error or the disk becoming full.

4. Messages from module: rom_pgm.exe, routine: WriteBlock()

• Error! File read operation failure!

A file I/O error occurred, probably resulting from a media error.

5. Messages from library: jtag_pp.c, routine: CommsTest()

• Error! Comms cable not connected at PC!

• Error! Comms cable not connected at board, or +5V is dead!

• Error! Unknown comms test result!
36 Application Note

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
When the procedure tested for the transceiver cable presence and power healthy, a failure occurred.

6. Messages from library: jtag_ops.c, routine: GetDeviceIDs()

• Error! Cannot cope with more than two JTAG devices!

• Error! The board connected is of an unknown type!

The user has connected a board that is not an EBSA-110 or EBSA-285. The software is not
designed to work with any other boards.

7. Message from library: jtag_ops.c, routine: LoadJTAGInstr()

• Error! Couldn’t load JTAG instruction!

A fundamental JTAG or communications error occurred previously that prevented the software
from further actions.

8. Messages from library: jtag_ops.c, routine: InitJTAG()

• Error! The JTAG daisy-chain is short circuit!

• Error! The JTAG daisy-chain is open circuit!

During preliminary checks, a fault was detected in the JTAG daisy-chain with the TDI-TDO data
line.

9. Message from library: jtag_bscan.c, routine: TalkBoundaryScan()

• Error! Couldn’t load the boundary scan register!

A fundamental JTAG or communications error occurred previously that prevented the software
from performing further actions.

10. Message from library: flashrom.c, routine: WriteToFlash()

• Error! Failed to write the data successfully! SR:[xx...xx]

11. Message from library: flashrom.c, routine: DeleteFlashBlock()

• Error! Failed to erase block x successfully! SR: [xx...xx]

12. Messages from library: flashrom.c, routine: DetermineFlashType()

• Error! Flash is not responding! Ensure removal of J9, J10 and J17 reset(EBSA-285 only)

• Error! Flash is not responding!(EBSA-110 only)

13. Message from library: flashrom.c, routine: FlashWriteCyc()

• Error! Boundary scan comms in cpu-flash write failure!

14. Message from library: flashrom.c, routine: FlashReadCyc()

• Error! Boundary scan comms in cpu-flash read failure!

These are all Flash related problems occurring because of system errors, or otherwise arising from
a previous JTAG or communications failure event. Where the message states SR:[xx...xx], the
status register contents of the Flash device is given to aid diagnosis.
Application Note 37

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
6.5.2 Non-Fatal Errors

Message from module: rom_pgm.exe, routines: WriteBlock() and TestPattern().

• Error! This block is not empty

This is the only error condition that will terminate the software in ordinary fashion, that is, the
operations WR and TST are aborted after this event.

6.6 Completion Times

The software has been tested on a 133 MHz Pentium® processor running MS-DOS V6.22.

For the EBSA-285 (using 256KB images), downloads take approximately 10 minutes for a block
read, and 25 minutes for block write.

For the EBSA-110 (using 64KB images), downloads take approximately 30 minutes for a block
read and 100 minutes for a block write.

Not all applications will be large enough to use a full block size, so these download times may be
significantly reduced.
38 Application Note

stomer
Support, Products, and Documentation
If you need technical support, a Product Catalog, or help deciding which documentation best meets
your needs, visit the Intel World Wide Web Internet site:

http://www.intel.com

Copies of documents that have an ordering number and are referenced in this document, or other
Intel literature may be obtained by calling 1-800-332-2717 or by visiting Intel’s website for
developers at:

http://developer.intel.com

You can also contact the Intel Massachusetts Information Line or the Intel Massachusetts Cu
Technology Center. Please use the following information lines for support:

For documentation and general information:

Intel Massachusetts Information Line

United States: 1–800–332–2717

Outside United States: 1–303-675-2148

Electronic mail address: techdoc@intel.com

For technical support:

Intel Massachusetts Customer Technology Center

Phone (U.S. and international): 1–978–568–7474

Fax: 1–978–568–6698

Electronic mail address: techsup@intel.com

	EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
	Copyright Page
	Contents
	Figures
	Tables
	1.0 Introduction
	2.0 About JTAG - An Introduction
	2.1 What Is IEEE Standard 1149.1
	2.2 Why Use JTAG
	2.3 Test Circuit Implementation
	2.3.1 Fundamentals
	2.3.2 JTAG Interface
	2.3.3 Registers
	2.3.4 Endian Issues
	2.3.5 Instruction Register
	2.3.6 Boundary Scan Register
	2.3.7 Bypass Register
	2.3.8 Identification Register

	2.4 The JTAG Instruction
	2.5 Using IEEE 1149.1 JTAG
	2.5.1 System Analysis
	2.5.2 State Machine
	2.5.3 Navigating States
	2.5.4 Loading Registers

	2.6 General Considerations
	2.6.1 Requirements
	2.6.2 Access of Tristate Outputs or Bidirectional Designs
	2.6.3 Irrelevant Device Pins and Use of JTAG

	1.1 New System Development
	1.2 JTAG - Joint Test Action Group
	1.2.1 IEEE 1149.1 Utilization
	1.2.2 Extended Use of JTAG Test Circuitry

	1.3 StrongARM** Evaluation Boards
	1.3.1 EBSA-110
	1.3.2 EBSA-285

	1.4 How to Use This Document

	3.0 Evaluation Boards, Devices, and Using JTAG
	3.1 Nomenclature
	3.2 Device Background Information
	3.2.1 SA-110 Microprocessor
	3.2.2 21285 System Core Logic IC

	3.3 Using the System Architecture
	3.3.1 EBSA-110
	3.3.2 EBSA-285
	3.3.3 BSR Signals Analysis and Use
	3.3.4 Special Address Lines
	3.3.5 Memory Mapping
	3.3.6 CPU Memory Cycle on the EBSA-110
	3.3.7 CPU Memory Cycle on the EBSA-285
	3.3.8 TAP Connector
	3.3.9 Suggested Cable Connections

	4.0 Program Implementation
	4.1 Structures and Libraries
	4.2 Initializing JTAG and System Checks
	4.2.1 Cable Connections and Power
	4.2.2 Asserting Resets
	4.2.3 Device Counting
	4.2.4 Identification Check
	4.2.5 Recognizing the Connected Board
	4.2.6 Loading BYPASS/EXTEST

	4.3 Accessing the Flash Memory
	4.3.1 BSR Modeling in Software
	4.3.2 Flash ID Check
	4.3.3 Block Size
	4.3.4 Flash Type
	4.3.5 Software Functions
	4.3.6 Program Image Types
	4.3.7 Speed Optimizations
	4.3.8 Power-Down Caution

	4.4 Future Development
	4.4.1 ECP Ideas

	5.0 Integrated Circuit JTAG Information
	6.0 User Guide for ROM_PGM.EXE
	6.1 Requirements
	6.2 Syntax
	6.3 Defaults
	6.4 Usage
	6.5 Error Conditions
	6.5.1 Fatal Errors
	6.5.2 Non-Fatal Errors

	6.6 Completion Times

	Support, Products, and Documentation

