EBSA-110 and EBSA-285 Flash
ROM Access Via JTAG

Application Note

October 1998

Order Number: 278205-001

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The EBSA-110 and EBSA-285 may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation, 1998

*Third-party brands and names are the property of their respective owners.
*ARM and StrongARM are trademarks of Advanced RISC Machines, Ltd.

Application Note

intel.

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

Contents

1.0 T g o [N Tl o] o PP POTPPRRR 1
11 New System DeVEIOPMENTooii ittt e ee e e e 1
1.2 JTAG - JOINt TESt ACHON GIOUP ...vveiieiiiiieaaiae ittt et e e e e et e e e e e e e e s e e aaeaneees 2

1.2.1 IEEE 1149.1 UtIlIZAtON......ceiiiiiiiieeeeciieiee e eiiee e s siveee e sevaee e snevee e e nnnnaeees 2
1.2.2 Extended Use of JTAG Test CirCUItIYcc.uuviiiiiiiieiiiiiiiiiiiiieee e 2
1.3 StrongARM** Evaluation BOArAS........cccouiiiiiiiiiiiiiiiieeie e 3
1.3.1 EBSA-L10... ittt ettt e a e nnaae s 3
1.3.2 EBSA-285.. . ittt a e 3
1.4 HOW t0 USE ThiS DOCUMENT........cuiiiiiiiiiiiiii et 3

2.0 ADbout JTAG - AN INErOAUCTION ... s r e aeeeaeaeeees 4
2.1 What IS IEEE Standard 1149.1cocuiiiiiiiiiieee i 4
2.2 LAY) LU T I X T S 4
2.3 Test Circuit ImplemeNntation..............uuiiiiieeir e 5

2.3. 1 FUNAAmMENLaAlS.......cooiiiiiiiiiiiic e 5
2.3.2 JTAG INLEITACE ..eeeeeiiiiiieeeee et 7
2.3.3 REOISIEIS coriiiiiiie et a e 7
2.3.4 ENIAN ISSUESeiiiiiiiiiiiee ettt sttt e 8
2.3.5 INSIrUCION REGISIEN ...uviiiiiiiiiiee et a e 8
2.3.6 Boundary SCan REJISIENccceeiiiiiiiiiiiiiec e e e 8
2.3.7 BYPASS REQISIENci ittt e e 8
2.3.8 ldentification REQISIENcuuiiiiieeii i 9
2.4 The JTAG INSIIUCTION oottt et e e bbaee e snnaee e s 10
25 USING IEEE 1149.1 JTAGiiiiieiiiiiie ettt sttt e et a e e e 11
2.5.1 SyStem ANAIYSISccoi i 11
2.5.2 State MACKINEoiiiiiiiiii e 11
2.5.3 Navigating StateSccccuvriiiiieeee e s e e rr e e e e e e s 11
2.5.4 Loading REQISIEISuuuiiiiiiiieie e e e e e e e s 12
2.6 General CoNSIAEIALIONS........oiuuuiiie ittt e e s serbeeee s es 13
2.6.1 REQUIFEMENTS ..oiiiei ettt e e e s e e e e e e e e e e s s e e e e e e e e s e s nrneeees 13
2.6.2 Access of Tristate Outputs or Bidirectional Designscccccvvvvvnnen. 13
2.6.3 Irrelevant Device Pins and Use Of JTAG.......ccccveeiiiiieee it 13

3.0 Evaluation Boards, Devices, and USING JTAGccccuuiieiieeee i ciniireee e e e snnnnneee e 14
3.1 NOMENCIATUIE ... e et e e e e e e bt ee e e e e 14
3.2 Device Background INfOrmationcceeeieioiii i 14

3.2.1 SA-110 MiCIOPIOCESSON ... e ieieieeee e e eee e e ee ettt et ee et s e aaa e e e aeaaeas 14
3.2.2 21285 System Core LOGIC ICcooviiiieieeeeeee e e 14
3.3 Using the System ArChItECIUIEuuueeeiies e 15
B.3iL EBSA-LL0. ittt 15
3.3.2 EBSA-285... e 17
3.3.3 BSR Signals Analysis and USEeuuuiiimiiiiiiiiiin e ieeeeeeeeeeeeeeeeeeeeeeeanns 18
3.3.4 Special Address LINES.......ccviiiiiiiieeiiiiiieicrces s s e e e e e e e e e e e e e aeen e e aeaeeeanns 18
G J0C T8 ST |V [T 0 g To T VAN 1Y/ =T o] o1 o 18
3.3.6 CPU Memory Cycle on the EBSA-110...........uviviiiiiiiiiiiiiiiiieeeeeeeeeeeeee 19
3.3.7 CPU Memory Cycle on the EBSA-285..........ccccoieiiiiiiiiiiiiiiieeeeee e 20

Application Note

4.0

5.0
6.0

3.3.8 TAP CONNECION....ciiiiiiiiiiiiiieititt e e e e e e e e e e e e e e e e e eeeeeeeeeeeesbab et e ns 21
3.3.9 Suggested Cable CONNECHIONS.......ccoiiiiiiiiiiiiiiiieee e 21
Program IMplemeEntationcooii i e e e e e e e e nnees 22
4.1 Structures and LiDrariesooo i 22
4.2 Initializing JTAG and System CheCKScoooiviiiiiiiiiiiiec e 23
4.2.1 Cable Connections and POWEToocuuiiiiiiiiiieesiiiieee et eiieee e 23
4.2.2 ASSEIING RESELS ...vviiiiiiiiie it e e e e e e a e 23
4.2.3 DEeVICE COUNLING ...uuvvriiiiiiiieeisesiiieiiee e e e e e e e e e s s st ter e e e aeeeesseannnsrnreeeeeeaeens 24
4.2.4 ldentification CheCK..........ocuiiiiiiiiii e 24
4.2.5 Recognizing the Connected Boardcccceevvvviviiiiiiiiee e, 24
426 Loading BYPASS/EXTEST ...coiiiiiiieiiiiiiie ettt 24
4.3 Accessing the FIash MEMOIYoooiiiiiii e 25
4.3.1 BSR Modeling in SOftWArecooiiiiiiiiiii e 25
4.3.2 FIash ID CRECK........uuiiiiiiiiiiii e 25
4.3.3 BIOCK SIZE ... 25
A.3. 4 Flash TYPe et 25
4.3.5 Software FUNCLIONSoooiiiiiiiieie e 26
4.3.6 Program IMage TYPES. ettt s 26
4.3.7 Speed OPLMIZALIONScccoiiiiiieiiiiiie ettt e e anes 27
4.3.8 POWEr-DOWN CAULIONccceiiiiiiiiiiieie it e e e e 28
4.4 FULUrE DEVEIOPMENT. ...ttt e s 28
R @ = o =Y 1 SRS 28
Integrated Circuit JTAG INFOMMALION.oouiiieiiiiiii et 29
User Guide for ROM_PGM.EXEcocoiiiiiiiiiiiieiie ettt e e e e e e 34
6.1 REQUITEMENTS ...ttt e et e e st e e e s sbreeeeeaae 34
6.2 SYNEBX -ttt e e e et a e e 34
6.3 DETAUIES . a e e e e e 35
6.4 USBGE -ttt ittt ettt et e s e e e e r e e e e 35
6.5 = g (o] g @] oo 11 i o] o F- PSR P 35
6.5.1 FAtAl EITOIS ittt e e e e e e 36
6.5.2 NON-FAtal EITOIS....coiiiiiiiiiiieeee e e e e 38

6.6 CoMPIELION TIMES ... e e 38

intel.

Figures

P OOO~NOOOUID WNPE

Tables

O©CoOoO~NOOULDWNPE

Application Note

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

Typical ITAG DaiSy-Chlainccooiiiiiiiiiiii et a e 2
JTAG State MACKINEooiiiiiiii e 5
IEEE 1149.1 JTAG Standard Circuit Implementation............ccccooiiiiiiiiiiiieineennenne 6
JTAG REGISIEN VIBW ..ttt ettt e e e e e e e e s eenae s 8
TAP SigNalS EXAMPIE.....eiiiiiiiiie ittt a e e e e 12
EBSA DaiSY-CRaiN ...ttt a e 15
Reset System on the EBSA-110ccuuuiiiiiiiiieeeee e 16
Reset System on the EBSA-285 17
Simplified EBSA-110 Memory Read-WIite...........cciiiiiiiiiiiiiiiiieieee e 19
Simplified EBSA-285 Memory Read-WIite ... 20
TAP PIN NAMES ...ttt ettt e e s et e e e e s bt be e e e s baeeeeeane 7
JTAG RegisSters DeSCHPLONcc.uuviiiiiiiie e e e e s s r e e e e e e e nnennenees 7
Identification Register FOrMatuuvviiiiiieiiiiie e 9
JTAG COMMEANTSeiiiiiiiiiiiie ittt et e e s e st e e e e snbbreee e s snnaeeaeas 10
Transceiver Cable CONNECIONSc.eeiiiiiiiiiie e 21
ROM_PGM.EXE Libraries, Structures, and Main Module.............ccccccvvvvvenneeenn. 22
Image Header Format (FMU)ouuiiiiiiieeccic e e e e e e e e 26
SA-110/21285 JTAG INSIIUCLIONSeeiiieiiiiiie et iee e e e 29
SA-110/21285 JTAG ldentity COUESccooei i 29
BSR: Data BUS CEeIISeeiiiiiiiiie ittt 30
BSR: AdAress BUS CellS........oiiiiiiiiiiiiiiiiie et 31
SA-110 BSR: Miscellaneous CellSoooiiuiiieiiiiiiiieiiieee e 32
21285 BSR: Miscellaneous CellScoooiiiiiiiiiiiiiiieeiiiieee e 33

\%

intel.

1.0

1.1

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

Introduction

This document describes the software and hardware required to access Flash memory, via JTAG, on the
EBSA-110 and EBSA-285 StrongARM** eva uation boards. It includes information about a software
tool allowing program images to be downloaded from a PC, to the Flash memory on these boards.

This application note is based on the development work of a JTAG-based programming utility, for
the Flash memory on the EBSA-110 and EBSA-285 platforms. It complements the existing Flash
Management Utility (FMU).

New System Development

All microprocessor systems require a boot mechanism from the reset address. This program is
typically kept in ROM. However, it is becoming increasingly attractive to replace ROM with Flash
technology for the following reasons:

¢ |tisnon-volatile; contents are preserved when powered down (same as ROM).
¢ Can be reprogrammed in-situ to cater for upgrades, different uses, added features etc.

* Can be selectively reprogrammed by Flash block (typically 64 KB blocksin byte-wide
devices).

Systems often had socketed ROMs to allow programming at the manufacturing stage prior to
assembly, or in the case of EPROMSs, removal for erasure and reprogramming. In System
Programming (ISP) is an increasingly popular alternative. This technology allows boards to be
populated without sockets, which saves cost, saves space (through enabled use of smaller package
types), and improves reliability. Even these systems may require the boot-block to be
preprogrammed into the device before assembly, and require expensive rework should the boot
image get corrupted or require upgrading.

JTAG isapotentia solution to the problem of programming a blank Flash part, in system, prior to
any normal processor code execution. It also fits well with the demands of increasing system
complexity, miniaturization and automation during the devel opment, verification, manufacture and
deployment of new products. Thisissue (not the JTAG | SP) iswell documented in the IEEE 1149.1
JTAG Standard.

Application Note 1

[|
EBSA-110 and EBSA-285 Flash ROM Access Via JTAG I ntel .

1.2

Figure 1.

121

1.2.2

JTAG - Joint Test Action Group

Rather than use conventional test equipment, the JTAG standard describes the design of special
on-component test circuitry. This can access the external pins of an IC and its' internal circuits, when
placed in adesignated test mode. Some devices support only the access of pinsthrough JTAG, but not
theinterna circuitry. The JTAG register associated with the functional pins of adeviceis called the
Boundary Scan Register. A collection of these from a seria link of partsis known as the Boundary
Scan Chain. During normal device operation, the JTAG logic is transparent to the system.

Tests are achieved by providing stimuli and sampling the response. General operational tests may
be applied to verify that parts behave correctly. The JTAG standard also suggests that entire
hierarchical systems could be tested, using “daisy-chained” devices as illustfaiga el

JTAG fundamentals are described in more det&@kation 2.0Please consult the full IEEE 1149.1
JTAG specification for more comprehensive information.

Typical JTAG Daisy-Chain

T2
|_
[N
o Ol

TOI DD TOI DD TOI oD

o
% DEVICE 1 DEVICE 2 DEVICE 2
Z
E TCH I I T
|_ Thi=

TRST

Mate: TRST iz optional

IEEE 1149.1 Utilization

JTAG compliant integrated circuits are gaining popularity, especially those with a high pin count.
Various semiconductor manufacturers now provide a range of IEEE 1149.1 compliant logic parts.

Extended Use of JTAG Test Circuitry

Whilst primarily intended for manufacturing test, the JTAG boundary scan technology inherently
provides an ISP interface for Flash technology. The main disadvantage is slow speed of operation.
However, using JTAG to program a small primary boot loader with minimal driver capability, in
order to get a system running and load a more substantial image, is a very feasible proposition.
Providing a simple JTAG programming utility from the parallel port on a PC allows this to be a
useful tool for developers, manufacturing, and potentially end-users.

The utility described in this document is slow because of PC parallel port limitations. Download

time is also affected by the complexity of accessing memory in a systems' architecture. However,
JTAG programming is usable, especially for image sizes of a few kilobytes.

Application Note

1.3.1

1.3.2

1.4

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

StrongARM** Evaluation Boards

The SA-110 and SA-1100 StrongARM processors, along with the 21285 core logic device for the
SA-110, are JTAG compliant devices. Two SA-110 based platforms were used to develop this
application note and associated JTAG software utility.

EBSA-110

The EBSA-110 isthe original SA-110 verification vehicle. It consists of an SA-110, fast-static and
EDO / burst-EDO DRAM system, plus a programmed /O subsystem. The boot path is through a
link selectable ROM or Flash device, byte packed from 8 to 32 bits. All 1/0O access, byte packing
and memory control isdone viaa pair of Complex Programmable Logic Devices (for example, the
AlteraMAX 7000* family CPLDs). ROM execution includes programming the Flash boot block.

The JTAG interface can be used on the SA-110 to generate appropriate bus cycles to program the
Flash parts.

This platform is no longer produced. Please check your StrongARM sales channel for product
availability.

EBSA-285

The EBSA-285 superseded the EBSA-110 as a general -purpose eval uation and porting vehicle.
The board provides SDRAM support, aROM / Flash boot path, a PCI interface and some ancillary
logic, in adevice known as the 21285 core logic. The 21285 can operate as adevicein aPC
system, or as the central function, configuring the PCI. A passive PCI backplane (EBSA-BPL) is
available to support the latter case.

While the SA-110 JTAG interface could be used to generate bus cycles to the 21285, and hence the
Flash port for programming, it is much simpler to bypass the SA-110 and apply the Flash
programming vectors directly to the pins of the 21285 device.

How to Use This Document

This document provides a detailed overview of the software and hardware required to program
Flash memory over JTAG on both the EBSA-110 and EBSA-285 eval uation board designs. The
following information is provided.

* Section 2.0 outlines JTAG and its operation.

* Section 3.0 outlines the hardware platforms and memory cycles required to access Flash on the
EBSA-110 and EBSA-285 boards. A summary of the JTAG to PC cable requirementsis
included.

* Section 4.0 describes the software design.
* Section 5.0 summarizes documentation errata relevant to the JTAG interface.
* Section 5.0 provides JTAG circuit information for the SA-110 and 21285 devices.

* Section 6.0 provides a user guide for the programming utility including asummary of the error
messages.

Application Note 3

[|
EBSA-110 and EBSA-285 Flash ROM Access Via JTAG I ntel .

2.0

2.1

2.2

About JTAG - An Introduction

The purpose of this section is to provide an introduction for engineers unfamiliar with the JTAG
testing system. It is not a complete definitive reference.

What Is IEEE Standard 1149.1

The Joint Test Action Group (JTAG) is acommittee board of delegates from a number of the
world’s leading el ectronic equipment companies and semiconductor manufacturers. It was formed
by the IEEE to help establish and govern a methodical approach to implementing on-component
testing circuitry. The IEEE 1149.1 Standard for JTAG, titled Standard Test Access Port and
Boundary-Scan Architecture, mostly contains details for integrated circuit designers wishing to
incorporate the test circuitry.

Why Use JTAG

When testing some modern design circuit assemblies, problems can arise with conventional test
equipment, whether it is automated or not. The difficulties originate from the continuing trend to
design products physically smaller, calling for assembly techniques using surface mount components.
Prime examples of these are BGAs (Ball Grid Arrays), flat pack devices, and small outline IC
packages. Device pin counts are increasing and lead spacing is decreasing. Accessibility of pinsand
the mechanical durability of solder joints cause these problems to arise in product verification.

Electrical continuity between device leads and the PCB can become questionable, especially after
cumbersome and heavy probes are attached. Mechanical stresses can easily break a soldered joint
and lift a pin away from the board when a probe is removed. A second concern is whether or not
device pins can be accidentally made short circuit by the probes, damaging the device at test power
up. Thisis attributed to the fine spacing of the leads.

A more appropriate way of testing devices and systemsis called for. This meansincluding test
circuitry on the semiconductor devices, known as a Boundary Scan Test Architecture. This can
access the physical pinsfor monitoring purposes. By strategically setting logical states on pins, and
sampling the response, the electrical continuity of signal paths can be checked on the circuit board.
General device testing may also be done to check behavioral responses to stimuli data.

A standardized test circuit was adopted by the JTAG committee. It is designed to allow normal

operation of the IC, unless atest mode is activated. This forms acircuit given the acronym of
BILBO - Built In Logic Block Observer.

Application Note

[|
I ntel . EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

2.3 Test Circuit Implementation

2.3.1 Fundamentals

The JTAG system is designed into a device, as a group of registers of various size and use,
controlled by alogic block and instruction decoder. A dedicated connection port provides external
access to the test circuitry.

Theinterna controller block governs the operation of the JTAG circuit, which provides the
necessary internal enable signals for the multiplexers and registers. It conforms to a state machine,
shown in Figure 2. The states are best described in the IEEE 1149.1 JTAG Standard.

The design is semi-static allowing the current state to be retained unless a reset, power loss, or the
next JTAG clock transaction occurs.

Figure 2. JTAG State Machine

tims

=0

tms

Select- IR-Scan
Capture- IR
Updste- IR

1

Crase e)

tins=

tms
tmz=0

=i

tins

=

0 [V [i's} 1
[} i

& = o =

5 i=3 o 2

v} o o

i o -

]

1

tms=

Test Logic Reset
Run-Testldle

-— [

tms=
tms

Application Note 5

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

Figure 3.

intel.

Figure 3 shows a diagram of atypical digital integrated circuit device, with JTAG circuitry
included. Notice that the test circuit is separate from the functional core of the IC, and only the
external pins of the device are shared by both parts, with the exception of the TAP pins.

IEEE 1149.1 JTAG Standard Circuit Implementation

EN—| CLE J
O

TAP
Controller

-

| Test Access Port

m
=
pa}
Z
[&]
g DEVICE CIRCUITRY
=,
Zignalz to-from |
external pins §
of device ==
1
[1
5
] = o
' L
_I__I o
iz
[' = z
- 5 4
5 | |% £s
= = =) 1 E&
i oo - T oo
TR ==, [i '
5 sl e5|ll =2 c o et
0 ® Slzgllles S &
£ 9=l Ee || 5 9E
= = - E-I LY} O - % £ 0 E
[EllasllzS]] = B & B
= = g CE o = 3
i SlleE|lse||x =
L o = EE P 'E
w m cw (ST) =
= oo [iv] E
L A =
| () m
[
'
MOTES: (11 TRET iz optional JTAG pins — E
(27 Input pull-up's are nat showwn

TS =
TCH

[

TRET =
TDiD

—

Application Note

intel.

2.3.2

Table 1.

2.3.3

Table 2.

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

JTAG Interface

The external interface to the test circuitry is known as the Test Access Port (TAP), and consists of
four mandatory functional pins and an optional reset input. Table 1 details these connections.

TAP Pin Names

Pin Name Type Purpose
Input, with . . . - .
Test Data In, TDI pull-up To input data into the device upon rising edges of TCK transitions.
Test Data Out, Tristatable . . .
DO Output To output data from the device upon falling edges of TCK transitions.
Test Mode Input, with To signal the intention to proceed onto the next stage of the JTAG state
Select, TMS pull-up machine, upon rising edges of TCK transitions.
Test Clock, TCK | Input go prowde a strobe signal to sample data into, and clock data out of the
evice.

Test Reset Input. with To reset the JTAG circuitry to a known initial condition. It has the same

’ put, effect as the Test Logic Reset state. This input is asynchronous to TCK
TRST pull-up :)

and is active low.

Pull-ups on the TMS and TCK inputs give a degree of immunity from electrical noise, and default
the JTAG logic to a predictable state.

Registers

Figure 3 shows the arrangement of registersin atypical JTAG implementation.

Register accessis dependent upon the JTAG instruction executed. External data between TDI and
TDO is serially transferred, least significant bit first. The difference in register sizes cause data
packet lengths to be variable. All registers (with exception to the Bypass Register) are parallel
accessed for data load functions, but thisis unavailable to the JTAG user.

During Test Logic Reset state, the TAP controller selects either the Bypass or |dentification
Register to be connected between TDI and TDO. Thisis a safety feature, as these registers have
minimal system impact.

Information about the JTAG registersis presented in Table 2.

JTAG Registers Description

Register Name

Purpose

Instruction
Register, IR

To hold the current instruction opcode value, for the intended task.

Boundary Scan
Register

To hold the data read from, or to be written to device pins, and is likely to be the largest
register length in the JTAG device. It is divided into shift register stages called cells, and can
contain various cell types; output, input, internal, linkage, and control.

Bypass Register

To shorten the length of a JTAG daisy-chain, for all subsequent Shift Data-Register loads.
When a BYPASS instruction has been loaded into a specific device, this register is
connected between the TDI-TDO data path, effectively reducing register size to one cell for
that component.

;isgtigf:f To hold specific data for manufacturers testing purposes. In some devices, these registers
(Optional) may provide additional functionality to the part.

Identification To hold a 32-bit composite word of predefined data, containing a manufacturer’'s number, a
Register part number, and version information. The least significant bit is always set to logic 1, intended
(Optional) to be used by automated JTAG processes to identify the data as being from this register.

Application Note

[|
EBSA-110 and EBSA-285 Flash ROM Access Via JTAG I ntel .

234

Figure 4.

2.3.5

2.3.6

2.3.7

Endian Issues

All IEEE 1149.1 JTAG compliant designs require registers to be little endian, where the |east
significant bit or cell is “nearest the TDO pin”, as depicteBigure 4

JTAG Register View

git | Bit | Bit | Bit |-<¢ | g - : , >
TD|>—> it | Bit | Bit | Bit |4 {Bit3|Bit2 | Bit1|Bito —> TDO>

MSB Register implementation LSB

A4692-01

Instruction Register

The Instruction Register is typically 8-bits in length or smaller, and contains valid instruction data

in the Update-IR state. During a Shift-IR loading sequence, data can be clocked through this
register out of TDO. Instructions can be passed to any subsequent devices in the JTAG daisy-chain,
in this way.

Note that in the Capture-IR state, the previous instruction will be overwritten each time with a
predetermined binary value of '01' for the two least significant bits. Remaining bits may be utilized
as status flags or are set to fixed logic states.

Boundary Scan Register

The largest of the registers is the Boundary Scan Register, which reads and writes logical states of
JTAG device pins. It is implemented as a shift-register of macrocells containing several
multiplexers and flip-flops. In the Update-DR state, it contains valid stimuli data. In the

Capture-DR state, response data is sampled. This means that data clocked into a device in the
Shift-DR state can accordingly set pin outputs in the following Update-DR state. At the same time,
the clocking action will shift out sampled pin data from the previous Capture-DR state.

Note that output cells can be overwritten to predetermined “safe” logic states. This is
implementation specific.

Bypass Register

The Bypass Register is only one shift register stage. It is used in daisy-chained systems to reduce
the number of register stages that need to be clocked through. This allows specific test data to reach
the intended device more quickly. The Bypass Register is NOT effective for instruction loading
sequences, therefore Instruction Register lengths cannot be shortened in the JTAG daisy-chain.

Application Note

intel.

2.3.8

Table 3.

Identification Register

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

The ID register holds aformatted 32-bit data word containing device information. It can be used to
distinguish JTAG partsin adaisy-chained system. The register structure is explained in Table 3.

Identification Register Format

Bit field Usage Description
0 Pre-set to logic 1 | An identity packing bit intended for distinguishing that this is valid data.
111 Manu_facturer’s An 1:_L-t?it compressed version of a standard JEDEC number uniquely
Identity code identifying the manufacturer.
12..27 Part number A 16-bit word of unique value for a particular device.
28..31 Version number | A 4-bit word holding the silicon revision number of the particular IC.

The Manufacturer’s Identity code field is formed by taking the most significant byte of the JEDEC
code unique to the manufacturer, and discarding its parity bit. This determines the seven least
significant bits. The remaining four bits hold a binary count value of the number of Ox7F
continuation bytes in the original code. JEDEC codes are governed by the EIA / JEDEC office.
Information can be found in their publication, JEP106.

Application Note

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

2.4

Table 4.

10

The JTAG Instruction

INlgl.

JTAG instructions can be either public or private. The public type are available to all users. The
private instructions are intended for reserved use by manufacturers and may invoke special tests.
Table 4 describes the JTAG commands.

JTAG Commands

Command Nature Register PuUrpose
Name Selected P
Mandatory, To permit external tests where data is asserted to
EXTEST public, opcode Boundary Scan | drive output pins, and response is sampled from input
value of 0. pins.
To take a sample of the logical state of the device
SAMPLE / Mandatory, Boundary Scan pins, without asserting test data, that is, transparent to
PRELOAD public. Y the normal operation of the device. Not meant for
real-time work!
Muet)r}i?:atgr)éode To shortcut the data path, reducing the number of
BYPASS bt 1 op Bypass data register stages in a JTAG daisy-chain. It does not
binary value of .
, affect normal IC operation.
all 1's.
. . To permit internal tests where stimuli data is asserted
INTEST Optional, public. | Boundary Scan at inputs, and response is sampled at output pins.
HIGHZ Optional, public. | Bypass To force all output pins into high impedance state.
IDCODE Optional, public. | Identification To present the 32-bit device specific identity code.
USERCODE Optpnal, public User defined To execute customized functions.
or private.
To force all output pins into a predetermined state
CLAMP Optional, public. | Bypass governed by the contents of the Boundary Scan
Register.
To execute a self-test on the internal core circuitry of
RUNBIST Optional, public. | User defined the device. External signals are controlled to suppress
any interfering activity.

Not al of the JTAG instructions may be implemented into a given device. The IEEE 1149.1
standard requires inclusion of EXTEST, SAMPLE / PRELOAD and BY PASS commandsin all
compliant designs.

Most commands are given device specific opcode values, with the exception of EXTEST and

BY PASS which are predefined.

Application Note

2.5

251

25.2

253

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

Using IEEE 1149.1 JTAG

System Analysis

Before JTAG can be used, the precedence order of devices in the application daisy-chain should be
examined. Each IEEE 1149.1 compliant device will have permitted architectural variations, such as

in register lengths and register omissions. The Boundary Scan Register will be architecturally

unique for a given device type, and information about this can be found in BSDL “descriptive
language” files. Instruction opcodes will be different for each device type, except for EXTEST and
BYPASS, which are predefined. All of this information needs to analyzed carefully.

State Machine
The state machine diagram showiirigure 2aids the applications engineer in using the JTAG test
circuitry. There are only three basic actions performed by this state machine, in general:
* Do nothing; Reset-idle.
* Load anew instruction.
¢ | oad new datainto a selected data register.
Most of the states perform internal action, such asinitializing and updating registers. Other states
are regarded as temporary, which exit or wait between the operative ones. From the JTAG user's

point of view, the Shift-DR and Shift-IR states are of most concern. These allow new datato be
clocked into the sel ected register from TDI, and captured datato be clocked out of TDO.

Thetypical sequence of eventsisto load an instruction, and then load the datainto the register
selected by the command.

Navigating States

By toggling the state of the TM'S pin and strobing TCK, the state machine can be traversed. After
power up or assertion of TRST, the circuitry waitsin Test Logic Reset state for aslong asTMSis
logic high, and TCK is strobed. Before the JTAG circuitry is activated, Run-Test / |dle state must
be entered.

Application Note 11

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

254

Figure 5.

12

intel.

To begin loading aregister, the appropriate Select-xx-Scan state must be entered. The Instruction
Register is exclusively loaded by following the Select-1R-Scan sequence of the state machine
diagram. All other registers are loaded by the Select-DR-Scan path.

Loading Registers

The dataword or instruction word is loaded in the Shift-xx state, one bit at atime per strobe of
TCK, keeping TM S logic low. An important point to noteis that the last bit of the word is clocked
in when leaving the Shift-xx state. Care should be taken to meet this requirement.

Figure 5 shows atypical sequence of signal eventsto load afour bit command word (10 decimal)
into the Instruction Register. The Pause-xx and Exit2-xx temporary states are not used in this
example. Note that the old Instruction Register contents are clocked out of TDO - see Section 2.3.5
for adescription of this data. On the final bit load, TCK transaction 16 presents bit 0 of the new
instruction word on TDO. A similar procedure is followed to |oad a data register, except
transaction 4 is omitted.

TAP Signals Example

oK —] L e

11.

Bit 1 of nevy instruction
clocked in

TRsT U
TS | [T ee—
ol 0’ 1 i} 1
DO X 1 u] u] u} o’
[g 10 12 14 16 18
TCHK TRANSACTIONS:
1. Test logic reset 12. Bit 2 of IR presented at TDO
2. Enter 'Run-Test [ldle' 13. Bit 2 of nesw instruction
3. Enter 'Select-DR-Scan' clacked in
4. Enter '"Select-IR-Scan' 14. Bit 3 of IR presented at TDO
5. Enter 'Capture-IR' 15. Bit 3 of new instruction
6. TDD goes active with presented, clocked in,
undefined data leave 'Shift-IR' state
¥. Enter 'zhift-IR 16. Mew hit 0 of IR presented at
3. Bit 0 of IR prezented at TDO TOO
9. Bit 0 of neswy instruction 17. Enter 'Update-IR'
clocked in 18. TDD goes high impedance
10. Bit 1 of IR presented at TDO 19, Cycle complete,

enter 'Run-Test ! ldle'

Application Note

[|
I ntel . EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

2.6 General Considerations

2.6.1 Requirements

Requirements for the clock signal, TCK, are quite loosely defined by the IEEE 1149.1 JTAG
Standard. Specifications include the maximum operating frequency, full timing details of the
implementation, standard logic threshold levels, and TDO drive / fan-out characteristics. To the
JTAG user, only the maximum TCK frequency and minimum assertion time of TRST will be of
concern, assuming that all set-up and hold timings are met for the TAP signals.

To permit normal function of the integrated circuit, the onboard JTAG boundary scan circuitry
must be forced into an inactive condition by execution of the BY PASS or IDCODE commands, or
by forcing areset state by assertion of TRST.

2.6.2 Access of Tristate Outputs or Bidirectional Designs

An important concern is presented in the case of devices with tristate outputs or bi-directional
technologies. Care must be exercised when accessing such pinsin test mode, to avoid possible
contention between external signals and output drivers. This means examining the design of each
JTAG device for the enabling signals of each output pin driver, and controlling these as

appropriate.

2.6.3 Irrelevant Device Pins and Use of JTAG

In most JTAG applications, only a subset of available pinsin the Boundary Scan Register will need

to beused. Theirrelevant pinswill still need consideration. Logic levels on inputs may be regarded

as “don't care”, because all inputs are high impedance and need not be controlled. Outputs should
be treated so that they retain their quiescent states, as exercised in normal operation. This means
active low outputs remain logic high, and active high outputs remain logic low.

Application Note 13

[|
EBSA-110 and EBSA-285 Flash ROM Access Via JTAG I ntel .

3.0

3.1

3.2

3.2.1

3.2.2

14

Note:

Evaluation Boards, Devices, and Using JTAG

Section 1.0 and Section 2.0 outlined the application problem and the IEEE 1149.1 JTAG Standard.
This section describes the necessary specifics for implementing software to access Flash memory,
viaJTAG, on the EBSA-110 and EBSA-285. It should be read in conjunction with the following
documents from Intel:

e 21285 Core Logic for the SA-110 Microprocessor Data Sheet (Order number 278115-001)
EBSA-285 Evaluation Board Reference Manual (Order number 278136-001)

SA-110 Microprocessor Technical Reference Manual (Order number 278058-001)
EBSA-110 Schematic Directory

EBSA-285 Schematic Directory

Please consult Section 5.0 for documentation errata.

Nomenclature

* 32-bit datais referred to asa’Dword'.

* The JTAG programming software is known as “the software”.
* The Boundary Scan Register is abbreviated to 'BSR'.

¢ 4-byte hexadecimal values are shown in the format: "XXxXX.XXXX'.

Device Background Information

SA-110 Microprocessor

The StrongARM** microprocessor is based on Version 4 of the ARM** architecture. It is
optimized for use in low power, high performance applications.

The CPU has 32-bit wide data and address buses, which may be disabled externally to allow other
system peripherals to access specific devices. Control bus signals are used for Flash memory
programming and need to be appropriately asserted or de-asserted by the software.

The Boundary Scan Register of this device is 130 stages long, and the Instruction Register holds
five bits. The SA-110 supports six JTAG instructions. Section 5.0 has information about this part.

21285 System Core Logic IC

The 21285 isadevice providing core logic to simplify systems design with the SA-110. The main
features of the device include an interface to a PCI bus system, and a memory controller for
different types of SDRAM.

The Boundary Scan Register of this device is 360 stages long, and the Instruction Register holds
four bits. The 21285 supports six JTAG instructions. Section 5.0 has information about this part.

Application Note

[|
I ntel . EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

3.3 Using the System Architecture

The JTAG device chain on the EBSA-110 and the EBSA-285 isillustrated in Figure 6.
Figure 6. EBSA Daisy-Chain

JTAG
SIGMALS
r-------1
= " 1 [
0 | 15 ey 53 N
o [o
2 (S5 EE S4-110 21285
hxt - T i
T 4 ———% .
| oo LT T] .
[ak} .,-r 1
— | 1
EBSA-285 OMLY)
(Indicating alternate TDO path)
3.3.1 EBSA-110

The EBSA-110 has only asingle JTAG device in the daisy-chain; the SA-110. Flash memory
communications must be performed viathis part.

The’CTA’ and 'CTB’ programmable logic system control blocks must be used to access the Flash
by emulating CPU memory read and write cycles. The drawback of working around the system
architecture is agreater overhead of processing data. Only asmall amount of thisis datato or from
the Flash memory.

The CTB device operates several databus buffers, which are arranged to act as byte packing stages.
This allows only a byte-wide ROM memory to be required in the design.

Dwords may be read from Flash, being automatically assembled by the byte packing stages, from
four contiguous bytes. Data is constructed in two steps, where thefirst set of packing buffers make
two 16-bit words from four 8-bit bytes. The second set of buffers assemble a Dword from two
16-hit words. Two read modes are supported; single-beat (non-sequential) and multi-beat (burst).

Only single bytes may be written to the Flash, presenting the data on the low order byte lane and

controlling the byte select lines, PAKA[1:0]. Dwords can be formed by separately writing the four
bytes in contiguous memory address space.

Application Note 15

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

Figure 7.

16

intel.

SRST on the JTAG TAP must be asserted low to halt the SA-110. The nRSTO output of this device
should be set logic low initially, to reset other components in the EBSA-110 system. To allow the

Flash and system logic partsto function, this reset output must be subsequently taken high. Control
of thenRSTO signal is achieved viathe BSR. Figure 7 shows the reset system in detail.

Reset System on the EBSA-110

Jac12y
JTAG SRST_L I -
PR LEVEL
J2(6,8) w—| CRCUIT SHIFT < nRESET
RESET Sy 9 -
————————qnRSTO
GHD CPU_RESET L
1.t
[T QTN
BUFFER PAKA[:0] + CONTROL | £33
4 o =t
I o
BIUF_RESETO T BUF_RESET L
— - FLASH
m cTH o CiNBit x 21
5 E g i £ RESET_L
i L = |]
o T [L O
@ [o] =
! - . M EPRCM
CTA, <:::> 0 (Dpticnal)
[}

Application Note

In

3.3.2

Figure 8.

®

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

EBSA-285

The SA-110 precedes the 21285 in the EBSA-285 JTAG daisy-chain. Flash memory should be
accessed viathe latter device, whilst the CPU is placed into BY PASS mode. This provides the
simplest programming method.

The board has four Flash parts, which are byte wide and arranged in parallel. They are simply
interfaced to the system, allowing easy memory communication.

The SA-110 should be held in reset state by asserting the nRESET pin low viathe respective 21285
output pin. Thisgrants address and data bus access. SRST should be set logically high and jumpers
J9 and J10 should be left open. Jumper J17 has a connection for an external reset push-button
which should also be left open. These settings permit the Flash memory to operate, otherwise the
Flash staysin reset state where it does not drive its' outputs.

In between the 21285 and Flash memory are LV T16244 buffers on the data and address buses. The
‘bus-hold’ feature of these buffers will operate when the Flash outputs are tristated, that is, when
held in reset. Since the bus-hold technology is like atransparent latch, the jumper problem can be
verified by reading the held data. Please refer to the manufacturers data for more details.

The reset system for the EBSA-285 isillustrated in Figure 8.
Reset System on the EBSA-285

+3h
21285 +343 S4-110
PCI_RST o—#
PCI_CFM
Ja l nRESET | O nRESET
LMK_PCI_CFM 1
GHD PCI_RST_L @@s MST_RSTL
[J10
FLASH
(1hBit x & x 4

RESET

N2 i
JTAG SRST L 1 — '-S'IE_;*I’FET'-
POR

JT 5,18y | CIRCUIT

LMK_RST L i

GHND

FLASH RST L
FLASH_RST

[To x-Buz)

Application Note 17

[|
EBSA-110 and EBSA-285 Flash ROM Access Via JTAG I ntel .

3.3.3

3.34

3.3.5

18

BSR Signals Analysis and Use
Please consult Section 2.3.6 for a description of the BSR functionality.

The JTAG device used for communications is loaded with the EXTEST command. This needs to
be performed only once for the whole series of Flash operations that follow. These operations are
accomplished by loading several sequences of datain the format of the BSR.

The appropriate BSDL file should be carefully analyzed for signals relevant to the Flash memory
device. The evaluation board schematics will provide information about which lines to control.
These will include data and address buses, chip enable, read/write enable, output enable, and some
internal controls. Note that some higher order address bits perform afew of these signal functions.
From BSDL filesfor the SA-110 and 21285 devices, the following tables have been drawn up:

¢ Databus cells for both SA-110 and 21285

¢ Addressbus cellsfor both SA-110 and 21285

¢ Control cellsfor the SA-110

¢ Control cellsfor the 21285

Special Address Lines

On the EBSA-110, memory reads automatically present Dword data on D[31:0]. For memory
writes, data must be presented on D[7:0] and the PAKA[1:0] byte select lines must be used,
programmed via A[23:22]. A binary code on the address lines will generate the same effect on the
byte select lines.

An example addressing sequence of writing two consecutive Dwords on the EBSA-110 is shown below:

* (0x8000 0000, <Dword 1, byte 0> * (0x8000 0004, <Dword 2, byte 0>
* (0x8040 0000, <Dword 1, byte 1> * (0x8040 0004, <Dword 2, byte 1>
¢ (0x8080 0000, <Dword 1, byte 2> 0x8080 0004, <Dword 2, byte 2>
¢ (0x80CO0 0000, <Dword 1, byte 3> 0x80C0 0004, <Dword 2, byte 3>

On the EBSA-285, addresslines A[1:0] are set to ‘00’ in the Dword mode. The 21285 device routes
CPU address lines A[3:2] to the Flash memory address pins A[1:0], respectively. This gives an
incremental address of four, owing to that many bytes per Dword.

ROM_WE_L and ROM_OE L are generated by respective high-order address lines, A[31:30]. To
facilitate different ROM widthsin a system, A[29:28] are used by the 21285 to deal with their
addressing, but are not required in this case. The remaining lines, A[23:4], address the Flash memory.

Memory Mapping

For smplicity of accessing Flash memory via JTAG on the evaluation boards, the following address
information should be applied. These valuesignore al high-order address line control signal bits as
described in Section 3.3.4. (This does not mean that the software should ignore controlling them!)

¢ EBSA-110 Flash memory can be addressed from 0x8000 0000 up to 0x800F FFFF (20-hits).

* EBSA-285 Flash memory can be addressed from 0x0000 0000 up to 0x004F FFFF (22-bits).
The origin of these address values can be explained. In normal operation, the address map
quadrants 1 and 3 will swap upon the first detected CPU memory write. For the EBSA-110 thisis

also true when programming viaJTAG, but it is automatic. However, for the EBSA-285, thisis not
the case since programming is achieved via the 21285 device and does not involve the CPU.

Application Note

[|
I ntel . EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

3.3.6 CPU Memory Cycle on the EBSA-110

Appropriate timing diagrams of Flash memory access are given in the EBSA-110 reference manual .
However, these diagrams contain more information than needed and are somewhat difficult toread. A
simplified timing diagram is given in Figure 9, which is suitable for accessing Flash via JTAG.

Figure 9. Simplified EBSA-110 Memory Read-Write

CPU_DATA [31:0] WALID DATA
CPU_ADDRESS oy WALID ADDRESS
FST_H
WALk

44 Clocks
MM LE L ff
MMREG _l_)L

Cne beat
[R
CTA WAIT_L

L READFLASH—)

CPLU_DATA [T0] WALID DATA BYTE i
CPU_ADDRESS b WALID ADDRESS
RST_H
Lk

20 Clocks
ML |)r)r
HMREG _l_)L

Cne beat
IR _ -
CTAWAIT _L

L \WRITE TO FLASH—

Application Note 19

[|
EBSA-110 and EBSA-285 Flash ROM Access Via JTAG I ntel .

3.3.7 CPU Memory Cycle on the EBSA-285

The timing diagrams for the EBSA-285 are straightforward, but they may be further reduced as
shown in Figure 10. This allows faster throughputs of datato be realized in the code
implementation, when using the software.

Figure 10. Simplified EBSA-285 Memory Read-Write

Taccess MAGNIFIED)

Data — x whal D DaTs,
Address by w10 ADDRESS b
ROM_CE — | —
RoOmM_WR
ROm_OE |

' READFLASH—

TyyRITE MAGNIFIED)
I

Data il IO DT A
Address by w10 ADDRESS b
ROm_CE |
RoOmM_WR
ROM_OE

L wWRITE TO FLASH —

20 Application Note

I n o EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

3.3.8 TAP Connector

The TAP is buffered from the host PC parallel port, on the evaluation board. The physical
connection is made by a 14-way |DC connector. The pinout is shown in the two rightmost columns
of Table 5.

The connector originates from an existing microprocessor board produced by Advanced RISC
Machines, Ltd. To respect conventions, this pinout has been adopted for the EBSA-110 and
EBSA-285. A newer 20-way connector (Multi-ICE Standard) may be used on future boards.

3.3.9 Suggested Cable Connections

During the development of the software, the following connections were used in the prototype
communications cable. Details are given in Table 5. Note that this part is not commercially
available.

Approximately two meters of standard 14-way IDC was used, terminated with a matching female
connector. The PC parallel port plug should be a male 25-way D-type connector, housed in an IDC
shell hood.

A 2K pull-down resistor should be fitted between GND and the POWER_OK input pin 10, in the
D-type connector assembly, on the cable.

Table 5. Transceiver Cable Connections
From D-Type Pin Description To IDC Pin(s) Description
2 Data, PD[0]. (TCK) 9 TCK
3 Data, PD[1]. (TMS) 7 ™S
4 Data, PD[2]. (TRST_L) 3 TRST_L
5 Data, PD[3]. (SRST_L) 12 SRST_L
8 Data, PD[6]. (TDO) 5 TDI
9 Data, PD[7]. Wired back }

to pin 12, (SENSE_OUT)

ACK signal, Status bit 6. +5V output via a 33R limit

10 1,13 resistor on the evaluation
(POWER_OK) board.
BUSY signal, Status bit 7.
11 (TDI) 11 TDO
12 PE signal, Status bit 5.))
From pin 9, (SENSE_IN)
17-25 GND (Linked pins) 2,6,8,10,14 GND

Note: Pins not listed in this table are regarded as “No connection”.

Application Note 21

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG In

4.0

4.1

Note:
Table 6.
22

Program Implementation

Structures and Libraries

The rom_pgm.exe software is comprised of four hierarchical libraries and a main module. With
exception to jtag_bscan.c, each one has a header file containing a small global structure of status
and datainformation. Some libraries contain procedures for diagnostics and code development, but
are not invoked unless you call them in modified source code. Table 6 briefly summarizes each of
the libraries and the main module.

Most functions are 8-bit unsigned char types, returning an exit code. Thisis either a zero for
no-error, or non-zero (1) for error. The program includes simple error trapping which will flag up
messages, and exit al called routines until the main moduleis reached. The codeis not designed to
handle recovery from errors.

In the following section, 'port’ refersto the PC parallel port.

Please refer to the source code listings for specific information.

ROM_PGM.EXE Libraries, Structures, and Main Module

Library or
Module Global Description
Structure
Source-Name
Main module containing the user interface along with the program
rom_pgm.c ProgSet functionality algorithms for memory block read, write, delete, and so
forth.
. . Contains the parallel port toggling functions and cable
ltag_pp.c Sig connections/power test function.
. Handles most of the initialization of JTAG, and navigates the state
jtag_ops.c JTAG) .
machine as appropriate.
Loads/unloads data and sets control signals in the BSR. Shifts the
jtag_bscan.c N/A assembled BSR bit vectors in and out of JTAG devices. Itis an extension
to the library code in jtag_ops.c.
flashrom.c FLASH Contains routines for Flash memory communications, and dealing with

the system architecture for either evaluation board.

Application Note

42.1

4.2.2

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

Initializing JTAG and System Checks

To ensure that the JTAG systemis correctly set up, the following steps should be performed by the
software in the given chronological order, before Flash memory is accessed.

Inrom_pgm.exe, JTAG initialization is achieved by these procedures:
¢ Main module: rom_pgm.c, Statement: switch(Stage), case: 5.

This places JTAG devicesinto EXTEST or BY PASS and also asserts an appropriate reset,
depending upon the board connected.

* Library: jtag_pp.c, Routine: CommsTest().

This checks for cable presence and power-okay, returning a fault flag.
¢ Library: jtag_ops.c, Routine: InitJTAG().

Thisinitializesthe JTAG system and validates the connected board. If criteria are met, the program
is ready for Flash memory accessing.

¢ Library: jtag_ops.c, Routine: GetDevicel Ds().

Thisreads the JTAG identification register, and sets the operation specifics of the software to work
with the board.

Cable Connections and Power

The following basic checks should be carried out:
* |sthetransceiver cable connected between the specified/default port and the eval uation board?
¢ |sthetarget board +5V power healthy?

The port output should be reset to a value of 0x80, waiting for afew seconds. This allows the
evaluation board power supply decoupling capacitors to discharge, as a precaution.

Detecting the cable on the port is achieved viaa signal 1oop-back path, made in the connections for
this purpose. As SENSE_OUT will be set logic high, testing SENSE _IN allows cable presence at
the PC to be determined.

Verifying the +5V power on the target board is done by testing the POWER_OK input hit.

Asserting Resets

Please refer to Section 3.3 for more information about handling system resets.

The objectiveisto halt normal system activity but allow the parts required to function. JTAG reset
reguires two signals to be appropriately asserted, which are SRST_L and TRST. The previous
value of 0x80 on the port output satisfies this.

The software should then release TRST, respecting the minimum assertion time, giving a port
output value of 0x86. TMS can be left low since TCK is not strobed at this point.

Application Note 23

[|
EBSA-110 and EBSA-285 Flash ROM Access Via JTAG I ntel .

4.2.3

4.2.4

4.2.5

4.2.6

24

Device Counting

Device counting allows a simple check to determine which JTAG instructions should be loaded
into the devices, in the daisy-chain. This must be done in order to get the ID codes from the parts.

Having reset the JTAG circuitry, the devices present will bein Test Logic Reset state. The software
must set TMS low and strobe TCK once, to exit this state.

Counting is achieved by placing all possible devicesinto BY PASS mode. To do this, an oversized
stream of logic 1'sis clocked in during the Shift-IR state. The number of these to be clocked in
must be more than the combined IR length of devices expected in the daisy-chain. (rom_pgm.exe
uses 32). All bypass registers should then be flushed out with logic 0’s. Device counting begins by
setting TDI logic high and strobing TCK, until alogic 1 emerges at TDO. The number of clocks
reguired is the number of devicesin the daisy-chain.

Identification Check

By loading the IDCODE instruction for each devicein the daisy-chain, the parts on aboard may be
identified against known values. After clocking out the 32-bit data words, the upper four bits of
each |D code should be masked off for the comparison. Thisis the silicon revision number, which
will vary. However, the full code may be presented on the screen as useful information.

Recognizing the Connected Board

The combination of correct ID values for the parts and device count gives enough evidence to
decide what board is connected. Unrecognized boards should cause the software to abort further
action. From here on, the operation of the software must be customized to handle the differences
between the two boards.

Loading BYPASS/EXTEST

At this point, the corresponding BY PASS and EXTEST modes should be entered by the software,
for corresponding devices shown below:

¢ EBSA-110: SA-110 enters EXTEST.
¢ EBSA-285: SA-110 enters BY PASS, and the 21285 enters EXTEST.

Apart from afew system specific nuances, the JTAG system has now been initialized and is ready
to work with the Flash memory.

Application Note

INlgl.

4.3

43.1

4.3.2

4.3.3

4.3.4

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

Accessing the Flash Memory

BSR Modeling in Software

A bit vector of length and format of the BSR should be modeled in software by a one dimensional
unsigned char array. Each location should hold either a1 or 0. A suggestion isto have two arrays
for incoming and outgoing vectors.

The software procedure for outgoing transactions should “fit” the address and data values into their
respective cells. All control signals should be set appropriately for the desired operation, that is,
tristate control buffers set for a write to Flash and memory control signals asserted.

Once the BSR bit vector has been assembled, it is then dispatched in the Shift-DR JTAG state. This
is done one bit at a time per TCK strobe, using a program loop. Simultaneously, the previous data
from Flash is shifted in and this will require processing to extract the data from the bit vector cells.

Flash ID Check

Flash memory device ID should be checked to determine whether the parts are the expected type. It
is also useful during software development to check if the code is correctly accessing the Flash, as
the ID word is a known value given in the manufacturer's data sheet.

For the EBSA-285, the procedure DetermineFlashType() in flashrom.c also checks for the jumpers
discussed itsection 3.3.2If the jumper error occurs, the latched data will be 0x9090.9090. This is
the 'INTELLIGENT_ID' Flash command last written to the device.

Block Size

The EBSA-110 uses only one Flash part, giving a physical memory size of 1MB by 8-bits. (This is
accessed through the 32-bit to 8-bit byte packing system). Since the memory device contains 16

sub-blocks, this gives a block size of 64KB. On the EBSA-285, there are four Flash devices giving
sixteen 256KB sized blocks, accessed using a 32-bit data path.

Flash Type

The EBSA boards use Intel 28F008SA-L parts. Information important to the JTAG user will be the
Flash instruction set, 'Write State Machine' operation, and some timing diagrams. Please consult
the data sheet for details.

It is worth noting that some Flash instructions automatically output the status register contents
upon subsequent memory reads.

Application Note 25

[|
EBSA-110 and EBSA-285 Flash ROM Access Via JTAG I ntel .

4.3.5

4.3.6

Table 7.

26

Software Functions

The functionality of rom_pgm.exe is made up of several algorithms of basic Flash operation
macros. These reside in the main module. This layer of software should be independent of system
architecture and of memory device type.

Thelibraries, flashrom.c and jtag_bscan.c, contain driver code for accessing and working the Flash
memory devices. Two fundamental procedures are written to emulate CPU memory read and write
cycles. Using these to access Flash, the operation macros are implemented for:

* Read Dword data
* Write Dword data
* Delete block

¢ Identify Flash type

Program Image Types

The rom_pgm.exe software does not care what the image format is, providing that binary files are

used. Images may be copied to any block, but may not run if they have been built for a specific

block. Since the target address given in the headers of some file typesis not used, the software

cannot handle images larger than a single block size, that is, chained images are not supported.

Raw data images and AlF files are treated the same, where the message “Invalid image file” will be
displayed. The image shall still be copied, but the full block size default will be used. An image
with an FMU header is treated differently. The filename is shown on the screen with image length,
and only that number of bytes will be copied.

A standard AIF image file includes a 128 byte header. The existing FMU software adds a further 64
byte header to the beginning of an AIF file. The rom_pgm.exe JTAG programming software does not
do this, but will identify valid FMU headers and use parts of them when present in a file through
inheritance. The task of writing an extra code utility to rebuild files with a header is not too difficult.

The FMU image header format is giverTible 7 The size of this is 64 bytes, and uses little-endian
format. More information can be found in the appropriate evaluation board reference manuals.

Image Header Format (FMU)

Inclusive Byte Position Description
0.3 Image type word. Always a value of OXEBOOOO2E.
4 Image number.

5.7 Three byte signature. Always a value of 0XOOAA5S5.
8.11 Mapping information word.

12..15 Checksum word.

16..19 Image length word.

20..35 Filename of 16 bytes; ASCII characters.

36..39 Boot flags word.

40..63 Reserved bytes (24).

Application Note

In

4.3.7

Example 1.

®

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

Speed Optimizations

The slowest factor of the software appears to be with the PC parallel port hardware, giving a
maximum data throughput limit of 200K B per second. The 'C’ language macros for 1/O, outp() and
inp(), were thought to be the cause but assembler versions of these functions were tried, giving no
better results.

A number of software optimizations have been implemented to give the best possible resultswithin
reason. The fundamental optimizations are shown in Example 1.

Code optimizations have been made to routinesin jtag_bscan.c library, where loading and
unloading of the BSR bit vector array is done. The code has been reduced to the minimum needed
by resetting all cellsto logic 0, then only dealing with the important signals. This reduces the
number of conditional statements and therefore overhead time.

In the flashrom.c library, FlashWriteCyc() and FlashReadCyc() routines were originally made to
emulate “at speed” CPU memory cycles. Optimizations simplified these to the minimum number
of signal transactions, since the working speed of the JTAG software is very much slower than
normal conditions. The diagrams3ection 3.3.@andSection 3.3.&6how the reduced waveforms.

Writing to the screen using printf statements within program loops is reduced to a minimum, as this
is a relatively slow 'C' function.

In general, the best results are achieved in reviewing the fundamental level of the software, that is,
the signal toggling port functions. This is because they are called so frequently, and quickly
compound the delay.

Fundamental Speed Optimizations

unsi gned char WitePin(unsigned char Pin, unsigned char Val ue)
{
/* This function will change the logic state of the pin specified,

to a specified state */
unsi gned char State;

/* Get the current state of the data register, if not known initially.
Thi s neans subsequent pin wites only take one I/O port instruction
instead of two. A global flag, Sig. NewWNite, is used to deternmne if

the function has not been initially called. Speed optimzation. */

if (Sig.NewWite == TRUE)
{
Sig.Last _out = inp(Sig.Current_Port + OFFS_QOUT);
/* Set non-zero - initialization not needed again */

Sig. NewWite = FALSE;

Application Note 27

[|
EBSA-110 and EBSA-285 Flash ROM Access Via JTAG I ntel .

4.3.8

4.4

44.1

28

/* Wth last port out data, clear the bit, then update */
State = ((Sig.Last_out & ~(1 << Pin)) | ((Value & 1) << Pin));
outp((Sig.Current_Port + OFFS_QOUT), State);

/* Update the signals status info byte */

Si g.Last_out = State;

/* Return the status byte */

return(Sig.Last_out);

voi d TCK_Strobe()
{
/* This clocks the JTAG TCK line hi-lo. NOTE: Assunme TCK is | ow
initially fromreset condition. Therefore, only two I1/O routines

are called, not three in the case of "ultra-safe code" */

WitePin(B_TCK, H);
Si g.Last_out = WitePin(B_TCK, L);
}

Power-Down Caution

When the target board is powered down, and a number of PC parallel port outputs are set logic
high, the evaluation board can sink current. Thisis not desirable as damage to equipment could
result! The software should clear the port outputs as necessary, using a value of 0x80, or 0 in the
case of program exit. This has been catered for in rom_pgm.exe.

Future Development

In afurther attempt to speed up the JTAG communications, research into aternative paralle port
modes could be done. Mogt of today’s PC machines support two additiona port modes. These are
Enhanced Parallel Port (EPP) and Extended Capahilities Port (ECP) modes. The latter ismore suitable.

ECP Ideas

Although ECP supports a handful of submodes, no speed increaseislikely with the present system
setup. Submodes 0 and 2 are suggested, which are 'Compatible’ and unidirectional (outgoing)
'FIFO’ modes respectively.

Submode 3, 'ECP parallel port mode’, will require additional hardware and protocol handling as it
isincompatible with the present system setup. ECP features automatic DM A accesses to fill or
empty address and data FIFOs. Bidirectional data flow is supported. Feasible data throughputs of
up to 500K B per second can be achieved.

Information about ECP may be found in semiconductor manufacturer’s data books on Super 1/0
integrated circuits.

Application Note

INlgl.

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

5.0 Integrated Circuit JTAG Information
Table 8. SA-110/21285 JTAG Instructions
. Opcode Value; | Opcode Value; S
Instruction SA-110 21285 Description
To permit external tests where data is asserted to
EXTEST 00000 0000 drive output pins, and response is sampled from input
pins.
To take a sample of the logical state of the device
SAMPLE / 00001 0001 pins, without asserting test data, that is, transparent to
PRELOAD the normal operation of the device. Not meant for
real-time work!
To shortcut the data path, reducing the number of
BYPASS 11111 1111 data register stages in a JTAG daisy-chain. It does not
affect normal IC operation.
IDCODE 00110 0100 To present the 32-bit device-specific identity code.
To force all output pins into a predetermined state
CLAMP 00100 0011 governed by the contents of the Boundary Scan
Register.
HIGHZ 00101 0010 To force all output pins into high impedance state.

Note: Opcodes are stated as binary values. Only six JTAG instructions have been implemented into these

two devices.
Table 9. SA-110/21285 JTAG Identity Codes
Device Manufacturers ID Number; Bits 1to 11 Part Number; Bits 12 to 27
SA-110 0000 0110 101 (0x35) 0001 0000 0010 1100 (0x102C)
21285 0000 0110 101 (0x35) 0100 0001 1001 0100 (0x4194)

Application Note

29

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

Table 10.

30

BSR: Data Bus Cells

INlgl.

Signal Name Input Cell (SA-110) | Input Cell (21285) O(ustg‘l_];l%ﬁn Olz;qgtsg)e”
D[0] 65 357 64 358
D[1] 63 355 62 356
D[2] 61 353 60 354
D[3] 59 351 58 352
D[4] 57 349 56 350
D[5] 55 347 54 348
DI[6] 53 345 52 346
D[7] 51 343 50 344
D[8] 49 336 48 337
D[9] 47 334 46 335
D[10] 45 332 44 333
D[11] 43 330 42 331
D[12] 41 328 40 329
D[13] 39 326 38 327
D[14] 37 324 36 325
D[15] 35 322 34 323
D[16] 33 315 32 316
D[17] 31 313 30 314
D[18] 29 312 28 312
D[19] 27 309 26 310
D[20] 25 307 24 308
D[21] 23 305 22 306
D[22] 21 303 20 304
D[23] 17 301 16 302
D[24] 15 295 14 296
D[25] 13 291 12 292
D[26] 11 289 10 290
D[27] 9 287 8 288
D[28] 7 285 6 286
D[29] 5 283 4 284
D[30] 3 281 2 282
D[31] 1 279 0 280

Application Note

[|
I ntel . EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

Table 11. BSR: Address Bus Cells

Signal Name Output Cell (SA-110) Output Cell (21285) Input Cell (21285 Only)
A[0] 112 259 258
Al] 111 257 256
A[2] 110 255 254
A[3] 109 253 252
A[4] 108 251 250
A[5] 107 249 248
Al6] 106 247 246
Al7] 105 245 244
A[8] 104 243 242
A[9] 103 241 240
A[10] 102 239 238
A[11] 101 237 236
A[12] 100 235 234
A[13] 99 233 232
A[14] 98 231 230
A[15] 97 229 228
A[16] 96 227 226
A[17] 95 225 224
A[18] 94 223 222
A[19] 93 221 220
A[20] 92 219 218
Al21] 91 217 216
A[22] 90 215 214
A[23] 89 213 212
Al24] 88 211 210
A[25] 87 209 208
A[26] 86 207 206
A[27] 85 205 204
A[28] 84 203 202
A[29] 83 201 200
A[30] 82 199 198
A[31] 81 197 196

Application Note 31

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG In o
Table 12. SA-110 BSR: Miscellaneous Cells
Signal Name Cell Purpose

, , QOutput direction control for D[31:0]. Set this high for a write output, low

Control 19 for a read.

‘Control’ 68 NMCLK output drive enable. Set high always.

NWAIT 75 Input from CTA_WAIT signal.
Negated MCLK. (IEEE 1149.1 compliant). Toggle this line with the

NMCLK 76 compliment MCLK, to work the system state machines in CTA and CTB
logic blocks, for the EBSA-110 design.
Memory clock output. Note: This cell is not IEEE 1149.1 compliant as it

MCLK 78 will drive the output whenever SNA input pin is high. See description for
NMCLK.

MAS[1] 113 Byte mask line. Set high always.

MASIO0] 114 Byte mask line. Set low always.

‘Control’ 115 Output drive enable for A[31:0]. Set high always.

RSTOUT 116 CPU R_eset output. Set low to initialize, then set high for further
operations.

NRW 123 Read-Write output. Toggle this line; write when high, read when low.

SEQ 126 Sequential address. Compliment of NMREQ. Set high always.

NMREQ 127 Memory request output. Toggle this line low for a accessing Flash, and
conversely.

‘Control’ 129 NMREQ and SEQ output drive enable. Set high always.

32

Note: Thesignals, MAS[1:0], are set thisway to safely select byte 0 on D[7:0].

Application Note

intel.

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

Table 13. 21285 BSR: Miscellaneous Cells

Signal Name(s) Cell(s) Purpose
CS_L[3:0] 36, 38, 40, 42 | Chip selects [3:0], active low. Set high always.
ROM_CE_L 54 ROM enable line. Toggle this low to activate Flash and conversely.
XIOW_L 57 X-Bus write strobe, active low. Set high always.
XIOR_L 59 X-Bus read strobe, active low. Set high always.
XCS_L[2:0] 63, 65, 67 X-Bus chip selects [2:0], active low. Set high always.
TX 73 Transmit data from UART. Set high always.
PCI_GNT_L 75 PCI grant, active low. Set high always.
REQ_L 84 Bus master request, active low. Set high always.
‘Control’ 121, 151 ga}e’;);;.direaion controls, AD[31:16] and AD[15:0] respectively. Set high
"Control’ 126 Output direction control, FRAME_L. Set high always.
"Control’ 129 Output direction control, IRDY_L. Set high always.
‘Control’ 132 éCI)I\LIJ\It!;);lJ;direction control, TRDY_L, DEVSEL_L, STOP_L. Set high
"Control’ 140 Output direction control, PERR_L. Set high always.
"Control’ 143 Output direction control, SERR_L. Set high always.
"Control’ 146 Output direction control, PAR. Set high always.
PCI_IRQ_L 167 PCl interrupt. Set high always.
"Control’ 171 Output direction control, CBE_L[3:0]. Set high always.
PAD_NIRQ 190 Interrupt request. Set high always.
PAD_NFIQ 192 Fast interrupt request. Set high always.
Output direction controls, PAD[31:15] and PAD[14:0] plus
"Control’ 264, 265 PAD_MASJ1:0], respectively. Normally these are set logic low, but if the
address lines are to be read, toggle them high.
oo |l CPU srees s st e, s sllows e 21285
PAD_DBE 204 Egée(r)?ztarllggtjs.cizthz,a\l;);ss;r;ftligeicelr(\s\lljlle. This allows the 21285 to request
Comvor | 517,338,350 | Qutdrecton contotsfor DSLAE, D) s O70] especve.

Application Note

33

[|
EBSA-110 and EBSA-285 Flash ROM Access Via JTAG I ntel .

6.0

6.1

6.2

34

User Guide for ROM_PGM.EXE

Requirements

The software is very easy to use, but only works from a PC compatible running DOS. Note, it cannot
run from the MS-Windows 3.1/95/NT DOS window utility. Thisis due to features of the operating
system which inhibits rom_pgm.exe from accessing required PC hardware, properly and quickly.

A transceiver cable is required, with connections given in Table 5.

The software is designed to work with both the EBSA-110 and the EBSA-285, automatically
deducing which board is connected. Other system configurations will be rejected.

Syntax

The program uses command line parameters to specify filenames and paths, port, and desired
operation. The syntax for the command line is:

c:\rom pgm <conmmand> </ b: bl ock_nunber > <i mage_fil ename> </ p: port_nanme>
A basic help screen may be invoked by typing:
c:\rom pgm /hel porc:\rompgm/?

The operations performed by this software via <command> are:

'CHK’" Checksthe availability of Flash blocks sequentially, starting from the specified block.
Pressing the <esc> key will abort the check on the current block. Note that the software
will try to look for avalid image header, and if it succeeds, then the image name will be
displayed withitssize. If it failsthen adefault sequential search through thefirst 256 bytes

only will be performed. Upon finding data not equal to OxFF, the message “Invalid image

found” will be shown.

'DEL' Erases a specified Flash block. The software will ask for verification. It will warn if block
0 is specified as this is the boot block, and erasing this will render the board un-bootable.

TST Writes a test pattern if the block desired is verified empty. If true, a test pattern of

“<pattern count> AAAA...ZZZZ 0000...9999 aaaa...zzzz”, is written as many times as
will fit in the specified block. The action is aborted if the block is occupied or <esc> is

pressed (where only a portion of test data will be written).

'VRD' Verbose Read. Displays the contents of a block in a typical hex memory viewer fashion,
where the LSB of each Dword is at offsets 0, 4, 8 and 0xOC. Pressing <return> will print
up the next screen of memory data. Hitting <space> will jump one screen full of dataand

print up the next, which is faster. Hitting <esc> will abort the operation. A column of

ASCII print tables is given which is useful to identify image names. A percentage-read

indicator is given for guidance.

'RD’ Reads out images from the given block to a binary image file specified, or to the default
filename. The software tests for a valid image header, and if detected will subsequently
get the image length, copying that number of bytes to the file. If no image header is found,
then an “Invalid image: Copyingx Kbytes block to file...” message is shown and the full
block size is copied. A progress indicator is given. Pressing <esc> will abort, but the file

will be incomplete!

Application Note

[|
I ntel . EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

'WR’ Writes an image to agiven block from the specified filename order fault filename. Before
an image write can be done, the software reads in a portion of the sourcefile, testing it for
avalid image header. If oneisfound, then theimage length is determined and that number
of bytes will be written to the Flash, otherwise an “Invalid image: Copyirdbytes to
memory” message is displayed, and the full block size will be copied. The target block is
verified empty, and if not true, the process is aborted. A progress indicator is given, and
pressing <esc> will abort. This will mean that the written image is not complete!

Valid values of </b:block_number> are 1 to 15. lllegal values will display an error message which
terminates the program.

Image filenames given must have the extensions of *.aif, *.axf, or *.img. Path names may be
specified, but the total string length of this must not exceed 80 characters. File operations are
automatically disabled for the TST, CHK, VRD, and DEL commands, since they are not needed.

Valid constants for </p:port_name> are, 'LPT1' or 'LPT2". PC parallel port addresses of 0x378 and
0x278 are used, respectively. Standard port mode is used.

6.3 Defaults

The <image_filename> and </p:port_name> fields are optional. The default filename is
flashrom.img. The default port is LPT1.

6.4 Usage

¢ With the power off on both PC and EBSA board, connect the transceiver cable between PC
paralel port LPT1 and the 14-way IDC JTAG TAP connector.

* Power up, then check communications by using the VRD command on any block apart from
boot block 0 (unless thereis nothing in it anyway).

c:\rompgmvrd /b:4

* The software will display a banner and perform some checks that take a few seconds. If al is
okay, then the desired operation will commence, otherwise error messages are displayed.

¢ Usethe WR command to program a valid image into the Flash from a specified file.
* Usethe RD command to read back ablock to agiven file.

6.5 Error Conditions

The software performs some fundamental error checking. When errors occur, messages are
displayed and the program terminates. Most of these messages should be self explanatory. Below is
alist with abrief explanation, where appropriate.

Application Note 35

[|
EBSA-110 and EBSA-285 Flash ROM Access Via JTAG I ntel .

6.5.1

36

Fatal Errors

1. Messages from module: rom_pgm.exe, routine: main()

¢ Could not open the working file [xx...xx]

A file /O error had occurred, possibly from afile or path not existing or a path was not correct.
* Failed toinitialize JTAG successfully
¢ Failed to read JTAG device identification(s)
* Failed 'BYPASS/EXTEST instructions and reset

A fundamental JTAG error occurred with the devices as they have not responded to the |IEEE
1149.1 state machine operation. The software could not assert the appropriate system reset.

* Failed to identify FLASH devices successfully

The Flash parts do not respond as expected. The devices may not be the Intel 28F008SA-L type, or
something stopped them from working, such as a reset jumper.

* Failed to complete desired operation

The operation you requested from the software could not be completed due to a previous and more
significant error condition.

¢ Anunknown error has occurred!

Anunusual error has occurred in the software, which is not identified.
2. Messages from module: rom_pgm.exe, routine: Commands()
¢ Error! No command specified or wrong syntax

Error! Block number specified istoo large

Error! No block number specified or wrong syntax

The user caused an error by incorrectly specifying the command line arguments when invoking
rom_pgm.exe.

3. Message from module: rom_pgm.exe, routine: ReadBlock()
¢ Error! Filewrite operation failure!

A file1/O error occurred, possibly from a mediaerror or the disk becoming full.
4. Messages from module: rom_pgm.exe, routine: WriteBlock()
¢ Error! Fileread operation failure!

A file /O error occurred, probably resulting from a media error.
5. Messages from library: jtag_pp.c, routine: CommsTest()
* Error! Comms cable not connected at PC!

¢ Error! Comms cable not connected at board, or +5V is dead!

Error! Unknown comms test result!

Application Note

EBSA-110 and EBSA-285 Flash ROM Access Via JTAG

When the procedure tested for the transceiver cable presence and power healthy, afailure occurred.
6. Messages from library: jtag_ops.c, routine: GetDevicel Ds()
¢ Error! Cannot cope with more than two JTAG devices!
¢ Error! The board connected is of an unknown type!

The user has connected a board that is not an EBSA-110 or EBSA-285. The software is not
designed to work with any other boards.

7. Message from library: jtag_ops.c, routine: LoadJTAGInstr()
¢ Error! Couldn't load JTAG instruction!

A fundamental JTAG or communications error occurred previously that prevented the software
from further actions.

8. Messages from library: jtag_ops.c, routine: InitJTAG()
¢ Error! The JTAG daisy-chain is short circuit!
¢ Error! The JTAG daisy-chain is open circuit!

During preliminary checks, afault was detected in the JTAG daisy-chain with the TDI-TDO data
line.

9. Message from library: jtag_bscan.c, routine: TalkBoundaryScan()
¢ Error! Couldn't load the boundary scan register!

A fundamental JTAG or communications error occurred previously that prevented the software
from performing further actions.

10. Message from library: flashrom.c, routine: WriteToFlash()
¢ Error! Failed to write the data successfully! SR:[xXx...xX]
11. Message from library: flashrom.c, routine: DeleteFlashBlock()
* FError! Failed to erase block x successfully! SR: [xx...xX]
12. Messages from library: flashrom.c, routine: DetermineFlashType()
* Error! Flash isnot responding! Ensure removal of J9, J10 and J17 reset(EBSA-285 only)
¢ Error! Flashis not responding! (EBSA-110 only)
13. Message from library: flashrom.c, routine; FlashWriteCyc()
¢ Error! Boundary scan comms in cpu-flash write failure!
14. Message from library: flashrom.c, routine: FlashReadCyc()
* Error! Boundary scan comms in cpu-flash read failure!
These are all Flash related problems occurring because of system errors, or otherwise arising from

aprevious JTAG or communications failure event. Where the message states SR:[xx...xx], the
status register contents of the Flash device is given to aid diagnosis.

Application Note 37

[|
EBSA-110 and EBSA-285 Flash ROM Access Via JTAG I ntel .

6.5.2

6.6

38

Non-Fatal Errors

M essage from module: rom_pgm.exe, routines: WriteBlock() and TestPattern().
¢ Error! Thisblock is not empty

Thisisthe only error condition that will terminate the software in ordinary fashion, that is, the
operations WR and TST are aborted after this event.

Completion Times

The software has been tested on a 133 MHz Pentium® processor running MS-DOS V6.22.

For the EBSA-285 (using 256K B images), downl oads take approximately 10 minutes for a block
read, and 25 minutes for block write.

For the EBSA-110 (using 64K B images), downloads take approximately 30 minutes for a block
read and 100 minutes for a block write.

Not all applications will be large enough to use afull block size, so these download times may be
significantly reduced.

Application Note

intel.

Support, Products, and Documentation

If you need technical support, aProduct Catalog, or help deciding which documentation best meets
your needs, visit the Intel World Wide Web Internet site:

http://www.intel .com

Copies of documents that have an ordering number and are referenced in this document, or other
Intel literature may be obtained by calling 1-800-332-2717 or by visiting Intel's website for
developers at:

http://developer.intel.com

You can also contact the Intel Massachusetts Information Line or the Intel Massachusetts Customer
Technology Center. Please use the following information lines for support:

For documentation and general information:

Intel Massachusetts Information Line

United States: 1-800-332-2717
Outside United States: 1-303-675-2148
Electronic mail address: techdoc@intel.com

For technical support:

Intel Massachusetts Customer Technology Center

Phone (U.S. and international): 1-978-568-7474
Fax: 1-978-568-6698
Electronic mail address: techsup@intel.com

o
T
oc
o
=
o
a
|

	EBSA-110 and EBSA-285 Flash ROM Access Via JTAG
	Copyright Page
	Contents
	Figures
	Tables
	1.0 Introduction
	2.0 About JTAG - An Introduction
	2.1 What Is IEEE Standard 1149.1
	2.2 Why Use JTAG
	2.3 Test Circuit Implementation
	2.3.1 Fundamentals
	2.3.2 JTAG Interface
	2.3.3 Registers
	2.3.4 Endian Issues
	2.3.5 Instruction Register
	2.3.6 Boundary Scan Register
	2.3.7 Bypass Register
	2.3.8 Identification Register

	2.4 The JTAG Instruction
	2.5 Using IEEE 1149.1 JTAG
	2.5.1 System Analysis
	2.5.2 State Machine
	2.5.3 Navigating States
	2.5.4 Loading Registers

	2.6 General Considerations
	2.6.1 Requirements
	2.6.2 Access of Tristate Outputs or Bidirectional Designs
	2.6.3 Irrelevant Device Pins and Use of JTAG

	1.1 New System Development
	1.2 JTAG - Joint Test Action Group
	1.2.1 IEEE 1149.1 Utilization
	1.2.2 Extended Use of JTAG Test Circuitry

	1.3 StrongARM** Evaluation Boards
	1.3.1 EBSA-110
	1.3.2 EBSA-285

	1.4 How to Use This Document

	3.0 Evaluation Boards, Devices, and Using JTAG
	3.1 Nomenclature
	3.2 Device Background Information
	3.2.1 SA-110 Microprocessor
	3.2.2 21285 System Core Logic IC

	3.3 Using the System Architecture
	3.3.1 EBSA-110
	3.3.2 EBSA-285
	3.3.3 BSR Signals Analysis and Use
	3.3.4 Special Address Lines
	3.3.5 Memory Mapping
	3.3.6 CPU Memory Cycle on the EBSA-110
	3.3.7 CPU Memory Cycle on the EBSA-285
	3.3.8 TAP Connector
	3.3.9 Suggested Cable Connections

	4.0 Program Implementation
	4.1 Structures and Libraries
	4.2 Initializing JTAG and System Checks
	4.2.1 Cable Connections and Power
	4.2.2 Asserting Resets
	4.2.3 Device Counting
	4.2.4 Identification Check
	4.2.5 Recognizing the Connected Board
	4.2.6 Loading BYPASS/EXTEST

	4.3 Accessing the Flash Memory
	4.3.1 BSR Modeling in Software
	4.3.2 Flash ID Check
	4.3.3 Block Size
	4.3.4 Flash Type
	4.3.5 Software Functions
	4.3.6 Program Image Types
	4.3.7 Speed Optimizations
	4.3.8 Power-Down Caution

	4.4 Future Development
	4.4.1 ECP Ideas

	5.0 Integrated Circuit JTAG Information
	6.0 User Guide for ROM_PGM.EXE
	6.1 Requirements
	6.2 Syntax
	6.3 Defaults
	6.4 Usage
	6.5 Error Conditions
	6.5.1 Fatal Errors
	6.5.2 Non-Fatal Errors

	6.6 Completion Times

	Support, Products, and Documentation

