intgl.

PCl and uHAL on the EBSA-285

Application Note

October 1998

I Order Number; 278204-001

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The 21285 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation, 1998

*Third-party brands and names are the property of their respective owners.
*ARM and StrongARM are trademarks of Advanced RISC Machines, Ltd.

Application Note

[|
I nt9| . PCI and uHAL on the EBSA-285

Contents

1.0 T g o [N Tl o] o PP POTPPRRR 7
2.0 ACCESSING @ PCI DEBVICEccc ittt sttt er e e e e e e e s e s raeeeeeeeeeaeeanns 7
2.1 PCI AQUrESS SPACES ...vvvviiiiiieeeeeiiiiiiiieiee et e e e e e s ss s st reeaeeeeeeesnssnrreeareeaeeaeesanannnes 7
2.1.1 PCI /O and MemOrY SPACEccceeiieieiiiiiieeieeee e s iessteiere e aee e e e e e snennnsnnneees 7
2.1.2 PCIl Configuration SPaACE.......ccceeeiiiiiiiiiiiiieiiiee e e e sscneee e e e e e e e e e s s sneennnees 8
2.2 Accessing Configuration Registers from Software...........ccocevcvvvveeie e, 9
3.0 PCI BUS INLIANZALION ...eiiiiiiiiiie ettt et et e e s senbeeeeeens 11
4.0 (OF0] a1 iTo U TaTaTo I =d @ I LAY, o = PRERRRR 13
4.1 PrOCEAUIE ...ttt e st e e st e e e e enbee e e e e nnneee 13
4.2 YU o] oo g f = o] U1 1] =R R 15
4.2.1 Accessing Base Address REJISEISuvuviiieeiiiiiiiiiiiiiie e e ceiieeenea e 15
4.2.2 ASSIgNING PCl AQArESSESuviiiiiiieiee ittt te e e e e e e e e e 19
4.2.3 Accessing PCl ADAreSs SPACE......cuuviieeieeiiiiiiiiiiiiiieeeee e e e sssvvaneaneaaeees 21
4.2.4 FINAING PCl DEVICEScccuiiiiiiiiiiie e e e e seiciite et e e e e e e s s sniabaneeeeee e e s e e snnannns 23
5.0 (070 o o3 1013 o] o FO PR 26
Figures
None
Tables
1 21285 PCI Configuration Space RegISterS..........uuiiiiiiiiiiiiiiiiiiieieeee e 8

Application Note iii

[|
I ntel . PCI and uHAL on the EBSA-285

1.0 Introduction

The EBSA-285 uHAL software package includes support for access to PCl viathe 21285 Core
Logic for SA-110 Microprocessor.

This application note should be used in conjunction with the following documents:

® 21285 Core Logic for SA-110 Microprocessor Data Sheet (278115)
¢ EBSA-285 Evaluation Board Reference Manual (278136)
* PCI Local Bus Specification, Revision 2.1, available from the PCI Special Interest Group

Example code is taken from the UHAL software library distributed with StrongARM** evaluation
boards.

2.0 Accessing a PCI Device

The Peripheral Component Interconnect PCI Local Bus Specification, Revision 2.1 is ahardware
and software interface specification. This standard describes how to connect the peripheral
components of a system in a structured and controlled way. The electrical interconnects and
timings are specified as well as some standard device configuration registers.

The PCI busisalittle-endian bus; there is no provision to access PCI as a big-endian bus.

When reset, all devices on the PCI bus must cooperate to ensure devices can find each other and
request desired resources.

The 21285 provides the software with a transparent interface to PCI devices. Each device can be
assigned memory space during initialization and standard routines then allow each particular
deviceto be located and used.

2.1 PCIl Address Spaces

The processor and the peripheral devices need to access memory that is shared between them.
Device driver software uses this memory to control PCI devices and exchange information with
them. Typically, the shared memory contains control and status registers for the device.

The CPU’s system memory could be used for this shared memory, but if it were the CPU would
have to stall every time aPCI device accessed memory. Since memory is generally available to one
system component at atime, this would slow down the system. Peripheral devices should not be
allowed to access main memory because a rogue device could make the system very unstable.

PCI has three distinct address spaces: PCI 1/0, PClI Memory, and PCI Configuration space.

2.1.1 PCI 1/0 and Memory Space

Software running on the master device uses these two address spaces to communicate with
peripheral devices. 1/0O space generally maps the registers of the peripheral so that software can
check status and enable and disable activity. Memory spaceis used for functions that require larger
amounts of memory, such as data buffers. For example, a video card would have control registers
in 1/0O space and the video information in memory space.

Nothing can access these spaces until the PCl system has been set up and access permitted by
writing the command field in the PCI configuration header.

Application Note 5

[|
PCI and uHAL on the EBSA-285 I ntel .

2.1.2

Table 1.

PCI Configuration Space

All PCI devices have 256 bytes of configuration information. This allows other devices on the bus
to check which other devices are also there and to configure them appropriately.

The PCI configuration registers allow each PCI device to be identified and initialized by the PCI
master. Some values are fixed, such as the Vendor 1D, Device ID, Class Code, and Revision ID.
Others determine how quickly and to which PCI addresses the device responds.

The primary way to identify a PCI device isviathe Class Code register, which is broken into three
byte-size fields. The most significant byte, at offset OBh, isthe base class byte, which classifiesthe
function type of the device (that is, Bridge Device, Display Controller, etc.). The next byte, at
offset OAh, is the subclass byte, which further classifies the device (that is, Ethernet, Token Ring,
etc.). The least significant byte, at offset 09h, identifies a specific register-level programming
interface (if any) so that device independent software can interact with the device. The Vendor 1D
register contains a code that uniquely identifies the manufacturer of the device, and the Device ID
register contains a code to uniquely identify the device for the given manufacturer.

Using thisinformation, for example, one EBSA-285 could find another EBSA-285in aPCl system
by looking for aprocessor class device, subclass coprocessor, with avendor ID of 1011h (Intel) and
adevice D of 1065h (21285).

These Configuration Registers appear at the start of the 21285 register space, as shown in Table 1
(the Base Address Register implementations are specific to the 21285).

21285 PCI Configuration Space Registers

31 24 | 23 16 | 15 8|7 0| Offset
Device ID Vendor ID 00h
Status Command 04h
Class Code Revision ID 08h
BIST Header Type Latency Timer Cache Line Size 0Ch
CSR Memory Base Address 10h
CSR I/O Base Address 14h
SDRAM Base Address 18h
Reserved (Unused Base Address) 1Ch
Reserved (Unused Base Address) 20h
Reserved (Unused Base Address) 24h
CardBus CIS Pointer 28h
Subsystem 1D Subsystem Vendor ID 2Ch
Expansion ROM Base Address 30h
Reserved 34h
Reserved 38h
Max Latency Min Grant Interrupt Pin Interrupt Line 3Ch

Application Note

[|
I ntel . PCI and uHAL on the EBSA-285

2.2 Accessing Configuration Registers from Software

The EBSA-285 Evaluation Kit is shipped with software examples including the uHAL (Hardware
Abstraction Layer) library. This library includes routines and data structures to access PCI devices.
Configuration of PCI devicesis discussed in Section 4.

There are three routines to read from PCI Configuration Space:
¢ SAr_PciCfgReadByte()
¢ SAr_PciCfgReadShort()
* SAr_PciCfgReadL ong()

These routines are basically the same, but read 1, 2 or 4 bytes from the specified offset. Each
routine requires a status word, to indicate that the data was properly accessed and the device exists
as addressed, and returns the value read from the configuration space of the appropriate device.

Similarly, there are three routines to write to PCI Configuration Space:
* SAr_PciCfgWriteByte()
* SAr_PciCfgWriteShort()
e SAr_PciCfgWriteLong()

These routines work in exactly the same fashion as the read routines.

Example 1. Reading PCI Configuration Registers

/*

*

* routine: SAr _Pci Cf gReadByt e(U32 handl e, U32 of fset, PS32 pStatus)
*

* paraneters: handl e = handl e of device that we are assigning resources to
* offset = offset into PCl config space for current BAR

* data = value to be witten

* pSt atus = SUCCESS/ FAI L fl ag

*

* description: This routine read a byte value fromthe given

* PCl config register.

*

* calls: SAi r _CheckCrf gParans(), SAir_Pci MakeConfi gAddress()

*

* returns: data - val ue read.

*/

U8 SAr_Pci Cf gReadByt e(U32 devHandl e, U32 offset, PS32 pStatus)

Application Note 7

PCI and uHAL on the EBSA-285 I n
®
{
PU8 pAddress ;
us data ;

/* check device parans */

*pStatus = (S32) SAi r_CheckCf gPar ans(devHandl e, offset) ;

if (*pStatus != MSG_SUCCESS)

return(0) ;

/* generate the address of correct configuration space */

pAddress = (PU8) (SAi r _Pci MakeConfi gAddr ess(devHandl e, offset)) ;

/* now that we have valid parans, go read the config space data */

data = *pAddress ;

*pStatus = MSG_SUCCESS ;

return(data) ;
}
#defi ne SAr_Cet Pci Vendor I D(h, s) SAr_Pci Cf gReadShort (h, PCI_VENDOR | D, s)
#defi ne SAr_Get Pci Devi cel D(h, s) SAr_Pci Cf gReadShort (h, PCI_DEVICE ID, s)
#define SAr_Get Pci C assl D(h, s) (SAr _Pci Cf gReadLong(h, PCI_REV_ID, s) >> 8)
#define SAr_GCet Pci Revl D(h, s) SAr _Pci Cf gReadByt e(h, PCI_REV_ID, s)
#define SAr_GCet Pci BAR(h, o0, s) SAr _Pci Cf gReadLong(h, PCI_MEM BAR + (0 * 4), s)
#defi ne SAr_Get Pci Conmand(h, s) SAr _Pci Cf gReadShort (h, PCl _COMVAND, s)

#define SAr_Cet Pci Status(h, s) SAr _Pci Cf gReadShort (h, PCI _STATUS, s)

As shown above, UHAL provides several aliases for the read routines to make register access more
consistent and explicit.

8 Application Note

intel.

3.0

Example 2.

PCI and uHAL on the EBSA-285

PCI Bus Initialization

PCI specifies that each device must set its registers to appropriate values and clear the reset flag in
the status register. The EBSA-285 needs to set the registers on the 21285 so that it appearsin a
useful state on the PCI bus.
The PCI setup routineis as follows:
¢ Disable all PCl interrupts.
* Remove PCI reset flag; if the 21285 is driving PCI reset, this releases other devices to start
their initialization.
* Set the Base Address Registers (BARS) so that the PCI host can assign the EBSA-285 an
appropriate amount of PCl address space. The 21285 can only support certain memory sizes,

so thereisan array of sizes, largest first, that is scanned to determine the correct mask for the
Address Mask Register.

¢ |f thisboard is configured as PCI host, set up the 21285 BARs and activate the memory, /O,
and master hits.

* Setthe SETUP_COMPLETE flag to indicate to the PCI domain that the EBSA-285 is ready.
Thisisdonewith an ARM** Assembler macro called SETUP_PCI (in lib/ebsa285/target.s), which
can be found in the Angel* and uHAL sources included in the EBSA-285 Evaluation Kit. In
UHAL, thereis an example"C" routine that behavesin exactly the same fashion. Thisroutineisin
lib/ebsa285/platform.c. If an application requires different PCI initialization code, it is suggested

that the macro call is removed from lib/boot.s and a suitably modified version of SAir_Pcilnit() is
caled from targetlnit().

Initialization Code

void SAir_Pcilnit(U32 nenSize, U32 nenBase)

us *base = (U8 *)DC21285 ARMCSR BASE ;
u32 *pci MenSi ze = SAi v_Pci Si zes ;

u32 *pci Memvask = SAi v_Pci Masks ;

u32 tenp ;

/* Disable PClI Qutbound interrupts */
*(U32 *)(base + PCI_OUT_I NT_MASK) = NO_OUTBOUND_I NTS ;

/* Disable Doorbells */
*(U32 *)(base + DBELL_PCI_MASK) = 0 ;
*(U32 *)(base + DBELL_SA MASK) = 0 ;

/* H gh PCl address bits all map to 0 */
*(U32 *)(base + PCI _ADDR EXT) = 0 ;

Application Note 9

PCI and uHAL on the EBSA-285 I n

/* Set Interrupt IDto 1 - fixes problenms on systens which cannot
* handl e interrupt O.

*/

*(U32 *)(base + PCl _INT_LINE) = SETUP_PCl INT_ID ;

/* Renmove PCl _reset; NOTE can't assert reset if already done */
temp = *(U32 *)(base + SA CONTROL) ;

tenp | = PCl _NRESET ;

*(U32 *)(base + SA CONTROL) = tenp ;

/* Open up a wi ndow from PCl nenory space into the EBSA-285
* SDRAM |f configured as an add-in card, this allows the
* host to allocate nenory for the EBSA-285 during its POST.
*/
while (*pci MentSi ze && *pci MenSi ze > nmenti ze) {
pci MenftSi ze++
pci Memvask++ ;
}
*(U32 *)(base + DRAM BASE_ADDR MASK) = *pci Memvask ;
*(U32 *)(base + DRAM BASE ADDR OFF) = nenBase ;

/* Only init PCl if central function & Standal one Bench Bit isn't set */
if (SAr_PciHost()) {

/* Don’t respond to any commands */

*(U32 *)(base + PCl_COWAND) = O ;

/* Set Menory Base Address Register to our default */

*(U32 *)(base + PCl_MEM BAR) = 0x40000000 ;

*(U32 *)(base + PCl 1O BAR) = OxF00O ;

*(U32 *)(base + PCl _DRAM BAR)

0;

/* Done: respond to I/O space & Menory transactions.
* ALSO BE PClI MASTER

*/

*(U32 *)(base + PCI_COMMAND) = PCI_CFNINIT ;

/* Signal PCl_init_conplete, won't hurt if it’s already been done */
tenp | = I NI T_COVPLETE ;

*(U32 *)(base + SA CONTROL) = tenp ;

}

10 Application Note

[|
I ntel . PCI and uHAL on the EBSA-285

4.0 Configuring PCI Devices

In UHAL, it is assumed that the EBSA-285 can only configure other cardsif it isthe PCI host; this
avoids problems with multiple devices attempting to configure the PCI memory space. uHAL
scans the bus and builds alist of device nodes; then resources are assigned for each device found.

4.1 Procedure

A PCI card is configured as follows:
¢ To stop the card from accessing PCl, it isfirst disabled.
* Each Base Address Register (BAR) is reset by writing -1 to it.

* Whenthe BAR isread, it returns the size and type of PCI space required. Thissizeinformation
must be stored in the devnode, as this register will soon hold the base address, rather than size.

* Assign the next base address for the appropriate PCI space. 1/0 space must be an address |ess
than 1M B; memory can be any 32-bit address. Each address must be naturally-aligned with the
reguested size; thus, if a device asks for 2MB of memory, the address assigned to that BAR
would be rounded to a2M B boundary. The area of PClI memory space between the new base
address and the top of the previous allocated space would not be assigned. This example code
is straightforward and does not attempt to optimize address all ocation.

* The Expansion ROM BAR is scanned to alow easy configuration when required. No PCI
memory space is assigned at this point.

* Once all the BARS have been scanned and initialized for this device, accesses are re-enabled
according to the types of BAR found.

Application Note 11

PCI and uHAL on the EBSA-285 I n

Example 3.

12

Assigning PCI Resources

voi d SAir_Assi gnResources(U32 handle, U32 *sizePtr)
{

u32 data, offset = PCl_MEM BAR ;

S32 i, status, barFlag = 0 ;

/* Disable PCI 10 and nenory accesses */

SAr _Pci Cf gWiteShort (handl e, PCl_COMMAND, 0, &status)

/* Scan each of the BARS for this device */
for (i =0; i < PCl_MAX_BAR; i++) {
data = SAir_ReadBARSi ze(handl e, sizePtr, offset)
if (data !'= 0) {
/* Assign some PCl nmenory space to this BAR */
barFlag | = SAir_WiteBARSi ze(handl e, data,
*sizePtr, offset)
}
/* increment the BAR offset value */
offset += 4 ;

si zePtr++ ;

/* Check out the Expansion ROM but don't give it any PCl space */
sizePtr++ ;
of fset = PCl _ROM BAR ;

SAi r _ReadBARSi ze(handl e, sizePtr, offset)

/* Enable PCl 10 and nenory accesses as found by scan, with MASTER */
barFl ag | = PCl _MASTER ENABLE ;
SAr _Pci Cf gWiteShort (handl e, PCl_COWAND, barFl ag, &status)

SAr _Pci CfgWiteByte(handl e, PCl_LATENCY, OxFF, &status) ;

Application Note

[|
I ntel . PCI and uHAL on the EBSA-285

4.2 Support Routines

421 Accessing Base Address Registers

To improve the readability of the code, some of the complexities of PCI initialization have been put
into separate routines. One of these is reading the size of the memory blocks requested by adevice.

Example 4. Reading the Memory Block Size

/*

*

* routine: SAi r _ReadBARSi ze(U32 handl e, U32 offset)

*

* paraneters: handl e = handl e of device that we are assigning resources to
* of fset = offset into PCl config space for current BAR

*

* description: this routine will attenpt to gl ean resource requirenents
* fromthe device pointed to by handl e

*

* calls: pci Cf gReadLong(), pci CfgWitelLong(),

*

* returns: data - value read from BAR

*/

U32 SAi r_ReadBARSi ze(U32 handl e, U32 *sizePtr, U32 offset)

{
u32 data ;
S32 status ;
/* wite PCI_INVALID to BAR to get size */
SAr_Pci CfgWitelLong(handl e, offset, PCH_INVALID, &status)
/* check if this is an inplemented BAR (size != 0) */
data = SAr_Pci Cf gReadLong(handl e, offset, &status) ;
if (data !'=0) {
/* Keep a note of the size, because it isn't easy
* to read - have to disable card, read address,
* set to -1, read size, reload address & re-enable!
*/
*sizePtr = (~(data & OXFFFFFFF0)) + 1 ;
}
*sizePtr = 0 ;
}
return (data) ;
}

Application Note 13

PCI and uHAL on the EBSA-285 I n

Example 5.

14

Writing the Memory Block Base

/*

*

*

*/

routine: SAir_WiteBARSi ze(U32 handl e, U32 data, U32 size, U32 offset)
paraneters: handl e = handl e of device that we are assigning resources to
dat a = raw data read from BAR
si ze = size of PCl space required

offset = offset into PCl config space for current BAR

description: this routine wites the base address for the requested size

to the device pointed to by handle

calls: pci Cf gWiteLong(),

SAi r _Assi gnl oAddr (), SAir_Assi gnMemAddr ()

returns: voi d

S32 SAir_WiteBARSi ze(U32 handl e, U32 data, U32 size, U32 offset)

{
S32

}

status, barFlag = 0 ;

/* Do not assign PCl space to ROM Expansion BAR to | O space */
if ((offset !'= PCl_ROM BAR) && (data & PCl_|1 O ENABLE)) {
/* 10 space BAR */
SAr _Pci CfgWitelLong(handl e, offset,
SAi r _Assi gnl oAddr (si ze), &status) ;
barFl ag | = PCl _I| O_ENABLE ;

}
el se {
/* menory space BAR */
SAr _Pci Cf gWiteLong(handl e, offset,
SAI r _Assi gnMemAddr (si ze), &status) ;
bar Fl ag | = PCI _MEM ENABLE ;
}

return barFlag ;

When configuring adevice, uUHAL provides routinesto find the next PClI memory, or PCI 10 Base
Address Register. If bar is zero, thisindicates first bar. A return value of zero indicates no more
BARs of that type.

Application Note

intel.

PCI and uHAL on the EBSA-285

Example 6. Quick Access to Base Address Registers

/*

*

*

*

*/

routine: SAr _Get Next MenBAR(U32 handl e, U32 *bar)

paraneters: handl e - handl e of device being accessed
*bar - offset into Base Address Registers to start from

descri ption: this routine will scan the remaining Base Address Registers
for the specified device. Wien a BAR is found which points to
PClI menory space, the address in the BAR is returned.

calls: SAr _Cet Pci BAR()

returns: contents of BAR (O if none found)

*bar is nodified to next possible BAR of fset

U32 SAr_Get Next MemBAR(U32 handl e, U32 *bar)

{
us2

S32

Application Note

i,

data ;

status ;

/*

for

/*

Scan remai ning BARS for this device */

(i = *bar; i < PCl_MAX _BAR i++) {

/* Read back address assigned for this BAR */
data = SAr_Get Pci BAR(handl e, i, &status)

/* 1f not 1/O then it is menory */

if ((data & PCl_I O ENABLE) == 0) {
/* Got one, set next available BAR & return address */
*bar =i + 1 ;

return (data & ~O0xOF)

Not hi ng found */

*bar = 0 ;

ret

urn 0 ;

15

PCI and uHAL on the EBSA-285

16

/*

* routine:

* paraneters:

* description:

* calls:

* returns:

*/

SAr _Get Next | OBAR(U32 handl e, U32 *bar)

handl e - handl e of device being accessed

*pbar - offset into Base Address Registers to start from

this routine will scan the remaining Base Address Registers
for the specified device. Wien a BAR is found which points to
PCl /0O space, the address in the BAR is returned.

SAr_Get Pci BAR()

contents of BAR (0 if none found)

*bar is nodified to next possible BAR of fset

U32 SAr_Get Next | OBAR(U32 handl e, U32 *bar)

/* Scan remai ning BARS for this device */

for (i = *bar; i < PCl_MAX_BAR i++) {

/* Read back address assigned for this BAR */
data = SAr_Get Pci BAR(handl e, i, &status)

/* Check if it is 1/0*/
if (data & PCl_1 O ENABLE) {

Cot one, set next available BAR & return address */

=i +1;

return (data & ~O0xOF)

{
u32 i, data ;
S32 status ;
/~k
*bar
}
}
/* Nothing found */
*bar = 0 ;
return O ;
}

Application Note

In . PCI and uHAL on the EBSA-285

4.2.2 Assigning PCl Addresses

Each PCI device is mapped to one or more address ranges in PCl memory and/or 1/0 space. The
least significant bit of the size read from the BAR determines whether the areaiis I/O or memory
(see Example 5). The Expansion ROM BAR may indicate the amount of expansion ROM in the
system, but the least significant bit is different to the other BARSs. It is not used as a PCl Memory/
PCI 1/0 flag. On the 21285, the least significant bit of the Expansion ROM BAR will follow the
PCI usage when hit 31 of the expansion ROM base address mask register (ERBAMR) is clear. If
ERBAMR hit 31 is set, PCI access to the expansion ROM is disabled.

UHAL maintains apair of variables that point to the next available PCI I/O address block and the
next available PClI Memory address block.

Example 7. Reserving PCl Address Blocks

static U32 SAi v_Pci MemAvai | abl eAddress = SZ 1M ;
static U32 SAi v_Pci | oAvai | abl eAddress = 0x400 ;
/*
*
* routine: SAI r _Get Next Pci Addr (U32 *base, U32 size)
*
* paraneters: *base - pointer to next available PCl address
* size - anpunt of nmenmory to be assigned
*
* description: this routine will return the next avail able aligned nenory
* address bl ock. This address block is added to PCI_MEM to
* obtain the nenory | ocation as seen by the StrongARM
*
* calls: SAi r _Al i gnAddr ess()
*
* returns: avail abl e aligned nenory address

*/

U32 SAi r_Get Next Pci Addr (U32 *base, U32 size)

{
u32 addr ess ;

/* align the address to size (i.e., 4 meg size requires 4 meg alignment */
address = SAir_Ali gnAddress(*base, size) ;

/* generate next avail able address for next call */
*base = address + size ;

#i f def DEBUG
printf("device requesting nenory space % bytes, assigned %98Xh\n",
size, address)

#endi f

return(address) ;

Application Note 17

PCI and uHAL on the EBSA-285 N .
/*
*
* routine: SAi r _Assi gnMemAddr (U32 si ze)
*
* paraneters: size - converted value read fromBAR after witing PCl_I NVALI D
*
* description: this routine will return the next avail able aligned menory
* address block. This address block is added to PCI_MEM to
* obtain the nenory | ocation as seen by the StrongARM
*
* calls: SAi r _Get Next Pci Addr ()
*
* returns: avai |l abl e al i gned nenory address
*/
U32 SAi r_Assi gnMemAddr (U32 si ze)
{
return(SAi r _Get Next Pci Addr (&SAi v_Pci MenAvai | abl eAddr ess, size)) ;
}
/*
*
* routine: SAi r _Assi gnl oAddr (U32 si ze)
*
* paraneters: size - converted value read fromBAR after witing PCl _I NVALI D
*
* description: this routine will return the next available aligned | O
* address bl ock (nmust be < 1M according to PCl spec.). This
* address is added to PCl_|Oto obtain the menory |ocation
* as seen by the StrongARM
*
* calls: SAi r _Get Next Pci Addr ()
*
* returns: avail abl e aligned | O address
*
/

U32 SAi r_Assi gnl oAddr (U32 si ze)

{
return(SAi r _Get Next Pci Addr (&SAi v_Pci | oAvai | abl eAddr ess, size)) ;

18 Application Note

In . PCI and uHAL on the EBSA-285

4.2.3 Accessing PCl Address Space

Once a device is mapped into PCI space, it can simply be accessed as an area (or areas) of memory
by the StrongARM.* The base address assigned to each register is stored in the devnode for each
device. To convert the raw PCl address into a StrongARM address, two simple macros are used:

#defi ne _Mapl OAddr ess(a) ((U32)PClI _10 + (U32)(a))
#defi ne _MapMemAddr ess(a) ((U32) PCl _MEMORY + (U32)(a))

These convert the address read from a BAR of aPCI device to the equivalent address in the
StrongARM memory map.

To convert back from the StrongARM address to the PCI memory address, uHAL provides the
following routine.

Example 8. StrongARM to PCl Address Conversion

/*

*

* routine: SAr _MenRPci (void *memAddress, U32 *status)

*

* paraneters: memAddress - StrongARM address to be converted to PCl space
* *status - flag for good/bad address.

*

* description: this routine will convert the given StrongARM address to PCl
* space. First, need to | ook up the PCl base address and anobunt
* of menory allocated to PCl - don’t use constants because the
* devNode init code just slots the EBSA-285 into the next

* avai | abl e PCl space.

*

* calls: SAr _Fi ndHost Node() - returns devNode for this device

*

* returns: address in PCl nmenory space

* *status OK if address is in PCl space, else !X

*/

voi d *SAr_Men2Pci (void *memAddr ess, U32 *status)

{
devNodeType *node ;
u32 menPtr, pci Base, pciSize, bar ;

Application Note 19

PCI and uHAL on the EBSA-285

menPtr = (U32) mnemAddr ess ;

/* Sinple mappi ng of StrongARM hi gh nenory -> PCl space */

if (nmenPtr >= PCl_MEM {
*status = OK ;
/* FIXME - target specific! */

return (void *)(menPtr - PCI_MEM ;

/* Else find our nmenory in PCl space:

* This target may have no nenory mapped to PCl space.
*/

pci Si ze = PCl _DRAMSI ZE ;

/* Find our node */

node = SAr_Fi ndHost Node() ;

if ((pciSize != 0) & (node != NULL)) {
pci Si ze = node- >nmenti ze[HOST_MEMBAR] ;
bar = HOST_MEMBAR ;

pci Base = SAr_Get Next MemBAR(node- >handl e, &bar) ;

/* Check the nenory address is in range */
if ((nmenPtr > PCl_DRAMBASE) &&
(menPtr <= (PCl _DRAMBASE + pci Size))) {

*status = OK ;

return (void *)(pciBase + nenPtr - (U32)PCl _DRAMBASE) ;

*status = ~OK ;

return (void *)O0 ;

20

Application Note

intel.

PCI and uHAL on the EBSA-285

4.2.4 Finding PCI Devices

At ahigher level, it is often useful to scan for a PCl device of a particular class or by using known
Vendor IDs and or Device IDs. Again, the uHAL library provides routines for this. Each routine is
called with an inst value, which can be used to find a PCI device when more than one matches the
given criteria. That is, if inst is non-zero, each routine looks for the inst+1'th device. Being passed
apointer, the find routines modify the inst value so the calling routine can track which devices have
been scanned. The find routines return the handle of the matching device.

Example 9. Finding PCI Devices by Class

/*

*

*

*/

routine:

par aneters:

descri ption:

calls:

returns:

SAr _Fi ndPCl Devd ass(U32 devd ass, U32 *inst)

devC ass - device class to scan for

*inst - pointer to instance of card to find.

this routine will scan the devNode tree | ooking for devices
whi ch match the class code required. Wen a device matches
the class code, the instance is checked - this enables

software to uniquely address a device, even when nore than

one may be fitted.

SAr_Get Pci Cl assl ()

handl e to required device (0 if not found)

*inst is nodified to next possible instance

U32 SAr_Fi ndPCl Devd ass(U32 devd ass, U32 *inst)

{

extern devNodeType

devNodeType

u32

S32

Application Note

*devNodes ;
*current ;
newCl ass, count = 0 ;

status ;

21

[|
PCI and uHAL on the EBSA-285 I ntel
®

for (current = devNodes ; current != NULL; current = current->next) {

/* check if device is PCl, if so check the device class */
if ((current->handle) & PCl_TYPE) {

newCl ass = SAr_Get Pci C assl D(current - >handl e, &status)

if (newCl ass == devd ass) {
if (count++ >= *inst) {
*inst = count

return (current->handl e)

/* Not hing found */
*inst = 0 ;
return O;

}

Aswell aslooking for a given class of PCI device, the specific Vendor ID and/or Device ID can be
used. SAr_FindPClDevice() can search for devices using either or both IDs, so it is also useful to

find all devices from a particular vendor.

22 Application Note

intel.

PCI and uHAL on the EBSA-285

Example 10. Finding PCI Devices by ID

/*
*

*

*

*

*

*/

routine: SAr _Fi ndPCl Devi ce(Ul6 vendor, Ul6 device, U32 *inst)

par aneters: vendor - vendor code to scan for
devi ce - device code to scan for
*inst - pointer to instance of card to find.

descri ption: this routine will scan the devNode tree | ooking for devices
whi ch match the vendor & device code required. Wen a device
mat ches both vendor and device codes, the instance is checked
- this enables software to uniquely address a device, even
when nore than one may be fitted. If only a specific vendor
or device code is required (not both), the other code can
be ignored by specifying PCl_NOTFI TTED.

calls: SAr _Get Pci Vendor I D(), SAr_Get Pci Devi cel ()

returns: handl e to required device (0 if not found)

*inst is nodified to next possible instance

U32 SAr_Fi ndPCl Devi ce(U16 vendor, Ul6 device, U32 *inst)

{
extern devNodeType *devNodes ;
devNodeType *current
u32 val ue, count = 0 ;
S32 status ;
for (current = devNodes ; current != NULL; current = current->next) {

Application Note

/* check if device is PCl, if so check the device class */
if ((current->handle) & PCl_TYPE) {

val ue = SAr_Get Pci Vendor | D(current ->handl e, &status) ;

23

[|
PCI and uHAL on the EBSA-285 I ntel .

/* Allow don’t care vendor code or match */
if ((vendor == PClI_NOTFITTED) || (value == vendor)) {
val ue = SAr_Cet Pci Devi cel D(current->handl e, &status) ;
/* Allow don’t care device code or match */
if ((device == PCI_NOTFITTED) || (value == device)) {
if (count++ >= *jinst) {
*inst = count ;

return (current->handle) ;

/* Not hing found */
*inst =0 ;

return O;

50 Conclusion

PCI provides ahigh-speed local bus that enables multiple devices to be configured and used in a
straightforward manner. PCI cannot remove any of the internal complexities of a given device, but
it does provide a uniform way to identify, initialize, and access devices. Also, as device intelligence
increases, the processor allows more work to be done by external devices, with data transferred via
shared memory rather than seria protocols. The uHAL library provides a set of basic routines to
further simplify and speed the development cycle.

24 Application Note

intel.

Support, Products, and Documentation

If you need technical support, aProduct Catalog, or help deciding which documentation best meets
your needs, visit the Intel World Wide Web Internet site:

http://www.intel .com

Copies of documents that have an ordering number and are referenced in this document, or other
Intel literature may be obtained by calling 1-800-332-2717 or by visiting Intel's website for
developers at:

http://developer.intel.com

You can also contact the Intel Massachusetts Information Line or the Intel Massachusetts Customer
Technology Center. Please use the following information lines for support:

For documentation and general information:

Intel Massachusetts Information Line

United States: 1-800-332-2717
Outside United States: 1-303-675-2148
Electronic mail address: techdoc@intel.com

For technical support:

Intel Massachusetts Customer Technology Center

Phone (U.S. and international): 1-978-568-7474
Fax: 1-978-568-6698
Electronic mail address: techsup@intel.com

o
T
oc
o
=
o
a
|

	PCI and uHAL on the EBSA-285
	Copyright Page
	Contents
	Figures
	Tables
	1.0 Introduction
	2.0 Accessing a PCI Device
	2.1 PCI Address Spaces
	2.1.1 PCI I/O and Memory Space
	2.1.2 PCI Configuration Space

	2.2 Accessing Configuration Registers from Software

	3.0 PCI Bus Initialization
	4.0 Configuring PCI Devices
	4.1 Procedure
	4.2 Support Routines
	4.2.1 Accessing Base Address Registers
	4.2.2 Assigning PCI Addresses
	4.2.3 Accessing PCI Address Space
	4.2.4 Finding PCI Devices

	5.0 Conclusion
	Support, Products, and Documentation

