
Memory Organization on the
StrongARM** SA-1100 Evaluation
Platform
Application Note

October 1998

Order Number: 278203-001

Application Note

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The SA-1100 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECs, or MPEG enabled
platforms may require licenses from various entities, including Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel’s website at http://www.intel.com.

Copyright © Intel Corporation, 1998

*Third-party brands and names are the property of their respective owners.

**ARM and StrongARM are trademarks of Advanced RISC Machines, Ltd.

Memory Organization on the StrongARM** SA-1100 Evaluation Platform
Contents
1.0 Introduction...1

2.0 SA-1100 Memory Layout..1

2.1 Main Partitions...1
2.2 SA-1100 Evaluation Platform Implementation...2

3.0 Virtual Memory Map ...3

3.1 Remapped Areas ..3

4.0 Power On and Memory Configurations ..5

4.1 ROM Execution and System Initialization ...5

5.0 Changing the Memory Layout ..6

5.1 Why Use the MMU ..6
5.2 MMU Source Code..6
5.3 The "Dance of Death"..6
5.4 Memory Sizing...7

6.0 Summary..7

6.0 Support, Products, and Documentation ...8

Figures

No figures used.

Tables

1 SA-1100 Address Map ..2
2 Virtual Memory Map ..4
3 GPIO Switch Settings..5
Application Note iii

Memory Organization on the StrongARM** SA-1100 Evaluation Platform

s

cess

ory

rved
1.0 Introduction

This document describes the memory maps for the Intel StrongARM** SA-1100 Microprocessor
Evaluation Platform. The StrongARM SA-1100 Portable Communications Microcontroller has a
fixed memory arrangement for static memory, microcontroller registers, and dynamic memory.
This document describes these layout and implementation-specific features of the SA-1100
Microprocessor Evaluation Platform. The virtual memory map used by Angel (Version 1.0X) and
uHAL (Version 1.0X) is also described.

This application note should be used in conjunction with the SA-1100 Microprocessor Technical
Reference Manual (278088).

2.0 SA-1100 Memory Layout

The address map is fixed for most aspects of the SA-1100’s external access.

2.1 Main Partitions

As shown in Table 1, the map is divided into four main partitions of 1 GB each.

• Partition 0—Located at the bottom of memory and is dedicated to static memory devices
(ROM, SRAM, and Flash) and to the PCMCIA expansion bus area. It occupies addresse
0x0000 0000 through 0x3fff ffff.

• Partition 1—Occupies addresses 0x4000 0000 through 0x7fff ffff and is reserved. Any ac
to this reserved space results in a Data Abort Exception.

• Partition 2—Occupies addresses 0x8000 0000 through 0xbfff ffff and contains all onchip
registers (except those specified by the ARM V4 architecture).

• Partition 3—Occupies addresses 0xC000 0000 through 0xffff ffff and contains DRAM
memory. There are four fixed banks of 128 MB each, where DRAM memory can be
populated. The next range of memory is a 128 MB block, which is mapped within the mem
controller and returns zeros when read. This facilitates rapid cache flushing by avoiding
external memory accesses to load new data into the cache. The top 384 MB area is rese
and accesses result in a Data Abort Exception.
Application Note 1

Memory Organization on the StrongARM** SA-1100 Evaluation Platform

nk

ct 3

ct 2

ct 1

ct 0

Registers

egisters

ters

AM)

sh)

M)
1. Used is the amount of each area implemented on the Evaluation Platform.

2.2 SA-1100 Evaluation Platform Implementation

The SA-1100 evaluation board has two banks of 256 KB of Flash Memory, the first of which (at
0x0000 0000) cannot be programmed in-situ, so is effectively ROM. The third static bank has
512 KB of SRAM, and the last static bank is used to implement an external register to control
PCMCIA voltage levels, resets, and slot enables. There are 4 MB of DRAM fitted to each DRAM
bank.

Table 1. SA-1100 Address Map

Partition Start End Size Used1 Usage

Partition 3

0xe800 0000 0xffff ffff 384 MB - Reserved

0xe000 0000 0xe7ff ffff 128 MB 1 MB Zeros (Cache Clean) Ba

0xd800 0000 0xdfff ffff 128 MB 4 MB Dynamic RAM Bank Sele

0xd000 0000 0xd7ff ffff 128 MB 4 MB Dynamic RAM Bank Sele

0xc800 0000 0xcfff ffff 128 MB 4 MB Dynamic RAM Bank Sele

0xc000 0000 0xc7ff ffff 128 MB 4 MB Dynamic RAM Bank Sele

Partition 2

0xb000 0000 0xbfff ffff 256MB 256MB LCD and DMA Registers

0xa000 0000 0xafff ffff 256MB 256MB Memory and Expansion

0x9000 0000 0x9fff ffff 256MB 256MB System Control Module R

0x8000 0000 0x8fff ffff 256MB 256MB Peripheral Module Regis

Partition 1 0x4000 0000 0x7fff ffff 1GB - Reserved

Partition 0

0x3000 0000 0x3fff ffff 256MB 256MB PCMCIA Socket 1

0x2000 0000 0x2fff ffff 256MB 256MB PCMCIA Socket 0

0x1800 0000 0x1fff ffff 128MB 1MB Static Bank Select 3

0x1000 0000 0x17ff ffff 128MB 512KB Static Bank Select 2 (SR

0x0800 0000 0x0fff ffff 128MB 256KB Static Bank Select 1 (Fla

0x0000 0000 0x07ff ffff 128MB 256KB Static Bank Select 0 (RO
2 Application Note

Memory Organization on the StrongARM** SA-1100 Evaluation Platform
3.0 Virtual Memory Map

The Angel debug monitor (Version 1.0X) and uHAL software library (Version 1.0X) implement a
common virtual memory map, as well as enabling caching and write buffering. The SA-1100
memory-management unit (MMU) is used to place DRAM at 0 so that software running on Angel
or using uHAL routines can write exception vectors there.

3.1 Remapped Areas

Dynamic memory is mapped from 0x000 0000 to 0x00ff ffff, allowing applications to use memory
without any concerns about bank sizes. This memory is defined as cacheable and bufferable for
maximum performance with the SA-1100. Dynamic memory also has a 1-1 mapping with its
physical location. These areas are defined as bufferable so that sequential writes are merged to
provide maximum performance, but these areas are not cacheable so that screen and DMA buffers
can be written without having to worry about flushing caches.

ROM is mapped to 64 MB and is cacheable. This allows for designs based on the SA-1100
evaluation platform to use more memory without having to radically alter the memory map.

Flash is mapped to 128 MB (1-1 with its physical location) and is cacheable.

Note: Programming flash is not possible with caches enabled. The Data Caches must be disabled to allow
the Flash memory to be written to with suitable delays.

The SRAM is not mapped at all. The SA-1100 supports only DRAM or SRAM, so the DRAM was
chosen as the most useful common configuration. See Section 5.2 for a description of the source
code to set up a different mapping.

1 MB of Static Bank 3 has been mapped to allow the external PCMCIA control register to be
addressed. This area is defined as non-cacheable and non-bufferable.

1 MB of the Zeros Bank has been mapped to allow zero-wait cache flushing. This area is defined as
cacheable and bufferable.

The full PCMCIA space and internal register spaces are mapped to the same addresses as the
SA-1100 definitions. These areas are defined as non-cacheable and non-bufferable.

Access to any other area is reserved and will result in a Data Abort Exception.
Application Note 3

Memory Organization on the StrongARM** SA-1100 Evaluation Platform
1. Cache indicates the cacheable/bufferable state of each area:

• "C, B" means the area is cacheable and bufferable.

• "B" means the area is bufferable, but non-cacheable.

• "-" means the area is non-cacheable and non-bufferable.

Table 2. Virtual Memory Map

 Address End Size Cache1 Usage

 0xe000 0000 0xe00f ffff 1 MB C, B Zeros (Clean) Bank

 0xd800 0000 0xd83f ffff 4 MB B Dynamic RAM Bank 3

 0xd000 0000 0xd03f ffff 4 MB B Dynamic RAM Bank 2

 0xc800 0000 0xc83f ffff 4 MB B Dynamic RAM Bank 1

 0xc000 0000 0xc03f ffff 4 MB B Dynamic RAM Bank 0

 0x8000 0000 0xbfff ffff 1 GB - Internal Registers

 0x3000 0000 0x3fff ffff 256 MB - PCMCIA Socket 1

 0x2000 0000 0x2fff ffff 256 MB - PCMCIA Socket 0

 0x1800 0000 0x180f ffff 1 MB - Static Bank 3 (PCMCIA)

 0x0800 0000 0x0803 ffff 256 KB C Static Bank 1 (Flash)

 0x0400 0000 0x0403 ffff 256 KB C Static Bank 0 (ROM)

 0x00c0 0000 0x00ff ffff 4 MB C, B Dynamic RAM Bank 3

 0x0080 0000 0x00bf ffff 4 MB C, B Dynamic RAM Bank 2

 0x0040 0000 0x007f ffff 4 MB C, B Dynamic RAM Bank 1

 0x0000 0000 0x003f ffff 4 MB C, B Dynamic RAM Bank 0
4 Application Note

Memory Organization on the StrongARM** SA-1100 Evaluation Platform
4.0 Power On and Memory Configurations

When the StrongARM microprocessor is reset, execution starts from 0 and memory management is
disabled, so the values at the start of Static Bank 0 (ROM) are executed.

4.1 ROM Execution and System Initialization

On the SA-1100, the software can set the core clock frequency. Intel recommends to only set the
core clock frequency immediately following a hard reset or immediately upon wake-up from sleep
mode. The core clock frequency must be set before enabling clock switching.

The executable at the start of ROM is a version of the Angel ARM** debugger with an image
"bootloader" included in the startup sequence. After setting the CPU core clock to 200 MHz and
the GPIOs so that GPIO1 and GPIO0 can be read, the bootloader uses these switches to select the
image to be executed. The ROM and Flash are divided into logical blocks. Each image occupies
one or more blocks. Due to the simple nature of the bootloader, an image cannot currently be
divided between ROM and Flash. In Angel Version 1.0X, each block is 64 KB.

The Start Address is the virtual address for the start of the given block. The Flash Management
Utility adds a 64-byte header at the start of the image. If the image is linked as "binary with aif
header", a further 128-byte header is added. So the image must be linked for the Start Address
+ 0xc0 (192 decimal). If the image to be executed is not resident at its indicated start address, then
the bootloader initializes memory, sets up the MMU and copies the image to that address before
jumping to it.

Table 3. GPIO Switch Settings

GPIO1 GPIO0 Image Block Location Start Address

0 0 0 0 ROM 0 or 0x0400 0000

0 1 1 N=1,2 or 3 ROM Image 0 + 0x(N)0000

1 0 2 4 Flash 0x0800 0000

1 1 3 N=5,6 or 7 Flash Image 2 + 0x(N-4)0000
Application Note 5

Memory Organization on the StrongARM** SA-1100 Evaluation Platform

would
ile
5.0 Changing the Memory Layout

Since any image that runs from Flash initializes its own memory layout, it is easy to alter the map.

5.1 Why Use the MMU

The SA-1100 defines the memory at address 0 as static. While developing an embedded
application, an MMU shell might make the programmable Flash parts appear at zero to behave like
the non-programmable parts (ROM). Any dynamic application environment requires the memory
at zero to be in RAM, so that the ARM exception vectors can modified. But the primary benefit is
to make all of the RAM appear to the software as a contiguous block.

5.2 MMU Source Code

The MMU is initialized by Assembler code contained in brutus/target.s (for Angel;
lib/brutus/target.s for uHAL); "C" obviously cannot be used, since no memory exists yet for local
variables or stack. This file is a series of ARM Assembler macros that can be called by the
appropriate startup file (startrom.s for Angel; lib/boot.s for uHAL).

On the SA-1100 evaluation platform, the INIT_RAM macro calls INITMMU, which in turn calls
SETUPMMU. INIT_RAM checks the SRAM/DRAM control switch and initializes the memory
subsystem accordingly, but all subsequent macros currently assume that DRAM was selected.
Hence, Angel does not currently run with SRAM enabled.

All of the relevant address definitions are contained in platform.s (in brutus/ for Angel; h/brutus for
uHAL). The readability of this code was a primary concern, so each area is clearly commented and
examples of level 2 page tables are included.

5.3 The "Dance of Death"

Applications that run from ROM when the MMU is activated are built for addresses 64 MB and
above. However, the actual code for these applications executes from physical address 0, as shown
in Table 1.

The virtual address space to be defined by the page tables must be consistent with the virtual ranges
as described in Table 2. However, the following recommendations should be observed while
building the page tables.

1. It is recommended that the page tables themselves reside in the range of addresses between
0xc0000000 and 0xd8400000. The base address of the level 1 portion of the page tables is
loaded into the Table Translation Base register by the program.

2. The executing program must remain accessible immediately following enabling the MMU. If
the page tables were to define virtual space exactly as shown inTable 2, then enabling the
MMU would cause the system to crash since the executing program’s instruction stream
no longer be accessible. This is because the Program Counter (PC) is not remapped wh
enabling the MMU.
6 Application Note

Memory Organization on the StrongARM** SA-1100 Evaluation Platform
Evading the "Dance of Death" involves changing the page table entries for the current area of
memory so that the ROM remains mapped from 0 when the MMU is enabled. Once the MMU is
activated, the PC is moved to the mirrored virtual ROM address and the original page table entries
can be restored.

The SETUPMMU macro checks that the program is executing from ROM space and that the MMU
is not already enabled. If either of these tests fail, the simple final memory map is defined.
Otherwise, the "Dance of Death" is performed (if the programmer gets this wrong, the program will
probably be unable to find its instructions and almost certainly will crash).

Finally, flush the processor address lookup, instruction, and data caches. StrongARM caches the
most recent page table entries as well as data and instructions. So in order to access the new entry
correctly, this last step is crucial.

5.4 Memory Sizing

There is currently no autosizing code in the INIT_RAM macro. This macro returns the memory
size to Angel and uHAL. In order to use the SRAM, SETUPMMU must check the SRAM/DRAM
control switch and map the SRAM at 0 instead of the DRAM. Then INIT_RAM can check the
control switch and return the smaller size if SRAM is active.

6.0 Summary

Any image that executes from dynamic memory must be sure to avoid re-initializing that memory -
the uHAL library checks the MMU state to ensure that memory really needs to be initialized.

All images that execute from Flash or ROM start with no memory subsystem, no memory
management enabled, and no clock switching.

Standard memory and MMU settings can be automatically set up by using the uHAL library,
allowing rapid prototyping and code development.
Application Note 7

stomer
Support, Products, and Documentation

If you need technical support, a Product Catalog, or help deciding which documentation best meets
your needs, visit the Intel World Wide Web Internet site:
http://www.intel.com

Copies of documents that have an ordering number and are referenced in this document, or other
Intel literature may be obtained by calling 1-800-332-2717 or by visiting Intel’s website for
developers at:
http://developer.intel.com

You can also contact the Intel Massachusetts Information Line or the Intel Massachusetts Cu
Technology Center. Please use the following information lines for support:

For Documentation and General Information

Intel Massachusetts Information Line

United States: 1–800–332–2717

Outside United States: 1–303-675-2148

Electronic mail address: techdoc@intel.com

For Technical Support

Intel Massachusetts Customer Technology Center

Phone (U.S. and international): 1–978–568–7474

Fax: 1–978–568–6698

Electronic mail address: techsup@intel.com

	Memory Organization on the StrongARM** SA-1100 Eva...
	Copyright Page
	Contents
	Figures
	Tables
	1.0 Introduction
	2.0 SA-1100 Memory Layout
	2.1 Main Partitions
	2.2 SA-1100 Evaluation Platform Implementation

	3.0 Virtual Memory Map
	3.1 Remapped Areas

	4.0 Power On and Memory Configurations
	4.1 ROM Execution and System Initialization

	5.0 Changing the Memory Layout
	5.1 Why Use the MMU
	5.2 MMU Source Code
	5.3 The "Dance of Death"
	5.4 Memory Sizing

	6.0 Summary
	Support, Products, and Documentation

