
Memory Initialization on the
EBSA-285
Application Note

October 1998

Order Number: 278152-001

Application Note

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The EBSA-285 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product o rder.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel’s website at http://www.intel.com.

Copyright © Intel Corporation, 1998

*Third-party brands and names are the property of their respective owners.

**ARM and StrongARM are trademarks of Advanced RISC Machines, Ltd.

Memory Initialization on the EBSA-285
Contents
1.0 Introduction...1

1.1 Memory on EBSA-285...1

2.0 EBSA-285 Memory System..2

2.1 Supported Memory Types ...2
2.2 DIMM Address Mapping..3
2.3 21285 Memory Controller Registers..4

3.0 Initialization on Power On...4

3.1 Implementation..5
3.1.1 How to Differentiate DIMM Types ..10
3.1.2 Empty Memory Arrays..10
3.1.3 Simple Tests for Most DIMM Types ...12
3.1.4 Sizing the Arrays ..15
3.1.5 Final Determination ..15
3.1.6 Making Memory Contiguous...17
3.1.7 Writing the Final Configuration ...20
3.1.8 Supplementary Macros ..21

4.0 Summary..24

Tables

1 Array Sizes ..2
2 SDRAM Addresses ...3
Application Note iii

Memory Initialization on the EBSA-285
1.0 Introduction

This document provides a brief overview of the techniques used to initialize the memory
subsystem on the EBSA-285 evaluation board.

The EBSA-285 evaluation board uses 168-pin Dual In-line Memory Modules (DIMMs) for its
volatile memory. These DIMMs come in different configurations and sizes, and the 21285 PCI
support device can control a range of DIMMs.

This application note describes the differences between DIMMs and how to uniquely distinguish
them in software.

Use this note in conjunction with the 21285 Core Logic for SA-110 Microprocessor Data Sheet
(order number 278115) and the EBSA-285 Evaluation Board Reference Manual (order number
278136).

1.1 Memory on EBSA-285

A DIMM (Dual In-line Memory Module) is a small circuit board that contains a number of
memory devices with the data signals routed to a standard connector.

The socket on the EBSA-285 accepts only 3.3 V SDRAM DIMMs. The EBSA-285 uses a
combination of chip-select and byte-select (dqm) lines to provide a single 32-bit data path to the
21285 and the processor.

Each DIMM consists of one or more arrays; an array contains one or more banks of memory. An
array is a block of memory with shared addressing, unique control, and its own data path. Where an
array contains multiple devices sharing the data path, each independently controlled block of
memory is called a bank. Each array may be a different size, but usually all arrays on a single
DIMM are the same size. The primary variation between DIMM types is the multiplexing of
address lines to provide row, column, and bank address to the DIMM.
Application Note 1

Memory Initialization on the EBSA-285
2.0 EBSA-285 Memory System

On the EBSA-285, the SA-110 memory system is managed entirely by the 21285. The memory
controller on the 21285 can control from one to four arrays of SDRAMs. The EBSA-285 uses
168-pin DIMMs, which provide a 64-bit path to memory, and handles the interface to enable 32-bit
access for the StrongARM** and PCI.

2.1 Supported Memory Types

The 21285 groups DIMMs into five different address multiplexing modes (see Table 1).

Table 1. Array Sizes

SDRAM Type Address Bits
SDRAMs
in Array

Array
Size

Row/Column
Multiplexer Mode

Banks Depth Width Bank Row Col.

8Mb Parts

2 128K 32 1 9 8 1 1MB 000

16Mb Parts

2 256K 32 1 10 8 1 2MB 000

2 512K 16 1 11 8 2 4MB 001

2 1M 8 1 11 9 4 8MB 001

2 2M 4 1 11 10 8 16MB 001

64Mb Parts

2 1M 32 1 12 8 1 8MB 010

4 512K 32 2 11 8 1 8MB 011

2 2M 16 1 13 8 2 16MB 010

4 1M 16 2 12 8 2 16MB 100

2 4M 8 1 13 9 4 32MB 010

4 2M 8 2 12 9 4 32MB 100

2 8M 4 1 13 10 8 64MB 010

4 4M 4 2 12 10 8 64MB 100
2 Application Note

Memory Initialization on the EBSA-285
2.2 DIMM Address Mapping

The DIMM types supported by the 21285 have been selected to give the greatest breadth of
coverage against the amount of address line switching. Note that for all DIMM types, the pinouts
for the row address are invariant and contiguous address lines are used.

The SDRAM addresses are driven on the multiplexed address bits ma[12:0] and bank address bits
ba[1:0]. Address line a[19] is always a bank address, a[17:9] are always row addresses, and a[8:2]
are column addresses. Address lines a[25:20] and a[18] are bank, row, or column address lines, as
specified in Table 2. The usage is configured by programming the address multiplex bits in the
SDRAM Address and Size Register for the specific array.

Note: The dashes (-) in Table 2 indicate that the address is not used by the SDRAM in this configuration.
The pin is driven by the 21285 and its value can be either 0 or 1.

"ap" in Table 2 indicates the autoprecharge bit that is used by the SDRAM during column address
time. A low (deasserted) indicates no autoprecharge, which occurs during read and write
commands when there is another burst pending to the same page. A high (asserted) indicates
autoprecharge, which occurs during read and write commands of the last burst.

Table 2. SDRAM Addresses

Mode
BA SDRAM Address ma[12:0]

1 0 12 11 10 9 8 7 6 5 4 3 2 1 0

000*

* Bit 0 of the Array size, in the SDRAM Address and Size Register, determines the address line routing for the different Mode
0 type DIMMs.

Row - 19 - - - - 17 16 15 14 13 12 11 10 9

Col. - - - - - - ap 18 8 7 6 5 4 3 2

000* Row - 19 - - - 18 17 16 15 14 13 12 11 10 9

Col. - - - - - ap - 20 8 7 6 5 4 3 2

001 Row - 19 - - 21 18 17 16 15 14 13 12 11 10 9

Col. - - - - ap 23 22 20 8 7 6 5 4 3 2

010 Row - 19 23 22 21 18 17 16 15 14 13 12 11 10 9

Col. - - - - ap 25 24 20 8 7 6 5 4 3 2

011 Row 20 19 - - 21 18 17 16 15 14 13 12 11 10 9

Col. - - - - ap - - 22 8 7 6 5 4 3 2

100 Row 20 19 - 22 21 18 17 16 15 14 13 12 11 10 9

Col. - - - - ap 25 24 23 8 7 6 5 4 3 2
Application Note 3

Memory Initialization on the EBSA-285
2.3 21285 Memory Controller Registers

The memory controller on the 21285 is accessed via the SDRAM Timing Register, which controls:

• row precharge timing

• RAS-to-CAS delay

• CAS latency

• Row Cycle time

• Refresh interval

• Parity enable

There is one register, the SDRAM Address and Size Register, for each of the four arrays,
0 through 3. These four registers define the start address, size, and address multiplexing for each of
the four SDRAM arrays. Software must ensure that the arrays of SDRAM are mapped so that there
is no overlap of addresses.

• The arrays do not need to be the same size. However, the start address of each array must be
naturally aligned to the size of the array. For example, an 8 MB array must start on an address
that is divisible by 8 MB.

• The arrays do not need to form a contiguous address space. However, to form a contiguous
address space with different size arrays, place the largest array at the lowest address, next
largest array above, and so on.

3.0 Initialization on Power On

When the EBSA-285 is first switched on, the 21285 holds all byte enable lines (dqm) high
(deasserted) for all arrays to keep the DIMMs in reset. The first thing that must be done is to read
and write to the 21285 DRAM mode registers. The read enables the refresh mechanism so that the
memory contents are maintained even when not being accessed. All of the DRAM mode registers
must be written, even if some of the arrays are not being used, as it is this unique operation that
causes the 21285 to remove the hold on the dqm lines, allowing them to be used to access memory.

Next, the SDRAM Timing Register is written, followed by the SDRAM Address and Size
registers. Finally, after waiting for at least 8 refresh cycles, the memory can be accessed.
4 Application Note

Memory Initialization on the EBSA-285
3.1 Implementation

All of this initialization is done in an ARM** Assembly Language macro - obviously, there is no
memory available yet, so a high-level language such as C cannot be used. These macros allow a
range of registers to be passed as variables, and the macros can use these variable names to allow
greater understanding of the function of the code.

This macro is called INIT_MEM and is defined in the file target.s, which can be found in the
Angel* and uHAL sources included in the EBSA-285 Evaluation Kit. The registers used to pass
variables are fixed (with the ASSERT pseudo instruction) because nearly all of the other registers
are used within the macro. Three other macros (SETUP_RAM, SIZE_RAM, and RAM_REG) are
called from within INIT_RAM to clarify the instruction flow.

Example 1. Macro Definition

This macro would be called as follows:

INIT_RAM r0, r1, r5

and is defined as:

; ---

; INIT_RAM

; --------

; ANGEL and uHAL macro to initialize memory on start-up. Compatibility

; with Angel specifies a1, a2 and v2 as calling registers and that a1

; must not be used.

; WARNING: This macro uses lots of registers!

; $w1 (a1), $w2 (a2), $w3 (v2), v3, v4, v5, v6, a3 and a4

MACRO

INIT_RAM $w1, $w2, $w3

; With such pressure on registers, have to make sure the calling

; registers are just so!

ASSERT ($w1 = r0)

ASSERT ($w2 = r1)

ASSERT ($w3 = r5)

If the memory has already been initialized, the refresh must be disabled before writing to the array
mode registers (as described in the 21285 Core Logic for SA-110 Microprocessor Data Sheet). The
full definitions of the constants and offsets can be found in the EBSA-285 file platform.s:
Application Note 5

Memory Initialization on the EBSA-285
Example 2. Constant Definitions

; /* DC21285 Addresses */

DC21285_DRAM_A0MR EQU 0x40000000

DC21285_DRAM_A1MR EQU 0x40004000

DC21285_DRAM_A2MR EQU 0x40008000

DC21285_DRAM_A3MR EQU 0x4000C000

CSR_BASE EQU 0x42000000

; /* Offsets from CSR_BASE */

DRAM_TIMING EQU 0x10C

DRAM_ADDR_SIZE_0 EQU 0x110

DRAM_ADDR_SIZE_1 EQU 0x114

DRAM_ADDR_SIZE_2 EQU 0x118

DRAM_ADDR_SIZE_3 EQU 0x11C

MAX_SDRAM EQU 4

; /* SD_OFFSET is the difference between SDRAM Array Register banks */

SD_OFFSET EQU (DC21285_DRAM_A1MR - DC21285_DRAM_A0MR)

; /* Row/Col Mux modes shifted into correct position (bits 6, 5 and 4) */

MUX_MODE0 EQU 0x00

MUX_MODE1 EQU 0x10

MUX_MODE2 EQU 0x20

MUX_MODE3 EQU 0x30

MUX_MODE4 EQU 0x40

MUX_MASK EQU 0x78

; /* Bit patterns for SDRAM memory sizes */

; [Other definitions removed for clarity]

SDSIZE_64M EQU 0x07

; /* handy sizes - don’t have to remember bit patterns */

SZ_64M EQU 0x04000000

; /* See 21285 data sheet: */

; [Other definitions removed for clarity]

DC21285_Trp2 EQU 0x1

DC21285_Tdal3 EQU (0x1 << 2)

DC21285_Trcd2 EQU (0x2 << 4)

DC21285_Tcas2 EQU (0x2 << 6)
6 Application Note

Memory Initialization on the EBSA-285
DC21285_Trc4 EQU (0x1 << 8)

DC21285_Tcd0 EQU (0x0 << 11)

DC21285_Parity0 EQU (0x0 << 12)

; Tref, No Parity, CDT=0, Trc=4, Tcas=2, Trcd=2, Tdal(Trp+Trdl)=3, Trp=2

; 0 0 010 10 01 01

saTrp EQU DC21285_Trp2

saTdal EQU DC21285_Tdal3

saTrcd EQU DC21285_Trcd2

saTcas EQU DC21285_Tcas2

saTrc EQU DC21285_Trc4

saTcd EQU DC21285_Tcd0

saParity EQU DC21285_Parity0

SDRAM_MODEBITS EQU (saParity + saTcd + saTrc + saTcas + saTrcd +

 saTdal + saTrp)

; /* Tref=1 */

INITIAL_TREF EQU (0x01 << 16) ; Top half of word

INITIAL_TIMING EQU (INITIAL_TREF + SDRAM_MODEBITS)

; /* Tref=1a (64 ms x 4096 rows) = 15.xx us */

SETUP_TREF EQU (0x1a << 16) ; Top half of word

SETUP_TIMING EQU (SETUP_TREF + SDRAM_MODEBITS)

REFRESH_COUNT EQU 32 ; No. of cycles scaled per wait

REFRESH_WAIT EQU 8 ; Max. wait per SDRAM

CAS_OFFSET EQU (saTcas + saTdal)
Application Note 7

Memory Initialization on the EBSA-285
Example 3. Setup Code

; If memory is already active, need to disable refresh before

; re-initializing.

LDR $w3, =CSR_BASE

MOV $w2, #0

STR $w2, [$w3, #DRAM_TIMING]

; If refresh is just happening, wait 50 clock cycles until it expires

MOV $w1, #50

11

SUBS $w1, $w1, #2

BGT %B11 ; Until done

; Read from each Mode Register array to enable precharge

MOV $w1, #MAX_SDRAM

MOV $w2, #DC21285_DRAM_A0MR

1

LDR $w3, [$w2] ; Just read, don’t care about data

ADD $w2, $w2, #SD_OFFSET ; Next

SUBS $w1, $w1, #1

BGT %B01 ; Until done

; Now write to the Mode registers to set the operational mode of the

; SDRAM. MUST be done to all banks, even if not fitted, to stop the

; 21285 forcing DQM High, which it does after reset.

MOV $w1, #MAX_SDRAM

MOV $w2, #DC21285_DRAM_A0MR

2

STR $w2, [$w2, #CAS_OFFSET] ; It’s the ADDRESS which is important

ADD $w2, $w2, #SD_OFFSET ; Next

SUBS $w1, $w1, #1

BGT %B02 ; Until done

; Setup Dram timing & DISABLE all arrays by default.

;

; Setting the refresh interval to be minimum & enabling refresh.

; After (up to) 8 refresh cycles the memory will be ready to use, each
8 Application Note

Memory Initialization on the EBSA-285
; refresh cycle is 32 instruction cycles.

LDR $w3, =CSR_BASE

LDR $w2, =INITIAL_TIMING

MOV $w1, #DRAM_TIMING

STR $w2, [$w3, $w1]

MOV $w2, #MAX_SDRAM

MOV $w2, $w2, LSL #2

ADD $w1, $w1, $w2 ; Registers are after timing register

MOV $w2, #0 ; Disable each array & move to address 0

3

STR $w2, [$w3, $w1]

SUBS $w1, $w1, #4

BGT %B03 ; Until done

; Wait around until memory is active

MOV $w1, #REFRESH_WAIT ; Number of refresh cycles to wait

4

MOV $w2, #REFRESH_COUNT ; Length of each cycle

5

SUBS $w2, $w2, #2 ; 2 instructions in this loop

BGT %B05 ; Until cycle complete

SUBS $w1, $w1, #1 ; Another refresh cycle gone..

BGT %B04 ; Until done

The final step in a system with a fixed memory subsystem would be to write to the 21285 DRAM
Address and Size registers for each array. These registers hold the start address, size, and
enable/disable status for each array (see Section 3.1.6 and Section 3.1.7).
Application Note 9

Memory Initialization on the EBSA-285
3.1.1 How to Differentiate DIMM Types

In systems that have a fixed memory subsystem, the previous procedure is sufficient. However, in a
dynamic system such as the EBSA-285, where additional DIMMs may be added, some mechanism
must be implemented to determine the current configuration.

DIMM mode types may be determined using simple memory aliasing tests. The processor address
lines used for row, column, and bank addressing to the DIMM are dependent upon the DIMM type,
as outlined in Table 2. If a DIMM is configured incorrectly, at least one of the high-order address
lines (a[25:18] excluding a[19]) will be mapped incorrectly with an address line of a higher order
than the memory size. The "missing" address bit will then address the same location irrespective of
its value. This is known as memory aliasing. For example, if the 2nd entry in Table 2 is configured
when the first entry is fitted, a[20] will supply the most significant bit of the column address
instead of a[18]. Addresses 0x0 and 0x80000 will access the same location because in both cases
a[20] equals zero.

By using the table of SDRAM addresses (Table 2), the relationship between invalid modes and
aliased locations can be determined.

There are two keys to ensuring proper identification of all supported DIMMs:

• There is only one Mode type 3 DIMM, and its array size is always 8 MB.

• The two kinds of Mode type 0 DIMMs can be distinguished by selecting the larger type and
waiting for the memory test to determine the size.

Mode type 0 DIMM arrays hold only small amounts of memory (< 4 MB), and some mode type 1
arrays may be only 4 MB.

3.1.2 Empty Memory Arrays

Initially, all arrays are assumed to be the maximum 64 MB in size and set to Mode type 2.

Example 4. Setting Up the SDRAM Registers

LDR v5, =(SDSIZE_64M + MUX_MODE2)

; v3 holds 4 bytes each containing the bottom 8 bits of the

; DRAM_ADDR_SIZE registers: all set to biggest SDRAM part.

ADD v3, v5, v5, LSL #8 ; 0x00bb <- 0x00b0 + 0x000b

ADD v3, v3, v3, LSL #16 ; 0xbbbb <- 0xbb00 + 0x00bb

; 00 -> 08 -> 16 -> 24, shifts are done in this order

LDR v4, =0x18100800

; Fix the default SDRAM registers

SETUP_RAM $w1, $w2, $w3, v3, v4, v5, v6, a3

A simple write/read to a low memory location is used to determine if memory is fitted in this array.
10 Application Note

Memory Initialization on the EBSA-285
Example 5. Testing for Empty Arrays

; First test each array to see if any memory present. If no memory is found,

; invalidate the appropriate byte of v3 by blanking it out. When memory is

; found, try to determine Mux mode.

MOV v3, #0 ; Blank result

MOV a3, #MAX_SDRAM

ADD v5, $w1, #0xf000 ; Pointer to max_ram + 1

LDR $w2, =0x12345678 ; Footprint

6

SUB v5, v5, #SZ_64M ; Base of next ram array

STR $w2, [v5]

MVN $w2, $w2 ; Invert

; This inversion guarantees that the data bus isn’t left floating

; with our test footprint when there is no memory present.

STR $w2, [v5, #4]

MVN $w2, $w2 ; Back to original

LDR $w3, [v5]

SUBS $w3, $w3, $w2 ; Did it write?

; No, clear mask, but leave as 64M to make other memory tests easier.

LDRNE $w3, =SDSIZE_64M

BNE %F07
Application Note 11

Memory Initialization on the EBSA-285
3.1.3 Simple Tests for Most DIMM Types

Most of the mode types can be determined by using simple aliasing tests (as described in
Section 3.1.1). If a particular type of DIMM is set up incorrectly, one or more address lines will not
be routed correctly. Any write to the initial location + the given address line may be aliased at the
initial location. Some tests look for this aliasing effect; others specifically look for no aliasing.

Mode type 0 DIMMs do not use address line A21. Therefore, if the initial location is aliased at
location + A21, the array is type 0.

Note: Because bit 0 of the size is used to route the address lines differently, this bit must be set to 0
initially to enable the larger array size to be found. This code checks for Mode 0 type DIMMs with
a 64 MB array size (in Example 11). This combination can only occur during initialization because
the maximum array size is 2 MB.

Mode type 2 DIMMs use address line A23 on ma[12]. Therefore, if the initial location is not
aliased, the array is type 2.

Mode type 4 DIMMs use address line A22 on ma[11] (as do type 2s, but these have already been
determined).

Address line A24 can find most type 1 arrays, because it drives A22 on type 1s and so maps to a
valid location. This location will be mapped correctly on type 3 arrays.

Example 6. Finding the DIMM Type

; Yes some found, now test for different memory layouts:

; Having initially set all arrays to Mode 2, the address lines are

; driven as if for that array. So test bits correspond to that mode.

; Address line A21 distinguishes MUX_MODE0. Write inverse footprint

; at v5 + A21 - if it is written at v5, array is MUX_MODE0.

MVN $w2, $w2 ; Now look for holes with invert

ADD $w3, v5, #0x00200000 ; Add Bit21

STR $w2, [$w3]

MVN $w2, $w2 ; Back to original

LDR $w3, [v5]

SUBS $w3, $w3, $w2 ; Is original footprint still there?

; No, Mode 0 array

LDRNE $w3, =(SDSIZE_64M + MUX_MODE0)

BNE %F07

; Address line A23 distinguishes MUX_MODE2. Write inverse footprint

; at v5 + A23 - if it is written at v5, array is _not_ MUX_MODE2.

STR $w2, [v5]

MVN $w2, $w2 ; Now look for holes with invert
12 Application Note

Memory Initialization on the EBSA-285
ADD $w3, v5, #0x00800000 ; Add Bit23

STR $w2, [$w3]

MVN $w2, $w2 ; Back to original

LDR $w3, [v5]

SUBS $w3, $w3, $w2 ; Is original footprint still there?

; Yes, Mode 2

LDREQ $w3, =(SDSIZE_64M + MUX_MODE2)

BEQ %F07

; Address line A22 distinguishes MUX_MODE4. Write inverse footprint

; at v5 + A22 - if it is written at v5, array is _not_ MUX_MODE4.

STR $w2, [v5]

MVN $w2, $w2 ; Now look for holes with invert

ADD $w3, v5, #0x00400000 ; Add Bit22

STR $w2, [$w3]

MVN $w2, $w2 ; Back to original

LDR $w3, [v5]

SUBS $w3, $w3, $w2 ; Is original footprint still there?

; Yes, Mode 4

LDREQ $w3, =(SDSIZE_64M + MUX_MODE4)

BEQ %F07

; Mode 1 or Mode 3?

; Address line A24 can find most MUX_MODE1 Dimms, since it drives A22

; on Mode 1 Dimms, but smaller size arrays will still mirror at

; v5 + A22 (4MB). Best hope is to sort most of the Mode 1s and then

; catch ’odd’ sized Mode 3s.

STR $w2, [v5]

MVN $w2, $w2 ; Now look for holes with invert

ADD $w3, v5, #0x01000000 ; Add Bit24

STR $w2, [$w3]

MVN $w2, $w2 ; Back to original

LDR $w3, [v5]

SUBS $w3, $w3, $w2 ; Is original footprint still there?

; Yes, Mode 1 array

LDREQ $w3, =(SDSIZE_64M + MUX_MODE1)
Application Note 13

Memory Initialization on the EBSA-285
; No, Mode 3 array (probably)

LDRNE $w3, =(SDSIZE_64M + MUX_MODE3)

7

; Okay, add this bank to the mask.

ADD v3, $w3, v3, LSL #8

SUBS a3, a3, #1

BGT %B06 ; Repeat until done
14 Application Note

Memory Initialization on the EBSA-285
3.1.4 Sizing the Arrays

Having determined the mode types for each array, the Address and Size registers must be set to the
new values before the arrays can be sized correctly. A simple loop is used to write to locations
through the maximum 64 MB of the array. This loop writes from the top down, thus avoiding any
aliasing. Another loop then reads from the bottom up, checking the written data. If a location does
not contain the expected data, it signals the top of the array has been passed. If an array is type 3
and the size found is not 8 MB, the array is reset as type 1 and the sizing test is repeated for this
array. This procedure is used for all four arrays supported by the 21285.

3.1.5 Final Determination

Smaller size type 1 arrays will still alias at the initial location + A22, because this is greater than
the size of the smallest 4 MB DIMMs. The solution is to assume that these arrays are type 3, and
then check that the size really is 8 MB - if not, the array is type 1. The SDRAM Address and Size
registers are written with the calculated array modes.

Example 7. Sample 7 Scanning Memory Size

MOV a4, v3 ; Copy array masks

; 00 -> 08 -> 16 -> 24, shifts are done in this order

LDR v4, =0x18100800

; Fix the default SDRAM registers

SETUP_RAM $w1, $w2, $w3, v3, v4, v5, v6, a3

; Top bit means the test for offset == 0 is a valid completion test.

LDR a3, =0x80081018

LDR v6, =0 ; Store for array of sizes found

8

LDR v3, =SZ_1M ; Test memory in 1MB steps

9

MOV v4, #64 ; i.e. 64 steps per array

SIZE_RAM $w1, $w2, $w3, v3, v4, v5

; Memory sized for this bank

AND v5, a3, #0x3f ; Read next array offset (no end flag)

MOV $w2, a4, LSR v5 ; Current DRAM_ADDR_SIZE mask

AND $w2, $w2, #MUX_MASK

CMP $w2, #MUX_MODE3 ; Check for Mode 3

BNE %F10

CMP v4, #8 ; Can only be 8MB!

BEQ %F10

; Anything which gets here was a badly configured Mode 1 array. Clear
Application Note 15

Memory Initialization on the EBSA-285
; the bad mode byte & set array to mode 1. Then do size test again.

LDR v4, =0xFF ; Mask out the Mode 3 byte

MOV v4, v4, LSL v5

BIC a4, a4, v4

LDR v4, =(SDSIZE_64M + MUX_MODE1)

MOV v4, v4, LSL v5

ADD a4, a4, v4 ; Put new Mode 1 byte in its place

MOV v4, v4, LSR v5 ; Back to Mode 1, unshifted

; Reset the mode for this bank.

LDR v3, =(CSR_BASE + DRAM_ADDR_SIZE_0)

MOV v5, v5, LSR #1 ; Offset is twice register offset

LDR $w2, [v3, v5] ; Read SIZE_ADDR

BIC $w2, $w2, #0xFF ; Only interested in base offset

ADD $w2, $w2, v4 ; new mode info

STR $w2, [v3, v5] ; Store back in SIZE_ADDR

MOV v5, v5, LSL #1 ; Restore offset

ADD $w1, $w1, #SZ_64M ; Move back to top of this array

B %B08 ; Do this array again as Mode 1

10

; Size determined, add to array.

MOV v4, v4, LSL v5 ; Shuffle up to correct byte

ADD v6, v6, v4 ; Add the size of this array

MOVS a3, a3, LSR #8 ; Down to next byte (8 bits) & array

BNE %B09 ; Until done
16 Application Note

Memory Initialization on the EBSA-285
3.1.6 Making Memory Contiguous

Because the arrays are spaced to allow the maximum possible memory sizes, the memory map at
this point is not contiguous. Also, the size of each array is determined independently and each may
be a different size (in practice, only arrays on different DIMMs will differ in size). Another point to
consider is that the array registers physically map to array enables on the DIMM. One DIMM may
have only one array, creating a gap where the other array would be. The 21285 can map any array
to any address, provided that the start address of each array is naturally aligned to its size.

In this example, due to the pressure on register usage, the bytes that hold the memory size are
converted into the bit mask used in the 21285 Address and Size registers.

Example 8. Sample 8 Memory Sizes to Bit Masks

; v6 now contains the size of each memory array in multiples of 1 MB. This is

; very similar to the DRAM_ADDR_SIZE register array, so convert to that format

; by determining least significant bit for each array.

; Since each array must start naturally aligned with the size of the array,

; the only way to have contiguous memory is to have the arrays sorted into

; size order - largest first.

LDR a3, =0x18100800 ; Normal array order.

AND v5, v6, #0xff

RAM_REG v5, $w1 ; Get DRAM_ADDR_SIZE mask for array 1

MOV v6, v6, LSR #8

ADD v6, v6, $w1, LSL #24 ; Replace size with mask

AND v5, v6, #0xff

RAM_REG v5, $w2 ; Get mask for array 2

MOV v6, v6, LSR #8

ADD v6, v6, $w2, LSL #24 ; Replace size with mask

AND v5, v6, #0xff

RAM_REG v5, $w3 ; Get mask for array 3

MOV v6, v6, LSR #8

ADD v6, v6, $w3, LSL #24 ; Replace size with mask

AND v5, v6, #0xff

RAM_REG v5, v4 ; Get mask for array 4

MOV v6, v6, LSR #8

ADD v6, v6, v4, LSL #24 ; Replace size with mask

Because there are a maximum of four arrays, a simple bubble sort will arrange the arrays starting
with the largest first. As well as sorting the sizes, the physical array numbers to which they apply
are sorted too.
Application Note 17

Memory Initialization on the EBSA-285
Example 9. Sample 9 Simple Bubble Sort

; Simple bubble sort with additional byte swap in array-order register

CMP $w1, $w2 ; array 1 < array 2?

BGE %F21

MOV a4, $w1 ; Yes, swap sizes 1 & 2

MOV $w1, $w2

MOV $w2, a4

AND v3, a3, #0xff ; Now swap offsets 1 & 2

AND v5, a3, #0xff00

MOV a3, a3, LSR #16 ; clear offsets 1 & 2

MOV a3, a3, LSL #16

ADD a3, a3, v3, LSL #8 ; offset 1 -> offset 2

ADD a3, a3, v5, LSR #8 ; offset 2 -> offset 1

21

CMP $w1, $w3 ; array 1 < array 3?

BGE %F22

MOV a4, $w1 ; Yes, swap sizes 1 & 3

MOV $w1, $w3

MOV $w3, a4

AND v3, a3, #0xff ; Now swap offsets 1 & 3

AND v5, a3, #0xff0000

BIC a3, a3, #0xff0000 ; clear offsets 1 & 3

BIC a3, a3, #0xff

ADD a3, a3, v5, LSR #16 ; offset 3 -> offset 1

ADD a3, a3, v3, LSL #16 ; offset 1 -> offset 3

22

CMP $w1, v4 ; array 1 < array 4?

BGE %F23

; Note: just put size 1 in size 4, since the 1 value isn’t used.

MOV v4, $w1

AND v3, a3, #0xff ; Now swap offsets 1 & 4

AND v5, a3, #0xff000000

BIC a3, a3, #0xff000000 ; clear offsets 1 & 4

BIC a3, a3, #0xff

ADD a3, a3, v5, LSR #24 ; offset 4 -> offset 1
18 Application Note

Memory Initialization on the EBSA-285
ADD a3, a3, v3, LSL #24 ; offset 1 -> offset 4

23

CMP $w2, $w3 ; array 2 < array 3?

BGE %F24

MOV a4, $w2 ; Yes, swap sizes 2 & 3

MOV $w2, $w3

MOV $w3, a4

AND v3, a3, #0xff00 ; Now swap offsets 2 & 3

AND v5, a3, #0xff0000

BIC a3, a3, #0xff0000 ; clear offsets 2 & 3

BIC a3, a3, #0xff00

ADD a3, a3, v5, LSR #8 ; offset 3 -> offset 2

ADD a3, a3, v3, LSL #8 ; offset 2 -> offset 3

24

CMP $w2, v4 ; array 2 < array 4?

BGE %F25

; Note: just put size 2 in size 4, since the 2 value isn’t used.

MOV v4, $w2

AND v3, a3, #0xff00 ; Now swap offsets 2 & 4

AND v5, a3, #0xff000000

BIC a3, a3, #0xff000000 ; clear offsets 2 & 4

BIC a3, a3, #0xff00

ADD a3, a3, v5, LSR #16 ; offset 4 -> offset 2

ADD a3, a3, v3, LSL #16 ; offset 2 -> offset 4

25

CMP $w3, v4 ; array 3 < array 4?

BGE %F26

; Note: don’t need to swap sizes 3 & 4, since the values aren’t used.

AND v3, a3, #0xff0000 ; Now swap offsets 3 & 4

AND v5, a3, #0xff000000

BIC a3, a3, #0xff000000 ; clear offsets 3 & 4

BIC a3, a3, #0xff0000

ADD a3, a3, v3, LSL #8 ; offset 3 -> offset 4

ADD a3, a3, v5, LSR #8 ; offset 4 -> offset 3

26
Application Note 19

Memory Initialization on the EBSA-285
3.1.7 Writing the Final Configuration

Now that the arrays are sorted by size order, the multiplexer modes are read back from the 21285
and added to the array size bit masks. These values can then be written back to the Address and
Size registers to complete the memory initialization. The total memory size found is returned in r5.

Example 10. Sample 10 Completing Initialization

; Read previously set MUX_MODE & BANKS from 21285

LDR $w3, =(CSR_BASE + DRAM_ADDR_SIZE_3); -> last ADDR_SIZE re.

LDR v3, [$w3], #-4 ; Current array 4 ADDR_SIZE

AND v3, v3, #MUX_MASK ; Strip out good Mux mode/bank value

LDR v5, [$w3], #-4 ; Current array 3 ADDR_SIZE

AND v5, v5, #MUX_MASK

ADD v3, v5, v3, LSL #8 ; v3 = v5 + (v3 << 8);

LDR v5, [$w3], #-4 ; Current array 2 ADDR_SIZE

AND v5, v5, #MUX_MASK

ADD v3, v5, v3, LSL #8 ; v3 = v5 + (v3 << 8);

LDR v5, [$w3] ; Current array 1 ADDR_SIZE

AND v5, v5, #MUX_MASK

ADD v3, v5, v3, LSL #8 ; v3 = v5 + (v3 << 8);

ADD v3, v3, v6 ; Add size masks to modes

MOV v4, a3 ; Byte order needs to be in v4

; Finally, fix the 21285 SDRAM registers for calculated sizes

SETUP_RAM $w1, $w2, $w3, v3, v4, v5, v6, a3

; set up the return arguments.

MOV $w3, $w1

MEND
20 Application Note

Memory Initialization on the EBSA-285
3.1.8 Supplementary Macros

To reduce the complexity of the INIT_RAM macro, some common functionality has been broken
out into supplementary macros.

SETUP_RAM sets the memory timing register and the array size registers on the 21285. Because
there are a maximum of four arrays, the Address Size masks and offsets between arrays (in
megabytes) are kept as bytes in registers $w4 and $w5. This dramatically simplifies the final setup,
where each array could have different mode types and memory sizes.

Note: This code checks for Mode 0 type DIMMs with a 64 MB array size. This combination can only
occur during initialization (maximum array size is 2 MB). Because bit 0 of the size is used to route
the address lines differently, this bit must be set to 0 to enable the larger array size to be found.

Example 11. Sample 11 Memory Timing and Array Size Registers

; ---

; SETUP_RAM

; ---------

; ANGEL and uHAL macro to setup memory timing/size registers in 21285

; on start-up. 21285 only has 1 timing register, so DIMMs must work with

; same timing. Each array is then configured for no. of banks & size.

; $w1 -> returns the size of memory allocated

; $w4 -> byte array of ADDR_SIZE masks (33221100)

; $w5 -> byte array of offsets between arrays (max 64 * 1MB)

; $s2, $s3, $s6 - $s8 -> scratch registers.

MACRO

SETUP_RAM $w1, $s2, $s3, $w4, $w5, $s6, $s7, $s8

MOV $w1, #DRAM_BASE ; Start of RAM

LDR $s3, =CSR_BASE

; This enables the test for offset == 0 to be a valid completion test.

ADD $w5, $w5, #0x80000000

LDR $s2, =SETUP_TIMING

STR $s2, [$s3, #DRAM_TIMING] ; Default timing

ADD $s3, $s3, #DRAM_ADDR_SIZE_0 ; -> 1st ADDR_SIZE reg.

1

AND $s6, $w5, #0x3f ; Read next array offset

MOV $s2, $w4, LSR $s6 ; Shuffle register value down

AND $s2, $s2, #0xff ; Register value (- base addr)

ANDS $s8, $s2, #0x7 ; Mask array size & test for empty
Application Note 21

Memory Initialization on the EBSA-285
; When mask is empty, array is disabled

BEQ %F02

; Else, convert bit pattern to array size = (1 << ($s8 - 1))

; Only increment memory if the mask is not empty

SUB $s8, $s8, #1

MOV $s7, #1

MOV $s7, $s7, LSL $s8

MOV $s7, $s7, LSL #20 ; array size * 1M

ADD $s2, $s2, $w1 ; add base of this array

ADD $w1, $w1, $s7 ; Offset to next array

; If Array size is 64MB and mode is 0, must use 32MB to

; differentiate correct size (using bit18 on row ma[9])

CMP $s2, #0x7 ; NOTE: No bits set for Mode 0

SUBEQ $s2, $s2, #1

2

; Writing zero into the ADDR_SIZE register disables this array

MOV $s6, $s6, LSR #1 ; Offset is twice register offset

STR $s2, [$s3, $s6] ; Set up 21285 register

MOVS $w5, $w5, LSR #8 ; Get next ADDR_SIZE byte offset

BNE %B01 ; Until done

MEND

The SIZE_RAM macro is a totally flexible macro that allows the start address, step size, and
number of steps in the memory test to be specified.
22 Application Note

Memory Initialization on the EBSA-285
Example 12. Sample 12 Sampling Memory for Array Size

; ---

; SIZE_RAM

; ---------

; ANGEL and uHAL macro to scan memory to evaluate size. Assumes that

; there are gaps between arrays so that memory will return invalid

; data (either from a gap or mirrored memory).

; $w4 -> step size for memory test

; $w5 -> number of steps (max array size / step size)

; -> returns memory size found as multiple of no. of steps

; $w1 -> address of top of current array (max possible)

; -> returns address of bottom of current array

; $w2, $w3, $w6 -> scratch registers.

MACRO

SIZE_RAM $w1, $w2, $w3, $w4, $w5, $w6

MOV $w6, $w5

ADD $w1, $w1, #0x3c00

1

SUB $w1, $w1, $w4

SUBS $w5, $w5, #1 ; Countdown 64 -> 0 write

STR $w5, [$w1] ; footprint in memory

BGT %B1

MOV $w3, $w1 ; Pointer to base_ram

STR $w5, [$w3, #4] ; Shouldn’t need to worry about

2 ; floating data bus, but..

LDR $w2, [$w3] ; Now check looking for unexpected

SUBS $w2, $w2, $w5 ; memory contents

BNE %F3 ; End of array found

ADD $w3, $w3, $w4

ADD $w5, $w5, #1 ; Count up 0 -> 64 read

CMP $w5, $w6

BLT %B2

3

MEND

RAM_REG is a simple macro to convert an array size into the appropriate mask value used by the
DRAM_ADDR_SIZE registers on the 21285. The primary benefit of having this as a macro is to
avoid typing errors in multiple uses.
Application Note 23

Memory Initialization on the EBSA-285
Example 13. Sample 13 Array Size to Mask Value

; ---

; RAM_REG

; -------

; ANGEL and uHAL macro to convert the memory size into a size mask for

; the DRAM_ADDR_SIZE registers. Looks for the LSB (since each array is

; a power of 2 in size) and returns the number of zero’s bits which is

; the mask..

; $w1 -> size of array (multiple of 1MB)

; $w2 -> returns mask value

MACRO

RAM_REG $w1, $w2 ; Convert to DRAM_ADDR_SIZE mask

MOV $w2, #0

CMP $w1, $w2

BEQ %F02 ; Empty - nothing to do

1

ADD $w2, $w2, #1

TST $w1, #1 ; LSB set?

MOV $w1, $w1, LSR #1

BEQ %B01 ; No, try next shuffled down bit

2

MEND

4.0 Summary

In a fixed memory subsystem, SDRAM can be initialized very quickly and simply. Where memory
can be added or taken away, initialization is more complex due to the vagaries of DIMM
addressing and the stipulation that each address array must start on a naturally aligned boundary.

For a list of DIMMs known to work with the EBSA-285, see the EBSA-285 Evaluation Board
Reference Manual.

Because this code is freely reusable in StrongARM** systems and distributed with evaluation kits,
it is expected that new designs should be able to implement and verify SDRAM memory
subsystems very rapidly.
24 Application Note

stomer
Support, Products, and Documentation
If you need technical support, a Product Catalog, or help deciding which documentation best meets
your needs, visit the Intel World Wide Web Internet site:

http://www.intel.com

Copies of documents that have an ordering number and are referenced in this document, or other
Intel literature may be obtained by calling 1-800-332-2717 or by visiting Intel’s website for
developers at:

http://developer.intel.com

You can also contact the Intel Massachusetts Information Line or the Intel Massachusetts Cu
Technology Center. Please use the following information lines for support:

For documentation and general information:

Intel Massachusetts Information Line

United States: 1–800–332–2717

Outside United States: 1–303-675-2148

Electronic mail address: techdoc@intel.com

For technical support:

Intel Massachusetts Customer Technology Center

Phone (U.S. and international): 1–978–568–7474

Fax: 1–978–568–6698

Electronic mail address: techsup@intel.com

	Memory Initialization on the EBSA-285
	Copyright Page
	Contents
	Tables
	1.0 Introduction
	1.1 Memory on EBSA-285

	2.0 EBSA-285 Memory System
	2.1 Supported Memory Types
	2.2 DIMM Address Mapping
	2.3 21285 Memory Controller Registers

	3.0 Initialization on Power On
	3.1 Implementation
	3.1.1 How to Differentiate DIMM Types
	3.1.2 Empty Memory Arrays
	3.1.3 Simple Tests for Most DIMM Types
	3.1.4 Sizing the Arrays
	3.1.5 Final Determination
	3.1.6 Making Memory Contiguous
	3.1.7 Writing the Final Configuration
	3.1.8 Supplementary Macros

	4.0 Summary
	Support, Products, and Documentation

