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1 Introduction

The ARM and Thumb C compilers are mature, industrial-strength ANSI C compilers which
are capable of producing high quality machine code. However, when writing source code,
it is always worthwhile to use programming techniques which work well on RISC
processors such as ARM. This Application Note describes some of the techniques that
can be useful. It also explains to some extent how the ARM compiler works, and how to
use the C language efficiently. These techniques and knowledge will enable programmers
to increase execution speed and/or lower code density.

Note Most of the techniques discussed in this Application Note are equally applicable to both
armcc and tcc. If a technique is only applicable to ARM or Thumb, this is highlighted. In
principle, many of the described techniques are also applicable to other languages and
other compilers.

Note The code examples given in this Application Note have been compiled and disassembled
using tools supplied with ARM Software Development Toolkit version 2.11. If you are using
another version of the toolkit, your output may differ slightly, though the principles
highlighted should still hold, and should continue to hold in future releases.
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2 Setting Compiler Options

2.1 Selecting processor/architecture

You must select the correct processor, as this enables the compiler to make full use of
instructions which are supported by the processor, and also perform processor-specific
optimizations. If the processor is not directly supported, use the most appropriate base
processor in a family. For example, use -proc ARM7 for the ARM7 derivatives ARM710,
ARM7100, and use -proc StrongARM1 for the SA-1100. Note that when an ARM7
processor is selected you must specify whether the processor supports the Thumb
instruction set (for example, proc ARM7T). This enables the compiler to use halfword
instructions, making 16-bit accesses more efficient.

Alternatively, when a program is compiled to run on different ARM processors, choose the
most appropriate architecture using -arch N. If possible, choose architecture 4 or 4T, as
this enables the halfword instructions.

2.2 Debugging options

When setting the debugging options, it is important to know that enabling any of them will
affect both codesize and performance significantly. The reason is that for debugging a
varying level of optimizations is disabled. This is necessary because some optimizations
produce code that cannot be described in debugging tables (so, for example, variables
may be displayed incorrectly, or it becomes impossible to set breakpoints at certain
places). Therefore, it is best to switch off all debugging when codesize and/or performance
are important.

The compiler supports the following debugging options:

• -g high-level debugging, all optimizations disabled, simple register allocation

• -gr high-level debugging, some optimizations enabled, simple register allocation

• -go high-level debugging, most optimizations enabled, full register allocation

The following sections indicate which optimizations are disabled for debugging.

The option -go is the best option to use if debug information is really needed, as it
enables the most important optimizations. It typically increases codesize by 7−15%, and
decreases performance even more.

Debugging table size can be reduced by using ASD format in combination with -gtp. This
provides the same level of debug information as Dwarf 1.0.
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2.3 Optimization options

The compiler provides two optimization options:

• -Otime causes the compiler to optimize mainly for speed

• -Ospace causes the compiler to optimize mainly for codesize

Currently the difference between selecting -Otime and -Ospace is small. As this may
change in later compiler releases, choose the most appropriate one. The most important
differences are described in the rest of the document.

Note It is not guaranteed that for small functions -Otime will always generate faster code, and
-Ospace will always generate shorter code. A compiler cannot predict the exact outcome
of a particular optimization until all optimizations have been applied, at which point it is too
late to undo any optimizations.

2.4 APCS options

The recommended APCS options are:

• -apcs /nofp/noswst/softfp/narrow
for systems without hardware floating-point support

• -apcs /nofp/noswst/hardfp/fpe3/fpr/narrow
for processors with a hardware floating-point coprocessor

The use of /nofp/noswst means that two extra registers are freed for allocation. Stack
checking is not required, since the MMU can be programmed to do this. Alternatively, for
systems without a MMU, stack requirements can often be calculated beforehand. Using a
framepointer has no advantage (except when debugging is enabled: some debugging
formats require a framepointer).

When /hardfp is used, the /fpr option passes the first four floating-point arguments in
floating-point registers, which is faster than passing them in integer registers.

Using /narrow mainly results in float values being passed as floats, not as doubles. This
is advantageous to both software and hardware floating-point. It also passes chars and
shorts more efficiently. Note that using /narrow always results in higher performance,
and in most cases codesize is decreased.

When compiling functions which do not need interworking, do not use /interwork, as
interworking affects codesize and performance adversely.

Note tcc version 1.05 as supplied with SDT2.11 does not support /hardfp or /narrow.
A future version will support /narrow to speed up floating-point emulation.

To show how the compiler options influence both codesize and performance, the
Dhrystone program has been compiled with armcc and executed on a 40 MHz
ARM7TDMI processor with a set of options. The default options used were:

-proc ARM7TDMI -apcs /nofp/noswst/softfp/narrow -bi .
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Dhrystone options Codesize in bytes Dhrystones / second

-Ospace 40788 57971

-Otime 40816 61538

-Otime -apcs /wide 40820 60060

-Otime -go 40940 53476

-Otime -gr 41236 46404

-Otime -g 41308 46296

-Otime -apcs /fp 41392 59347

-Otime -apcs /swst/fp 42484 58651

The table shows that:

• -Ospace gives the shortest possible code, but at a high cost in execution time
(about 6%)

• /narrow is faster than /wide

• -go is the best debugging option (15% slower)

• /fp and /swst result in the largest codesize.
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3 Division and Remainder

The ARM instruction set does not provide integer division. Divisions are typically
implemented by calling a C-library function (__rt_sdiv for signed and __rt_udiv for
unsigned division). Depending on the numerator and denominator, a 32-bit division takes
20−140 cycles. The division function takes a constant time plus a time for each bit to
divide:

Time(numerator / denominator)

= C0 + C1 * log2(numerator / denominator) =

= C0 + C1 * (log2(numerator) − log2(denominator)).

The current version takes about 20 + 4.3N cycles.

As division is an expensive operation, it is desirable to avoid it where possible. Sometimes
expressions can be rewritten so that a division becomes a multiplication. For example,
(x / y) > z can be rewritten as x > (z * y) if it is known that y is positive and y * z
fits in an integer.

It is best to use unsigned division by ensuring that one of the operands is unsigned, as this
is faster than signed division. This applies both to the division subroutines and to divisions
by a power of two (see 3.2 Division and remainder by powers of two).

In the following sections several methods are discussed to improve division efficiency.

3.1 Combining division and remainder

In some cases both the dividend (x / y) and remainder (x % y) are needed. In such cases
the compiler can combine both by calling the division function once (as it always returns
both dividend and remainder). In order for this to work both expressions need to be close
together. For example:

int combined_div_mod (int a, int b)

{ return (a / b) + (a % b);

}

This compiles into:

combined_div_mod

        STMDB    sp!,{lr}

        MOV      a3,a2

        MOV      a2,a1

        MOV      a1,a3

        BL       __rt_sdiv

        ADD      a1,a1,a2

        LDMIA    sp!,{pc}
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3.2 Division and remainder by powers of two

If the divisor in a division operation is a power of two, the compiler uses a shift to perform
the division. Therefore you should always arrange, where possible, for scaling factors to
be powers of two (for example, 128 rather than 100).

This can be seen by examining the following piece of code:

typedef unsigned int uint;

uint div16u (uint a)

{ return a / 16;

}

int div16s (int a)

{ return a / 16;

}

The following code is produced:

div16u

        MOV      a1,a1,LSR #4

        MOV      pc,lr

div16s

        CMP      a1,#0

        ADDLT    a1,a1,#&f

        MOV      a1,a1,ASR #4

        MOV      pc,lr

Notice that while both divisions avoid calling the division function, unsigned division takes
fewer instructions than signed. In many cases the shift instruction can be combined with
following instructions. Signed division needs additional instructions because it rounds
towards zero, while a shift rounds towards minus infinity.

3.3 Alternatives to remainder for modulo arithmetic

One reason for using the remainder operator is to provide modulo arithmetic. However, it
is sometimes possible to rewrite the code to make use of if statement checks.

Consider the following two sample routines:

uint counter1 (uint count)

{ return (++count % 60);

}

uint counter2 (uint count)

{ if (++count >= 60)

count = 0;

return (count);

}
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The following code is produced:

counter1

        STMDB    sp!,{lr}

        ADD      a2,a1,#1

        MOV      a1,#&3c

        BL       __rt_udiv

        MOV      a1,a2

        LDMIA    sp!,{pc}

counter2

        ADD      a1,a1,#1

        CMP      a1,#&3c

        MOVCS    a1,#0

        MOV      pc,lr

From this it is clear that the use of the if statement, rather than the remainder operator, is
preferable, as it produces much faster code. Note that the new version only works if it is
known that the range of count on input is 0−59.

3.4 Division by a constant

It is possible to write functions which implement divisions by a certain constant much faster
than the general divide function. The ARM C-library contains two such functions, namely
signed and unsigned division by 10 (to speed up decimal printing).

If division by other constants is commonly used in your particular application, it may be
worthwhile writing specific routines to implement them.

Both ARM and Thumb versions of a division by a constant generator program are
provided in examples\explasm\div.c and examples\thumb\div.c subdirectories
of the toolkit.

3.5 Using lookup tables

See 11 Using Lookup Tables on page 30 about lookup tables.
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4 Conditional Execution

Note This section is applicable to armcc only.

Note Conditional execution is disabled for all debugging options.

All ARM instructions are conditional. Each instruction contains a 4-bit field which is a
condition code; the instruction is only executed if the ARM flag bits indicate that the
specified condition is true. Typically a conditionally executing code sequence starts with a
compare instruction setting the flags, followed by a few conditionally executed instructions.
For example:

CMP   x, #0

MOVGE y, #1

MOVLT y, #0

This saves two branch instructions and on average 2.5 ARM7 cycles.

Conditional execution reduces the number of branch instructions, and therefore improves
codesize and performance. However, when more than about four instructions are
conditional, performance could be worse in some cases (since branches take three cycles
or less on ARMs). The compiler therefore limits the number of conditionally executed
instructions. In SDT2.11 this limit is three instructions. In future compilers the limit will
depend on whether -Otime or -Ospace is used.

Conditional execution is applied mostly in the body of if statements, but it is also used
while evaluating complex expressions with relational (<, ==, > and so on) or boolean
operators (&&, !, and so on). Conditional execution is disabled for code sequences which
contain function calls, as on function return the flags are destroyed.

It is therefore beneficial to keep the bodies of if and else statements as simple as
possible, so that they can be conditionalized. Relational expressions should be grouped
into blocks of similar conditions.

The following example shows how the compiler uses conditional execution:

int g(int a, int b, int c, int d)

{ if (a > 0 && b > 0 && c < 0 && d < 0)  /* grouped conditions */

return a + b + c + d;

return -1;

}

g

        CMP      a1,#0

        CMPGT    a2,#0

        BLE      |L000024.J4.g|

        CMP      a3,#0

        CMPLT    a4,#0

        ADDLT    a1,a1,a2

        ADDLT    a1,a1,a3

        ADDLT    a1,a1,a4

        MOVLT    pc,lr

|L000024.J4.g|

        MVN      a1,#0

        MOV      pc,lr

Because the conditions were grouped, the compiler was able to conditionalize them.
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5 Boolean Expressions

5.1 Range checking

A common boolean expression is used to check whether a variable lies within a certain
range, for example to check whether a graphics co-ordinate lies within a window:

bool PointInRect1(Point p, Rectangle *r)

{  return (p.x >= r->xmin && p.x < r->xmax &&

           p.y >= r->ymin && p.y < r->ymax);

}

This compiles into:

PointInRect1

        LDR      a4,[a3,#0]

        CMP      a1,a4

        BLT      |L000034.J5.PointInRect1|

        LDR      a4,[a3,#4]

        CMP      a4,a1

        BLE      |L000034.J5.PointInRect1|

        LDR      a1,[a3,#8]

        CMP      a2,a1

        BLT      |L000034.J5.PointInRect1|

        LDR      a1,[a3,#&c]!

        CMP      a2,a1

        MOVLT    a1,#1

        MOVLT    pc,lr

|L000034.J5.PointInRect1|

        MOV      a1,#0

        MOV      pc,lr

There is a faster way to implement this: (x >= min && x < max) can be transformed
into (unsigned)(x-min) < (max-min). This is especially beneficial if min is zero.
The same example after this optimization:

bool PointInRect2(Point p, Rectangle *r)

{  return ((unsigned) (p.x - r->xmin) < r->xmax &&

           (unsigned) (p.y - r->ymin) < r->ymax);

}

PointInRect2

        LDR      a4,[a3,#0]

        SUB      a1,a1,a4

        LDR      a4,[a3,#4]

        CMP      a1,a4

        LDRCC    a1,[a3,#8]

        SUBCC    a1,a2,a1

        LDRCC    a2,[a3,#&c]!

        CMPCC    a1,a2

        MOVCS    a1,#0

        MOVCC    a1,#1

        MOV      pc,lr

Future versions of the compiler will perform this optimization automatically.
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5.2 Compares with zero

The ARM flags are set after a compare (CMP) instruction. The flags can also be set by
other operations, such as MOV, ADD, AND, MUL, which are the basic arithmetic and logical
instructions (the dataprocessing instructions). If a dataprocessing instruction sets the flags,
the N and Z flags are set the same way as if the result was compared with zero. The N
flag indicates whether the result is negative, the Z flag indicates that the result is zero. For
example:

ADD R0, R0, R1

CMP R0, #0

This produces identical N and Z flags as:

ADDS R0, R0, R1

The N and Z flags on the ARM correspond to the signed relational operators x < 0,
x >= 0, x == 0, x != 0, and unsigned x == 0, x != 0 (or x > 0) in C.

Each time a relational operator is used in C, the compiler emits a compare instruction. If
the operator is one of the above, the compiler can remove the compare if a data
processing operation preceded the compare. For example:

int g(int x, int y)

{ if (x + y < 0)

return 1;

else

return 0;

}

g

        ADDS     a1,a1,a2

        MOVPL    a1,#0

        MOVMI    a1,#1

        MOV      pc,lr

If possible, arrange for critical routines to test the above conditions (see 6.1 Loop
termination on page 12). This often allows you to save compares in critical loops, leading
to reduced code size and increased performance.

The C language has no concept of a carry flag or overflow flag so it is not possible to test
the C or V flag bits directly without using inline assembler. However, the compiler supports
the carry flag (unsigned overflow). For example:

int sum(int x, int y)

{ int res;

res = x + y;

if ((unsigned) res < (unsigned) x) /* carry set? */

res++;

return res;

}

sum

        ADDS     a2,a1,a2

        ADC      a2,a2,#0

        MOV      a1,a2

        MOV      pc,lr
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6 Loops

Loops are a common construct in most programs; a significant amount of the execution
time is often spent in loops. It is therefore worthwhile to pay attention to time-critical loops.

6.1 Loop termination

The loop termination condition can cause significant overhead if written without caution.
You should always write count-down-to-zero loops and use simple termination conditions.
Take the following two sample routines, which calculate n!. The first implementation uses
an incrementing loop, the second a decrementing loop.

int fact1 (int n)

{ int i, fact = 1;

for (i = 1; i <= n; i++)

fact *= i;

return (fact);

}

int fact2 (int n)

{ int i, fact = 1;

for (i = n; i != 0; i--)

fact *= i;

return (fact);

}

The following code is produced:

fact1

         MOV      a3,#1

         MOV      a2,#1

         CMP      a1,#1

         BLT      |L000020.J5.fact1|

 |L000010.J4.fact1|

         MUL      a3,a2,a3

         ADD      a2,a2,#1

         CMP      a2,a1

         BLE      |L000010.J4.fact1|

 |L000020.J5.fact1|

         MOV      a1,a3

         MOV      pc,lr

 fact2

         MOVS     a2,a1

         MOV      a1,#1

         MOVEQ    pc,lr

 |L000034.J4.fact2|

         MUL      a1,a2,a1

         SUBS     a2,a2,#1

         BNE      |L000034.J4.fact2|

         MOV      pc,lr
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You can see that the slight recoding of fact1 required to produce fact2 has caused the
original ADD/CMP instruction pair to be replaced a single SUBS instruction. This is because
a compare with zero could be optimized away, as described in 5.2 Compares with zero
on page 11.

In addition to saving an instruction in the loop, the variable n does not need to be saved
across the loop, so a register is also saved. This eases register allocation, and leads to
more efficient code elsewhere in the function (two more instructions saved).

This technique of initializing the loop counter to the number of iterations required, and then
decrementing down to zero, also applies to while and do statements.

6.2 Loop unrolling

Small loops can be unrolled for higher performance, with the disadvantage of increased
codesize. When a loop is unrolled, a loop counter needs to be updated less often and
fewer branches are executed. If the loop iterates only a few times, it can be fully unrolled,
so that the loop overhead completely disappears. The ARM compilers currently do not
unroll loops automatically, so any unrolling should be done in the source code.

Population countcounting the number of bits set

This routine efficiently tests a single bit by extracting the lowest bit and counting it, after
which the bit is shifted out. The second routine was first unrolled four times, after which an
optimization could be applied by combining the four shifts of n into one. Unrolling
frequently provides new opportunities for optimization.

int countbit1(uint n)

{ int bits = 0;

while (n != 0)

{

if (n & 1) bits++;

n >>= 1;

}

return bits;

}

int countbit2(uint n)

{ int bits = 0;

while (n != 0)

{

if (n & 1) bits++;

if (n & 2) bits++;

if (n & 4) bits++;

if (n & 8) bits++;

n >>= 4;

}

return bits;

}

On the ARM7, checking a single bit takes six cycles when using the first version. The code
size is only nine instructions. The unrolled version checks four bits at a time, taking on
average only three cycles per bit. The cost is larger codesize: 15 instructions.
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7 Switch Statement

A switch statement is translated by the ARM compiler as follows:

If the switch is dense the compiler uses a table lookup to jump to the code of the selected
case label. A switch is dense if case labels comprise more than half the range spanned by
the labels with the minimum and maximum values.

• For armcc the table is a branch-table with one word per entry, while tcc uses an
offset table using only 8 or 16 bits per entry. tcc uses the 8-bit table when the
number of case labels is less than 32. However, when the code in the switch
statement is large, extra branches are needed to jump to the case labels.

• If the case labels are not dense, the compiler splits the case labels, and applies
the same rules on each part recursively until all case labels have been processed.

• In order to improve the code size of switch statements, they should be as dense
as possible, and for tcc both the code and the number of case labels should be
kept small.

7.1 Switch statement vs. lookup tables

The switch statement is typically used for one of the following reasons:

• To call to one of several functions

• To set a variable or return a value

• To execute one of several fragments of code.

If the case labels are dense, in the first two uses of switch statements they could be
implemented more efficiently using a lookup table. For example, two implementations of a
routine that disassembles condition codes to strings:

char * ConditionStr1(int condition)

{

switch(condition)

{

case 0: return "EQ";

case 1: return "NE";

case 2: return "CS";

case 3: return "CC";

case 4: return "MI";

case 5: return "PL";

case 6: return "VS";

case 7: return "VC";

case 8: return "HI";

case 9: return "LS";

case 10: return "GE";

case 11: return "LT";

case 12: return "GT";

case 13: return "LE";

case 14: return "";

default: return 0;

}

}
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char * ConditionStr2(int condition)

{

if ((unsigned) condition >= 15) return 0;

return

      "EQ\0NE\0CS\0CC\0MI\0PL\0VS\0VC\0HI\0LS\0GE\0LT\0GT\0LE\0\0" +

      3 * condition;

}

The first routine needs a total of 240 bytes, the second only 72 bytes.
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8 Register Allocation

Note Register allocation is less efficient when the -gr or -g options are used. This is to ensure
that variables are always displayed correctly in the debugger.

The most important optimization supported by the ARM compilers is called register
allocation. This is a process where the compiler allocates variables to ARM registers,
rather than to memory. This has the advantage that those variables can be accessed
quickly whenever needed, without needing instructions to transfer them from/to memory.
As a result of register allocation, most variables are kept in registers, resulting in dramatic
improvement in codesize and performance. You can write code which enables the
compiler to achieve a more optimal register allocation.

8.1 Register allocatable variables

All basic integer, pointer and floating-point types can be allocated to registers. Fields of
structures and complete structures can also be kept in registers. The following rules define
when a variable is considered for allocation in a register:

A variable may be allocated to a register if:

• it is a local variable or a function parameter, and

• its address is never taken, or its address is taken, but not assigned to another
variable.

A field in a structure may be allocated to a register if:

• it is declared locally or a function parameter, and

• the structure is not assigned directly with the result of a function call, and

• neither the address of the structure nor any of its fields is taken, or if any of these
addresses is taken, it is not assigned to another variable.

8.2 Aliasing

Pointers are a powerful part of the C language. However, they must be used carefully or
poor code may result. If the address of a variable is taken, the compiler must assume that
the variable can be changed by any assignment through a pointer or by any function call,
making it impossible to put it into a register. This is also true for global variables, as they
might have their address taken in some other function. This problem is known as pointer
aliasing, because the pointer is known as an alias of the variable it points to.

Note Some C compilers offer an “ignore pointer aliasing” option, which tells the compiler to
ignore the fact that other functions could be accessing local variables which have their
address taken. This can cause problems if this is not the case, resulting in bugs which are
difficult to trace. ARM does not offer this option because it contradicts with ANSI/ISO
standard for C compilers.

The negative effects which pointer aliasing has on performance can be reduced by using
the following techniques:

• Avoid taking the address of local variables.

• Avoid global variables.

• Avoid pointer chains.
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8.2.1 Local variables

It is often necessary to take the address of variables, for example if they are passed as a
reference parameter to a function. This means that those variables cannot be allocated to
registers. A solution is to make a copy of the variable, and pass the address of that copy.

In the following example, test1 shows the conventional way of taking the address of the
local variable, resulting in inefficient code. test2 uses a dummy variable whose address
is taken. The value is then copied to a local variable i (whose address is not taken). This
allows the variable i to be allocated to a register, which reduces memory traffic.

void f(int *a);
int g(int a);

int test1(int i)
{ f(&i);

/* now use ’i’ extensively */
i += g(i);
i += g(i);
return i;

}

int test2(int i)
{ int dummy = i;

f(&dummy);
i = dummy;
/* now use ’i’ extensively */
i += g(i);
i += g(i);
return i;

}

test1
         STMDB    sp!,{a1,lr}
         MOV      a1,sp
         BL       f
         LDR      a1,[sp,#0]
         BL       g
         LDR      a2,[sp,#0]
         ADD      a1,a1,a2
         STR      a1,[sp,#0]
         BL       g
         LDR      a2,[sp,#0]
         ADD      a1,a1,a2
         ADD      sp,sp,#4
         LDMIA    sp!,{pc}

test2
         STMDB    sp!,{v1,lr}
         STR      a1,[sp,#-4]!
         MOV      a1,sp
         BL       f
         LDR      v1,[sp,#0]
         MOV      a1,v1
         BL       g
         ADD      v1,a1,v1
         MOV      a1,v1
         BL       g
         ADD      a1,a1,v1
         ADD      sp,sp,#4
         LDMIA    sp!,{v1,pc}
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The first routine allocates i on the stack, and four memory accesses are needed for i.
The second uses two memory accesses for dummy, and none for i.

Note There are some exceptions where the compiler is able to determine that the address is not
really used. For example:

int f(int i)

{ return *(&i);

}

Here the compiler detects that the address is only taken inside the expression, and never
assigned to another variable or passed to a function.

8.2.2 Global variables

Global variables are never allocated to registers (unless the __global_reg feature is
used). Global variables can be changed by assigning them indirectly using a pointer, or by
a function call. Hence the compiler cannot cache the value of a global variable in a
register, resulting in extra (often unnecessary) loads and stores when globals are used.
You should therefore not use global variables inside critical loops.

If a function uses global variables heavily, it is beneficial to copy those global variables into
local variables so that they can be assigned to registers. This is possible only if those
global variables are not used by any of the functions which are called.

For example:
int f(void);

int g(void);

int errs;

void test1(void)

{ errs += f();

errs += g();

}

void test2(void)

{ int localerrs = errs;

localerrs += f();

localerrs += g();

errs = localerrs;

}

test1

         STMDB    sp!,{v1,lr}

         BL       f

         LDR      v1,[pc, #L00002c-.-8]

         LDR      a2,[v1,#0]

         ADD      a1,a1,a2

         STR      a1,[v1,#0]

         BL       g

         LDR      a2,[v1,#0]

         ADD      a1,a1,a2

         STR      a1,[v1,#0]

         LDMIA    sp!,{v1,pc}

 L00002c

         DCD      |x$dataseg|
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 test2

         STMDB    sp!,{v1,v2,lr}

         LDR      v1,[pc, #L00002c-.-8]

         LDR      v2,[v1,#0]

         BL       f

         ADD      v2,a1,v2

         BL       g

         ADD      a1,a1,v2

         STR      a1,[v1,#0]

         LDMIA    sp!,{v1,v2,pc}

Note that test1 must load and store the global errs value each time it is incremented,
whereas test2 stores localerrs in a register and needs only a single instruction.

8.2.3 Pointer chains

Pointer chains are frequently used to access information in structures. For example, a
common code sequence is:

typedef struct { int x, y, z; } Point3;

typedef struct { Point3 *pos, *direction; } Object;

void InitPos1(Object *p)

{

p->pos->x = 0;

p->pos->y = 0;

p->pos->z = 0;

}

However, this code must reload p->pos for each assignment, because the compiler does
not know that p->pos->x is not an alias for p->pos. A better version would cache
p->pos in a local variable:

void InitPos2(Object *p)

{ Point3 *pos = p->pos;

pos->x = 0;

pos->y = 0;

pos->z = 0;

}

Another possibility is to include the Point3 structure in the Object structure, thereby
avoiding pointers completely.
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8.3 Live variables and spilling

As the ARM has a fixed set of registers, there is a limit to the number of variables that can
be kept in registers at any one point in the program. With the recommended options, there
are 14 integer registers available. For hardware floating-point, eight separate floating-point
registers are available. For software floating-point, the integer registers are used to hold
floating-point variables.

The ARM compilers support live-range splitting, where a variable can be allocated to
different registers as well as to memory in different parts of the function. The live-range of
a variable is defined as all statements between the last assignment to the variable, and the
last usage of the variable before the next assignment. In this range the value of the
variable is valid, thus it is alive. In between live ranges, the value of a variable is not
needed: it is dead, so its register can be used for other variables, allowing the compiler to
allocate more variables to registers.

The number of registers needed for register-allocatable variables is at least the number of
overlapping live-ranges at each point in a function. If this exceeds the number of registers
available, some variables must be stored to memory temporarily. This process is called
spilling. The compiler spills the least frequently used variables first, so as to minimize the
cost of spilling. Spilling of variables can be avoided by:

• Limiting the maximum number of live variables. This is typically achieved by
keeping expressions simple and small, and not using too many variables in a
function. Subdividing large functions into smaller, simpler ones might also help.

• Using register for frequently-used variables. This tells the compiler that the
register variable is going to be frequently used, so it should be allocated to a
register with a very high priority. However, such a variable may still be spilled in
some circumstances.
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9 Variable Types

The C compilers support the basic types char, short, int and long long (signed and
unsigned), float and double. Using the most appropriate type for variables is important,
as it can reduce code and/or data size and increase performance considerably.

9.1 Local variables

Where possible, it is best to avoid using char and short as local variables. For the types
char and short the compiler needs to reduce the size of the local variable to 8 or 16 bits
after each assignment. This is called sign-extending for signed variables and zero-
extending for unsigned variables. It is implemented by shifting the register left by 24 or 16
bits, followed by a signed or unsigned shift right by the same amount, taking two
instructions (zero-extension of an unsigned char takes one instruction).

These shifts can be avoided by using int and unsigned int for local variables. This
is particularly important for calculations which first load data into local variables and then
process the data inside the local variables. Even if data is input and output as 8- or 16-bit
quantities, it is worth considering processing them as 32-bit quantities.

Note If you do this you must ensure that the results will be identical.

Consider the following three functions:

int wordinc (int a)

{ return a + 1;

}

short shortinc (short a)

{ return a + 1;

}

char charinc (char a)

{ return a + 1;

}

wordinc

        ADD      a1,a1,#1

        MOV      pc,lr

shortinc

        ADD      a1,a1,#1

        MOV      a1,a1,LSL #16

        MOV      a1,a1,ASR #16

        MOV      pc,lr

charinc

        ADD      a1,a1,#1

        AND      a1,a1,#&ff

        MOV      pc,lr
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9.2 Use of shorts/signed bytes on ARM

ARM processors implementing an ARM Architecture earlier than version 4 do not have the
ability to load or store halfwords (shorts) or signed bytes (signed char) directly to or from
memory. These operations are implemented using load/store byte operations and shifts,
and may take up to four instructions. On Architecture 4 and later, these operations only
take a single instruction.

Therefore, if possible, select Architecture 4 processors for applications which use shorts or
signed chars heavily.

The following example illustrates the effect of using shorts and the -arch 4 option.

VARTYPE array [2000];

void varsize (void)

{ int loop;

for (loop = 0; loop < 2000; loop++)

array[loop] = loop;

}

This gives the following results:

Compiler options Code size ZI data size

-DVARTYPE=int 32 8000

-DVARTYPE=short -arch 3 44 4000

-DVARTYPE=short -arch 4 36 4000

9.3 Space occupied by global data

If your code uses C global variables, you are advised to read Application Note 36:
Declaring C Global Data (ARM DAI 0036) for details of how the compilers map such
variables onto memory and how this can be controlled.
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10 Function Design

In general, it is a good idea to keep functions small and simple. This enables the compiler
to perform other optimizations, such as register allocation, more efficiently.

10.1 Function call overhead

Function call overhead on the ARM is small, and is often small in proportion to the work
performed by the called function.

• The minimal call-return sequence is BL ... MOV pc, lr, which is extremely
fast (four cycles on StrongARM1, six cycles on ARM7).

• The multiple load and store instructions, LDM and STM (PUSH and POP in the
Thumb instruction set) reduce the cost of function entry and exit when some
registers need to be saved.

Under the ARM Procedure Call Standard (APCS), up to four words of arguments can be
passed to a function in registers. These arguments can be integer-compatible (char,
shorts, ints and floats all take one word), or structures of up to four words (including the
2-word doubles and long longs).

If more arguments are needed, then the fifth and subsequent words are passed on the
stack. This incurs the cost of storing these words in the calling function and reloading them
in the called function.

Consider the following sample code:

int f1(int a, int b, int c, int d)

{ return a + b + c + d;

}

int g1(void)

{ return f1(1, 2, 3, 4);

}

int f2(int a, int b, int c, int d, int e, int f)

{ return a + b + c + d + e + f;

}

ing g2(void)

{ return f2(1, 2, 3, 4, 5, 6);

}

The fifth and sixth parameters are stored on the stack in g2, and reloaded in f2, costing
two memory accesses per parameter.
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10.1.1 Minimizing parameter passing overhead

To minimize the overhead of passing parameters to functions:

• Try to ensure that small functions take four or fewer arguments. These will not use
the stack for argument passing.

• If a function needs more than four arguments, try to ensure that it does a
significant amount of work, so that the cost of passing the stacked arguments is
outweighed.

• Pass pointers to structures instead of passing the structure itself.

• Put related arguments in a structure, and pass a pointer to the structure to
functions. This will reduce the number of parameters and increase readability.

• Minimize the number of long long parameters, as these take two argument words.
This also applies to doubles if software floating-point is enabled.

• Avoid functions with a parameter that is passed partially in a register and partially
on the stack (split-argument). This is not handled efficiently by the current
compilers: all register arguments are pushed on the stack.

• Avoid functions with a variable number of parameters. Varargs functions
effectively pass all their arguments on the stack.

10.1.2 Using __value_in_regs

A structure can be used to return multiple return values from a function. Normally,
structures are returned on the stack. However, the compiler provides the
__value_in_regs specifier, which can be used to return structures of up to four words
in registers. This reduces memory traffic, enables the structure to be allocated to registers,
and can give considerable reduction in code size.

For example, the ARM Software Floating-Point Library uses __value_in_regs to return
structures containing intermediate results, which reduces code size and increases speed
significantly. Long longs and doubles are returned by default using __value_in_regs.

Consider the following example:

typedef struct { int hi; uint lo; } int64; // low word unsigned!

__value_in_regs int64 add64(int64 x, int64 y)

{ int64 res;

res.lo = x.lo + y.lo;

res.hi = x.hi + y.hi;

if (res.lo < y.lo) res.hi++; // carry from low word

return res;

}

void test(void)

{ int64 a, b, c, sum;

a.hi = 0x00000000; a.lo = 0xF0000000;

b.hi = 0x00000001; b.lo = 0x10000001;

sum = add64(a, b);

c.hi = 0x00000002; c.lo = 0xFFFFFFFF;

sum = add64(sum, c);

}
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add64

        ADDS     a2,a2,a4

        ADC      a1,a3,a1

        MOV      pc,lr

test

        STMDB    sp!,{lr}

        MOV      a1,#0

        MOV      a2,#&f0000000

        MOV      a3,#1

        MOV      a4,#&10000001

        BL       add64

        MOV      a3,#2

        MVN      a4,#0

        LDMIA    sp!,{lr}

        B        add64

By using __value_in_regs, the code size is 52 bytes (compared with 160 bytes
otherwise). Note how the result from the first call to add64 is returned in r0 and r1, so
these registers are already prepared for the second call to add64. The compiler can use
the ADC instruction, resulting in optimal code.

__value_in_regs can also be an efficient way of interfacing C to assembler when you
wish to return more than one result. You can define a structure to hold the return values
and then write a C function declaration using __value_in_regs:

typedef struct

{ int x, y, z;

} Point3;

/* this is an ARM assembler function which takes a coord in r0-r3

 * and returns a transformed coordinate in r0-r3

 */

__value_in_regs Point3 TransformCoord(Point3 a);

10.2 Leaf functions

A function which does not call any other functions is known as a leaf function. In many
applications, about half of all function calls made are to leaf functions. Leaf functions are
compiled very efficiently on the ARM, as they often do not need to perform the usual
saving and restoring of registers:

• With armcc, if the function needs up to five registers, it will use r0−r3 and r12, and
thus does not need to save/restore registers.

• With tcc, there is no save/restore overhead if the function is simple enough to
compile using just r0−r3.

When registers have to be saved, STM is the most efficient method. In a leaf function, all
the relevant registers are saved by a single STMFD sp!,{reg_list,lr} on entry and a
matching LDMFD sp!,{reg_list,pc} on exit (or the equivalent PUSH
{reg_list,lr} and POP {reg_list,pc} instructions in Thumb code).

In general, the cost of pushing some registers on entry and popping them on exit is very
small compared to the cost of the useful work done by a leaf function that is complicated
enough to need more than four or five registers.
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Overall, you should expect a leaf function to carry virtually no function entry / exit
overhead, and at worst, a small overhead, most likely in proportion to the useful work done
by the function.

If possible, you should try to arrange for frequently-called functions to be leaf functions.
The number of times a function is called can be determined by using the profiling facility
(refer to the Software Development Toolkit User Guide (ARM DUI 0040) for more details).

There are several ways to ensure that a function is compiled as a leaf function:

• Avoid calling other functions. This includes any operations which are converted to
calls to the C-library (such as division, or any floating-point operation when the
software floating-point library is used).

• Use __inline for small functions which are called from it (see 10.5 Inline
functions on page 28 for more details).

10.3 Tail continued functions
Note This section applies only to armcc.

Note Tail continuation is disabled for all debugging options.

If a function ends with a call to another function, the call can be converted to a branch to
that function. This is called tail continuation. It usually saves stackspace and a branch.
This optimization can be applied to any function that calls another just before returning, if
none of the parameters is the address of a local variable.

Consider, for example:

extern int func2(int);

int func1 (int a, int b)

{ if (a > b)

        return (func2(a - b));

    else

        return (func2(b - a));

}

The following code is produced:

func1

        CMP      a1,a2

        SUBLE    a1,a2,a1

        SUBGT    a1,a1,a2

        B        func2

Here there is no function entry or exit overhead, and the function return has disappeared
entirely: func2 returns directly to func1’s caller. In this case, the basic call-return cost for
the function pair has been reduced from:

BL + BL + MOV pc,lr + MOV pc,lr

to:

BL + B  +             MOV pc,lr

which works out as a saving of 25%. Many of the other examples given in this Application
Note also benefit from this optimization.
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10.4 Pure functions
Note The pure function optimization is disabled for the -g option.

Pure functions are those which return a result which depends only on their arguments.
They can be thought of as mathematical functions: they always return the same result if
the arguments are the same. Therefore they must not have any side-effects, where a
different value could be returned, even though the parameters are the same. For example,
a pure function may use the stack for local storage, and read its parameters from the
stack. However, a pure function cannot read or write global state by using global variables
or indirecting through pointers. To tell the compiler that a function is pure, use the special
declaration keyword __pure.

Consider the following sample code:

int square(int x)

{ return x * x;

}

int f(int n)

{ return square(n) + square(n);

}

square

        MOV      a2,a1

        MUL      a1,a2,a2

        MOV      pc,lr

f

        STMDB    sp!,{lr}

        MOV      a3,a1

        BL       square

        MOV      a4,a1

        MOV      a1,a3

        BL       square

        ADD      a1,a4,a1

        LDMIA    sp!,{pc}

If the code is modified so that square is defined as pure:

__pure int square(int x)

{ return x * x;

}

f

         STMDB    sp!,{lr}

         BL       square

         MOV      a1,a1,LSL #1

         LDMIA    sp!,{pc}

Note that square is now only called once. This is because the compiler has detected that
it is a common subexpression (CSE). This optimization can only be performed on pure
functions as they do not have side-effects.

Pure functions can also improve the code in other ways, as they cannot have read or
written any memory locations. This means, for example, that values which are allocated to
memory can be safely cached in registers, instead of being written to memory before a call
and reloaded afterwards.
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Another way to tell the compiler that a function is pure is to place the following pragmas
around its definition:

#pragma no_side_effects

/* function definition */

#pragma side_effects

10.5 Inline functions
Note Function inlining is disabled for all debugging options.

The ARM compilers support inline functions with the keyword __inline. This results in
each call to an inline function being substituted by its body, instead of a normal call. This
results in faster code, but it adversely affects code size, particularly if the inline function is
large and used often.

__inline int square(int x)

{ return x * x;

}

#include <math.h>

double length(int x, int y)

{ return sqrt(square(x) + square(y));

}

length

        STMDB    sp!,{lr}

        MUL      a3,a1,a1

        MLA      a1,a2,a2,a3

        BL       _dflt

        LDMIA    sp!,{lr}

        B        sqrt

There are several advantages to using inline functions:

• No function call overhead.
As the code is substituted directly, there is no overhead, like saving and restoring
registers.

• Lower argument evaluation overhead.
The overhead of parameter passing is generally lower, since it is not necessary to
copy variables. If some of the parameters are constants, the compiler can
optimize the resulting code even further.

• More optimizations possible.
The compiler was able to combine an ADD and MUL instruction into a multiply-
accumulate (MLA) instruction.

The big disadvantage of inline functions is that the code sizes increases if the function is
used in many places. This can vary significantly depending on the size of the function, and
the number of places where it is used. It is for this reason that armcc and tcc do not offer
a compiler option to inline functions automatically.

In general, it is wise to only inline a few critical functions. Note that when done wisely,
inlining may decrease the size of the code: A call takes usually a few instructions, but the
optimized version of the inlined code might translate to even less instructions. The above
examples show this: a call to square takes between one and three instructions, while an
inlined square always takes a single instruction.
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10.6 Function definitions
Note This section applies only to armcc, as tcc does not currently support this optimization.

Placing function definitions before their use can sometimes produce better code as it
allows the compiler to see the register usage of the called function. This is a simple form of
interprocedural optimization (where optimizations are carried out between functions).

int square(int x);

int sumsquares1(int x, int y)

{ return square(x) + square(y);

}

/* square might be defined here, or in another source file */

int square(int x)

{ return x * x;

}

int sumsquares2(int x, int y)

{ return square(x) + square(y);

}

sumsquares1

        STMDB    sp!,{v1,v2,lr}

        MOV      v1,a2

        BL       square

        MOV      v2,a1

        MOV      a1,v1

        BL       square

        ADD      a1,v2,a1

        LDMIA    sp!,{v1,v2,pc}

square

        MOV      a2,a1

        MUL      a1,a2,a2

        MOV      pc,lr

sumsquares2

        STMDB    sp!,{lr}

        MOV      a3,a2

        BL       square

        MOV      a4,a1

        MOV      a1,a3

        BL       square

        ADD      a1,a4,a1

        LDMIA    sp!,{pc}

By putting the square definition before the sumsquares definition, the compiler knows
that a3 and a4 are not used. It is able to use these registers, knowing that they will not be
corrupted by the square function, instead of being forced to use v1 and v2 by storing their
values on the stack. Fewer memory accesses result in higher speed.
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11 Using Lookup Tables

A function can often be approximated using a lookup table, which increases performance
significantly. A table lookup is usually less accurate than calculating the value properly, but
for many applications this does not matter.

Many signal processing applications (for example, modem demodulator software) make
heavy use of sin and cos functions, which are computationally expensive to calculate. For
real-time systems where accuracy is not very important, sin/cos lookup tables might be
essential.

When using lookup tables, try to combine as many adjacent operations as possible into a
single lookup table. This is faster and uses less space than multiple lookup tables.

Example code which demonstrates the use of lookup tables can be found on the ARM
Web site.
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12 Floating-Point Arithmetic

The ARM core does not contain any actual floating-point hardware. Instead there are three
options for an application which needs floating-point support.

• Floating-Point Accelerator (FPA) hardware coprocessor.
This implements a floating-point instruction set using a number of ARM
coprocessor instructions. However this does require the FPA hardware to exist
within the system as a coprocessor.

• The Floating-Point Emulator (FPE).
This emulates in software the instructions that the FPA executes. This means that
there is no need to recompile code for systems with or without the FPA.

• The Floating-Point Library (FPLib).
Floating-point operations are compiled into function calls to library routines rather
than floating-point instructions. Although this is slower than using a FPA it is typically
two or three times faster than using the FPE. (The FPE emulates the FPA instruction
set, which means there is some overhead per instruction.) The overall code size of
the system is also smaller because only the required library routines are included,
rather than the whole of the FPE. The floating-point library is therefore the route that
ARM recommends for use in embedded systems and is the default.

Note The Thumb instruction set does not have instruction space for coprocessor instructions.
Thus the Thumb compiler will always provide floating-point functionality using the Floating-
Point Library.

The recommended compiler options give the best results in terms of performance and
code size. However, when writing floating-point code, keep the following things in mind:

• Floating-point division is slow.
Division is typically twice as slow as addition or multiplication. Rewrite divisions by
a constant into a multiplication with the inverse (for example, x = x / 3.0
becomes x = x * (1.0/3.0)the constant is calculated during compilation).

• Use floats instead of doubles.
Float variables consume less memory and fewer registers, and are more efficient
because of their lower precision. Use floats whenever their precision is good
enough.

• Avoid using transcendental functions.
Transcendental functions, like sin, exp and log are implemented using series of
multiplications and additions (using extended precision). As a result, these
operations are at least ten times slower than a normal multiply.

• Simplify floating-point expressions.
The compiler cannot apply many optimizations which are performed on integers to
floating-point values. For example, 3 * (x / 3) cannot be optimized to x, since
floating-point operations generally lead to loss of precision. Even the order of
evaluation is important: (a + b) + c is not the same as a + (b + c).
Therefore, it is beneficial to perform floating-point optimizations manually if it is
known they are correct.

For more information about optimizing floating-point performance, see Application Note
55: Floating-Point Performance (ARM DAI 0055).

However it is still possible that the floating performance will not reach the required level for a
particular application. In such a case the best approach may be to change from using
floating-point to fixed point arithmetic. When the range of values needed is sufficiently small,
fixed-point arithmetic is more accurate and much faster than floating-point arithmetic. See
Application Note 33: Fixed Point Arithmetic (ARM DAI 0033) for more details.
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13 Cross Jump Optimization

Note Cross jump optimization is disabled for all debugging options and for -Otime.

One of the optimizations carried out by the ARM compilers is known as cross jump
optimization. This is a space-saving strategy whereby identical sequences of code are
identified. It is mainly used in if- and switch-statements. However, in a switch-statement
this can lead to extra branches being executed which may decrease performance in some
cases. Therefore cross jumping is switched off when optimizing for speed (-Otime).
Cross jump optimization can be switched on or off by using #pragma -j1 / -j0, or at
the command line by using -zpj1 / -zpj0.

Consider the following section of C code:

extern void g(int, int);

int f(int a, int b)

{

if (a > b)

{

a += b;

a--;

g(a, b);

}

else

{

a += b;

b--;

g(a, b)

}

return a + b;

}

f

        STMDB    sp!,{v1,v2,lr}

        MOV      v2,a2

        CMP      a1,a2

        ADD      v1,a1,a2

        SUBLE    v2,v2,#1

        SUBGT    v1,v1,#1

        MOV      a2,v2

        MOV      a1,v1

        BL       g

        ADD      a1,v1,v2

        LDMIA    sp!,{v1,v2,pc}

The final three instructions in the then and else part have been combined, resulting in
shorter and faster code.
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14 Portability of C Code

Many of the C optimizations described here apply to other processors. However, some of
the optimizations rely on pragma statements or special function declaration keywords
(such as __inline). Many other compilers also support these, although they have a
different syntax.

To maintain code portability to other platforms, these ARM-specific keywords could be
made into macros:

#ifdef __arm

#  define INLINE        __inline

#  define VALUE_IN_REGS __value_in_regs

#  define PURE          __pure

#else

#  define INLINE

#  define VALUE_IN_REGS

#  define PURE

#endif

The code can make use of INLINE, VALUE_IN_REGS, and so on.

INLINE int square(int x) {

  return x*x;

}

Note __arm is defined by both armcc and tcc
__thumb is defined by tcc.
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15 Further Information

For further information, refer to:

• Software Development Toolkit User Guide (ARM DUI 0040): Chapter 7
Benchmarking, Performance Analysis and Profiling

• Application Note 33: Fixed Point Arithmetic on the ARM (ARM DAI 0033)

• Application Note 36: Declaring C Global Data (ARM DAI 0036)

• Application Note 55: Floating-Point Performance (ARM DAI 0055)


