
Advanced RISC Machines

ARM

Document Number: ARM DAI 0033A

Issued: September 1996

Copyright Advanced RISC Machines Ltd (ARM) 1996

All rights reserved

Application Note 33

Fixed Point Arithmetic on the ARM

Open Access

ENGLAND
Advanced RISC Machines Limited
90 Fulbourn Road
Cherry Hinton
Cambridge CB1 4JN
UK
Telephone: +44 1223 400400
Facsimile: +44 1223 400410
Email: info@armltd.co.uk

GERMANY
Advanced RISC Machines Limited
Otto-Hahn Str. 13b
85521 Ottobrunn-Riemerling
Munich
Germany
Telephone: +49 89 608 75545
Facsimile: +49 89 608 75599
Email: info@armltd.co.uk

JAPAN
Advanced RISC Machines K.K.
KSP West Bldg, 3F 300D, 3-2-1 Sakado
Takatsu-ku, Kawasaki-shi
Kanagawa
213 Japan
Telephone: +81 44 850 1301
Facsimile: +81 44 850 1308
Email: info@armltd.co.uk

USA
ARM USA Incorporated
Suite 5
985 University Avenue
Los Gatos
CA 95030 USA
Telephone: +1 408 399 5199
Facsimile: +1 408 399 8854
Email: info@arm.com

World Wide Web address: http://www.arm.com

ii Application Note 33
ARM DAI 0033A

Open Access

Proprietary Notice
ARM and the ARM Powered logo are trademarks of Advanced RISC Machines Ltd.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or
reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the product and
its use contained in this document are given by ARM in good faith. However, all warranties implied or expressed, including but not
limited to implied warranties or merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Ltd shall not be liable for any loss or damage
arising from the use of any information in this document, or any error or omission in such information, or any incorrect use of the
product.

Key
Document Number
This document has a number which identifies it uniquely. The number is displayed on the front page and at the foot of each
subsequent page.

Document Status
The document’s status is displayed in a banner at the bottom of each page. This describes the document’s confidentiality and its
information status.

Confidentiality status is one of:

ARM Confidential Distributable to ARM staff and NDA signatories only
Named Partner Confidential Distributable to the above and to the staff of named partner companies only
Partner Confidential Distributable within ARM and to staff of all partner companies
Open Access No restriction on distribution

Information status is one of:

Advance Information on a potential product
Preliminary Current information on a product under development
Final Complete information on a developed product

Change Log
Issue Date By Change

A September 1996 SKW First release

ARM XXX 0000 X - 00

(On review drafts only) Two-digit draft number
Release code in the range A-Z
Unique four-digit number
Document type

Table of Contents

Application Note 33
ARM DAI 0033A

1

Open Access

Table of Contents
1 Introduction 2
2 Principles of Fixed Point Arithmetic 3
3 Examples 5
4 Programming in C 7
5 Programming in Assembler 10

Named Partner Confidential - Preliminary Draft

Introduction

Application Note 33
ARM DAI 0033A

2

Open Access

1 Introduction
This application note describes how to write efficient fixed point arithmetic code
using the ARM C compiler and ARM or Thumb assembler. Since the ARM core is
an integer processor, all floating point operations must be simulated using integer
arithmetic. Using fixed point arithmetic instead of floating point will considerably
increase the performance of many algorithms.

This document contains the following sections:

• 2 Principles of Fixed Point Arithmetic on page 3 describes the
mathematical concepts needed for fixed point arithmetic.

• 3 Examples on page 5 gives examples of writing fixed point code for signal
processing and graphics processing, two of the most common uses.

• 4 Programming in C on page 7 covers the practical details of
implementing fixed point code in C. An example program is given together
with a set of macro definitions.

• 5 Programming in Assembler on page 10 deals with assembler
examples.

Principles of Fixed Point Arithmetic

Application Note 33
ARM DAI 0033A

3

Open Access

2 Principles of Fixed Point Arithmetic
In computing arithmetic, fractional quantities can be approximated by using a pair
of integers (n, e): the mantissa and the exponent. The pair represents the fraction:

The exponent e can be considered as the number of digits you have to move into
n before placing the binary point.

For example:

If e is a variable quantity, held in a register and unknown at compile time, (n, e) is
said to be a floating point number. If e is known in advance, at compile time, (n, e)
is said to a fixed point number. Fixed point numbers can be stored in standard
integer variables (or registers) by storing the mantissa.

For fixed point numbers, the exponent e is usually denoted by the letter q. The
following subsections show how to perform the basic arithmetic operations on two
fixed point numbers, and , expressing the answer in the form

, where p, q and r are fixed constant exponents.

2.1 Change of exponent

The simplest operation to be performed on a fixed point number is to change the
exponent. To change the exponent from p to r (to perform the operation c = a) the
mantissa k can be calculated from n by a simple shift.

Since:

you have the formula:

k = n << (r-p) if (r>=p)
k = n >> (p-r) if (p>r)

2.2 Addition and subtraction

To perform the operation c = a+b, first convert a and b to have the same exponent
r as c and then add the mantissas. This method is proved by the equation:

Subtraction is similar.

Mantissa (n) Exponent (e) Binary Decimal

01100100 -1 011001000. 200

01100100 0 01100100. 100

01100100 1 0110010.0 50

01100100 2 011001.00 25

01100100 3 01100.100 12.5

01100100 7 0.1100100 0.78125

 Table 2-1: Principles of fixed point arithmetic

n2 e–

a n2 p–= b m2 q–=
c k 2 r–=

n2 p– n2r p– 2 r–×=

n2 r– m2 r–
+ n m+()2 r–

=

Named Partner Confidential - Preliminary Draft

Principles of Fixed Point Arithmetic

Application Note 33
ARM DAI 0033A

4

Open Access

2.3 Multiplication

The product c = ab can be performed using a single integer multiplication. From
the equation:

it follows that the product n*m is the mantissa of the answer with exponent p+q. To
convert the answer to have exponent r, perform shifts as described above.

For example, if :

k = (n*m) >> (p+q-r)

2.4 Division

Division, , can also be performed using a single integer division. The
equation is:

In order not to lose precision, the multiplication by must be performed
before the division by m.

For example, assuming that , perform the calculation:

k = (n<<(r+q-p))/m

2.5 Square root

The equation for square root is:

In other words, to perform , set k=isqr(n<<(2r-p)) where isqr is an
integer square root function.

2.6 Overflow

The above equations show how to perform the basic operations of addition,
subtraction, multiplication, division and root extraction on numbers in fixed point
form, using only integer operations. However, in order for the results to be accurate
to the precision the answer is stored in () you must ensure that overflows do
not occur within the calculation. Every shift left, add/subtract or multiply can
produce an overflow and lead to a nonsensical answer if the exponents are not
carefully chosen.

The following examples of “real world” situations indicate how to choose the
exponent.

ab n2 p– m2 q–× nm()2 p q+()–
= =

p q r≥+

c a b⁄=

a
b
--- n2 p–

m2 q–

n
m
----- 

 2q p– n
m
----- 

 2 r q p–+()2 r–
= = =

2 r q p–+()

r q p≥+

a n2 p– n2 2r p–() 2 r–×= =

c a=

2± r–

Examples

Application Note 33
ARM DAI 0033A

5

Open Access

3 Examples

3.1 Signal processing

In signal processing the data often consists of fractional values, in the range -1 to
+1. This example uses exponent q and 32-bit integer mantissas (so that each
value can be held in a single ARM register). In order to be able to multiply two
numbers without overflow, you need , or . In practice q=14 is often
chosen as this allows multiplication with several accumulates without risk of
overflow.

Fix q=14 at compile time. Then 0xFFFFC000 represents -1, 0x00004000
represents +1 and 0x00000001 represents , the finest division.

Suppose that x, y are two q=14 mantissas and n, m are two integers. By applying
the above formulas you derive the basic operations:

Operation Code to produce mantissa of answer in q=14 format

x+y

x+(a<<14)

x*a

(x*y)>>14

x/a

(a<<14)/b

(x<<14)/y

sqr(x<<14)

 Table 3-2: Basic operations

2q 32< q 15≤

2 14–()

x y+

x a+

xa

xy

x
a

a
b

x
y

x

Named Partner Confidential - Preliminary Draft

Examples

Application Note 33
ARM DAI 0033A

6

Open Access

3.2 Graphics processing

In this example, the (x, y, z) coordinates are stored in fractional form with eight bits
of fraction information (q=8). If x is stored in a 32-bit register then the lowest byte
of x gives the fractional part and the highest three parts the integer part.

To calculate the distance from the origin, d, in q=8 form:

If you apply the above formulae directly and keep all intermediate answers in q=8
form, you arrive at the following code:

x = (x*x)>>8 square x
y = (y*y)>>8 square y
z = (z*z)>>8 square z
s = x+y+z sum of squares
d = sqrt(s<<8) the distance in q=8 form

Alternatively, if you keep the intermediate answers in q=16 form, the number of
shifts is reduced and the accuracy increased:

x = x*x square of x in q=16 form
y = y*y square of y in q=16 form
z = z*z square of z in q=16 form
s = x+y+x sum of squares in q=16 form
d = sqr(s) distance d in q=8 form

3.3 Summary

• If you add two numbers in q-form, they stay in q-form.
• If you multiply two numbers in q form the answer is in 2q-form.
• If you take the square root of a number in q form the answer is in q/2-form.
• To convert from q-form to r-form you shift left by (r-q) or right by (q-r),

depending on which of q and r is greater
• To get the best precision results, choose q to be the largest number such

that the intermediate calculations cannot overflow.

d x 2 y 2 z2
+ +=

Programming in C

Application Note 33
ARM DAI 0033A

7

Open Access

4 Programming in C
Fixed point arithmetic can be programmed in C by using the standard integer
arithmetic operations and using shifts to change q-form when this is necessary
(usually before or after an operation to ensure that the answer is still in q-form).

To make programming easier to read, a set of C macros have been defined. The
example program below defines these macros and illustrates their use.

/* A Simple C program to illustrate the use of Fixed Point Operations */

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

/* DEFINE THE MACROS */

/* The basic operations perfomed on two numbers a and b of fixed

 point q format returning the answer in q format */

#define FADD(a,b) ((a)+(b))

#define FSUB(a,b) ((a)-(b))

#define FMUL(a,b,q) (((a)*(b))>>(q))

#define FDIV(a,b,q) (((a)<<(q))/(b))

/* The basic operations where a is of fixed point q format and b is

 an integer */

#define FADDI(a,b,q) ((a)+((b)<<(q)))

#define FSUBI(a,b,q) ((a)-((b)<<(q)))

#define FMULI(a,b) ((a)*(b))

#define FDIVI(a,b) ((a)/(b))

/* convert a from q1 format to q2 format */

#define FCONV(a, q1, q2) (((q2)>(q1)) ? (a)<<((q2)-(q1)) : (a)>>((q1)-(q2)))

/* the general operation between a in q1 format and b in q2 format

 returning the result in q3 format */

#define FADDG(a,b,q1,q2,q3) (FCONV(a,q1,q3)+FCONV(b,q2,q3))

#define FSUBG(a,b,q1,q2,q3) (FCONV(a,q1,q3)-FCONV(b,q2,q3))

#define FMULG(a,b,q1,q2,q3) FCONV((a)*(b), (q1)+(q2), q3)

#define FDIVG(a,b,q1,q2,q3) (FCONV(a, q1, (q2)+(q3))/(b))

/* convert to and from floating point */

Named Partner Confidential - Preliminary Draft

Programming in C

Application Note 33
ARM DAI 0033A

8

Open Access

#define TOFIX(d, q) ((int)((d)*(double)(1<<(q))))

#define TOFLT(a, q) ((double)(a) / (double)(1<<(q)))

#define TEST(FIX, FLT, STR) { \

 a = a1 = randint(); \

 b = bi = a2 = randint(); \

 fa = TOFLT(a, q); \

 fa1 = TOFLT(a1, q1); \

 fa2 = TOFLT(a2, q2); \

 fb = TOFLT(b, q); \

 ans1 = FIX; \

 ans2 = FLT; \

 printf("Testing %s\n fixed point answer=%f\n floating point answer=%f\n", \

 STR, TOFLT(ans1, q), ans2); \

}

int randint(void) {

 int i;

 i=rand();

 i = i & 32767;

 if (rand() & 1) i=-i;

 return i;

}

int main(void) {

 int q=14, q1=15, q2=7, q3=14;

 double fa, fb, fa1, fa2;

 int a,b,bi,a1,a2;

 int ans1;

 double ans2;

 /* test each of the MACRO's with some random data */

 TEST(FADD(a,b), fa+fb, "FADD");

 TEST(FSUB(a,b), fa-fb, "FSUB");

 TEST(FMUL(a,b,q), fa*fb, "FMUL");

 TEST(FDIV(a,b,q), fa/fb, "FDIV");

 TEST(FADDI(a,bi,q), fa+bi, "FADDI");

 TEST(FSUBI(a,bi,q), fa-bi, "FSUBI");

 TEST(FMULI(a,bi), fa*bi, "FSUBI");

 TEST(FDIVI(a,bi), fa/bi, "FSUBI");

 TEST(FADDG(a1,a2,q1,q2,q3), fa1+fa2, "FADDG");

 TEST(FSUBG(a1,a2,q1,q2,q3), fa1-fa2, "FSUBG");

 TEST(FMULG(a1,a2,q1,q2,q3), fa1*fa2, "FMULG");

 TEST(FDIVG(a1,a2,q1,q2,q3), fa1/fa2, "FDIVG");

 printf("Finished standard test\n");

Programming in C

Application Note 33
ARM DAI 0033A

9

Open Access

 /* the following code will calculate exp(x) by summing the

 series (not efficient but useful as an example) and compare it

 with the actual value */

 while (1) {

 printf("Please enter the number to be exp'ed (<1): ");

 scanf("%lf", &fa);

 printf(" x = %f\n", fa);

 printf(" exp(x) = %f\n", exp(fa));

 q = 14; /* set the fixed point */

 a = TOFIX(fa, q); /* get a in fixed point format */

 a1 = FCONV(1, 0, q); /* a to power 0 */

 a2 = 1; /* 0 factorial */

 ans1 =0; /* series sum so far */

 for (bi=0 ; bi<10; bi++) { /* do ten terms of the series */

 int j;

 j = FDIVI(a1, a2); /* a^n/n! */

 ans1 = FADD(ans1, j);

 a1 = FMUL(a1, a, q); /* increase power of a by 1 */

 a2 = a2*(bi+1); /* next factorial */

 printf("Stage %d answer = %f\n", bi, TOFLT(ans1, q));

 }

 }

 return 0;

}

Programming in Assembler

Application Note 33
ARM DAI 0033A

10

Open Access

5 Programming in Assembler

5.1 ARM assembler

The ARM’s barrel shifter makes it very efficient at executing fixed point arithmetic.
Suppose, as in the signal processing examples, that x and y are two q=14
numbers with mantissas held in registers, and that a and b are registers holding
integer values. The examples in Table 5-3: ARM assembler operations show the
basic operations to produce an answer c in q=14 format.

In effect, the barrel shift on each instruction gives one free exponent conversion
per instruction. Where long fractional bit accuracy is required (for example, q=30
rather than q=14), the ARM7DM’s long multiply and long multiply accumulate
instructions provide an efficient implementation.

For example, to perform the operation , where s, x, y, z are in
q=30 form, use the code:

SMULL R0, R1, x, x in q=60 form

SMLAL R0, R1, y, y in q=60 form

SMLAL R0, R1, z, z in q=60 form

MOV s, R0, LSR#30

ORR s, s, R1, LSL#2 in q=30 form

Operation C code Assembler code

c=x+y ADD c, x, y

c=x+(a<<14) ADD c, x, a, LSL#14

c=x*a MUL c, x, a

c=(x*y)>>14 MUL c, x, y
MOV c, c, ASR#14

c=(x<<14)/y MOV R0, x, LSL#14
MOV R1, y
BL divide
MOV c, R0

c=((x*x+y*y)>>14)+x+y MUL c, x, x
MLA c, y, y, c
ADD c, x, c, ASR#14
ADD c, c, y

c=isqr(x<<14) MOV R0, c, LSL#14
BL isqr
MOV c, R0

 Table 5-3: ARM assembler operations

c x y+=

c x a+=

c xa=

c xy=

c x
y
---=

c x 2 y 2 x y+ + +=

c x=

s x 2 y 2 z2
+ +=

R1.R0 x 2
=

R1.R0 x 2 y 2
+=

R1.R0 x 2 y 2 z2
+ +=

s x 2 y 2 z2
+ +=

Programming in Assembler

Application Note 33
ARM DAI 0033A

11

Open Access

5.2 Thumb assembler

Table 5-4: Thumb assembler operations duplicates the table of the previous
section with Thumb code examples in place of ARM code. The code is very similar,
the main difference being that separate shift instructions are needed for q format
conversion.

Operation C code THUMB code

c=x+y ADD c, x, y

c=x+(a<<14) LSL c, a, #14
ADD c, x

x=x*a MUL x, a

c=(x*y)>>14 MUL x, y
ASR c, x, #14

c=(x<<14)/y LSL R0, x, #14
MOV R1, y
BL divide
MOV c, R0

c=((x*x+y*y)>>14)+x+y ADD R0, x, y
MOV R1, x
MOV R2, y
MUL R1, x
MUL R2, y
ADD R1, R1, R2
ASR R1, R1, #14
ADD c, R0, R1

c=isqr(x<<14) LSL R0, c, #14
BL isqr
MOV c,R0

 Table 5-4: Thumb assembler operations

c x y+=

c x a+=

x xa=

c xy=

c x
y
---=

c x 2 y 2 x y+ + +=

c x=

Programming in Assembler

Application Note 33
ARM DAI 0033A

12

Open Access

