
ARM ELF

SWS ESPC 0003 A-08 Page 1 of 44

ARM ELF
Development Systems Business Unit

Engineering Software Group

Document number: SWS ESPC 0003 A-08

Date of Issue: 22 September, 1999

Author: -

Authorized by:

© Copyright ARM Limited 1998. All rights reserved.

Section 3 © Copyright Tool Interface Standards Committee 1995.

Abstract
This specification defines the ARM-specific features of Executable and Linking Format (ELF).

Keywords
ARM ELF, ELF, ELF relocation types, Executable and Linking Format (ELF)

Distribution list
Name Function Name Function

ARM ELF

SWS ESPC 0003 A-08 Page 2 of 44

Contents

1 ABOUT THIS DOCUMENT 4

1.1 Change control 4
1.1.1 Current status and anticipated changes 4
1.1.2 Change history 4

1.2 References 4

1.3 Terms and abbreviations 4

2 SCOPE 5

3 GENERIC 32-BIT ELF 6

3.1 Introduction 6
3.1.1 File Format 6
3.1.2 Data Representation 7
3.1.3 Character Representations 7

3.2 ELF Header 8
3.2.1 ELF Identification 10

3.3 Sections 13
3.3.1 Special Sections 17

3.4 String Table 19

3.5 Symbol Table 20
3.5.1 Symbol Values 22

3.6 Relocation 23

3.7 Program view 24
3.7.1 Program Header 24
3.7.2 Note Section 26
3.7.3 Program Loading 27
3.7.4 Dynamic Linking 27

3.8 Special Sections Names 27

3.9 Pre-existing Extensions 28

4 ARM- AND THUMB-SPECIFIC DEFINITIONS 29

4.1 ELF header 29

4.2 Section names 29

4.3 Symbols 30

ARM ELF

SWS ESPC 0003 A-08 Page 3 of 44

4.4 Relocation types 30
4.4.1 Field extraction and insertion 31

5 ARM EABI SPECIFICS 33

5.1 Background 33
5.1.1 Re-locatable executable ELF 33
5.1.2 Entry points 33
5.1.3 Static base 33

5.2 The ELF header 33

5.3 Section headers 34
5.3.1 Common sections 34
5.3.2 Section alignment 34

5.4 Symbols 35
5.4.1 Weak symbols 35
5.4.2 Reserved symbol names 35
5.4.3 Case sensitivity 35
5.4.4 Sub-class and super-class symbols 35
5.4.5 Function address constants and pointers to code 35
5.4.6 Mapping symbols 36
5.4.7 Symbol table order 36

5.5 Type-dependent relocations 36

5.6 Program headers 37

5.7 Statically linked programs 37

5.8 Dynamic linking and relocation 38
5.8.1 The dynamic segment 38
5.8.2 Conforming behavior 40

5.9 Re-locatable executables 40

6 FUTURE DIRECTIONS 42

6.1 Dynamically linked executables 42
6.1.1 The hash table section 43

6.2 Shared objects 43

ARM ELF

SWS ESPC 0003 A-08 Page 4 of 44

1 ABOUT THIS DOCUMENT

1.1 Change control

1.1.1 Current status and anticipated changes

Release A-06 of this specification is the first public release.

1.1.2 Change history

Issue Date By Change

A-01 19 June, 1998 - First DRAFT.

A-02 8 July, 1998 - Incorporating feedback from a first internal review.

A-03 23 July, 1998 - Incorporating feedback from first external review.

A-04 9 September, 1998 - More changes following external review.

A-05 22 October, 1998 - Added TIS-ELF Book 1 and more relocation directives.

A-06 5 November 1998 - Editorial changes following review of final internal DRAFT.

A-07 17 September 1999 - Added definitions of PF_xx flags, PF_ARM_xxx flags, $r, $p, and
the EF_ARM_EABIxxx version number. Updated the definition of
common section, added descriptions of $Super$$ and $Sub$$ and
clarified type-dependent relocation.

A-08 22 September 1999 - Removed $r—inadequate for the purpose.

1.2 References

This document refers to the following document and reproduces book 1 of it as section 3, below.

Ref Doc No Author(s) Title

TIS-ELF ftp://ftp.x86.org/manuals/tools/elf.pdf Tool Interface Standards
(TIS) Committee

Executable and Linking Format
(ELF) Specification (version 1.2)

1.3 Terms and abbreviations

This document uses the following terms and abbreviations.

Term Meaning

TIS Tool Interface Standards

ELF Executable and Linking Format

(E)ABI (Embedded) Applications Binary Interface

OS Operating System

ftp://ftp.x86.org/manuals/tools/elf.pdf

ARM ELF

SWS ESPC 0003 A-08 Page 5 of 44

2 SCOPE
This specification defines ARM Executable and Linking Format (ARM ELF). It follows the structure of the Tool
Interface Standards (TIS) Committee’s version 1.2 specification of ELF (TIS-ELF). TIS-ELF is divided into three
major sections that TIS-ELF calls books:

� Book 1 defines generic, 32-bit ELF. All users of 32-bit ELF use the definitions given in book 1. Section 3 of
this specification reproduces the content of book 1 of TIS-ELF (Copyright Tool Interface Standards Committee
1995).

� Book 2 defines processor specifics, the definitions used by all users of ELF for a given processor (in the case
of TIS-ELF, for the Intel x86 architecture). Section 4 of this specification corresponds to book 2 of TIS-ELF
and includes the ARM- and Thumb-specific definitions needed by all users of ARM ELF.

� Book 3 defines operating system specifics. Section 5 of this specification corresponds to book 3 of TIS-ELF
and includes ARM- and Thumb-specific definitions relating to the ARM Embedded Applications Binary
Interface (ARM EABI). The ARM EABI underlies many ARM- and Thumb-based operating environments that
follow the single address-space model.

Some operating systems—especially those founded on multiple virtual address spaces—define their own
conventions for using ARM ELF—especially in relation to shared objects and dynamic linking. These OS-specific
definitions build on sections 4 and 5 of this specification, but replace section 5 of this specification with their own
version of book 3 of TIS-ELF. ARM LINUX does this, for example.

ARM ELF

SWS ESPC 0003 A-08 Page 6 of 44

3 GENERIC 32-BIT ELF

3.1 Introduction

Section 3 of this specification describes the object file format called ELF (Executable and Linking Format). There
are three main types of object files:

� A re-locatable file holds code and data suitable for linking with other object files to create an executable or a
shared object file.

� An executable file holds a program suitable for execution.

� A shared object file holds code and data suitable for linking in two contexts. First, the link editor may process it
with other re-locatable and shared object files to create another object file. Second, the dynamic linker
combines it with an executable file and other shared objects to create a process image.

Created by an assembler or compiler and link editor, object files are binary representations of programs intended
to execute directly on a processor. Programs that require other abstract machines are excluded.

After the introductory material, this section focuses on the file format and how it pertains to building programs.
Subsections 3.7 onwards describe those parts of the object file containing the information necessary to execute a
program.

3.1.1 File Format

Object files participate in program linking (building a program) and program execution (running a program). For
convenience and efficiency, the object file format provides parallel views of a file's contents, reflecting the differing
needs of these activities. Figure 3-1 below shows an object file's organization.

Figure 3-1, Object file format

Linking View Execution View

ELF Header ELF Header

Program Header Table
optional

Program Header Table

Section 1

…

Segment 1

Section n

…

Segment 2

… …

Section Header Table Section Header Table
optional

An ELF header resides at the beginning and holds a road map describing the file's organization. Sections hold the
bulk of object file information for the linking view: instructions, data, symbol table, relocation information, and so
on. Descriptions of special sections appear later in this section. Subsections 3.7 onwards describe segments and
the program execution view of the file.

ARM ELF

SWS ESPC 0003 A-08 Page 7 of 44

A program header table, if present, tells the system how to create a process image. Files used to build a process
image (execute a program) must have a program header table; re-locatable files do not need one. A section
header table contains information describing the file's sections. Every section has an entry in the table; each entry
gives information such as the section name, the section size, and so on. Files used during linking must have a
section header table; other object files may or may not have one.

Note Although the figure shows the program header table immediately after the ELF header, and the section
header table following the sections, actual files may differ. Moreover, sections and segments have no
specified order. Only the ELF header has a fixed position in the file.

3.1.2 Data Representation

As described here, the object file format supports various processors with 8-bit bytes and 32-bit architectures.
Nevertheless, it is intended to be extensible to larger (or smaller) architectures. Object files therefore represent
some control data with a machine-independent format, making it possible to identify object files and interpret their
contents in a common way. Remaining data in an object file use the encoding of the target processor, regardless
of the machine on which the file was created.

Figure 3-2, 32-Bit Data Types

Name Size Alignment Purpose

Elf32_Addr 4 4 Unsigned program address

Elf32_Half 2 2 Unsigned medium integer

Elf32_Off 4 4 Unsigned file offset

Elf32_Sword 4 4 Signed large integer

Elf32_Word 4 4 Unsigned large integer

unsigned char 1 1 Unsigned small integer

All data structures that the object file format defines follow the natural size and alignment guidelines for the
relevant class. If necessary, data structures contain explicit padding to ensure 4-byte alignment for 4-byte objects,
to force structure sizes to a multiple of 4, and so on. Data also have suitable alignment from the beginning of the
file. Thus, for example, a structure containing an Elf32_Addr member will be aligned on a 4-byte boundary within
the file.

For portability reasons, ELF uses no bit fields.

3.1.3 Character Representations

This section describes the default ELF character representation and defines the standard character set used for
external files that should be portable among systems. Several external file formats represent control information
with characters. These single-byte characters use the 7-bit ASCII character set. In other words, when the ELF
interface document mentions character constants, such as, ‘/ ’ or ‘\n ’ their numerical values should follow the 7-bit
ASCII guidelines. For the previous character constants, the single-byte values would be 47 and 10, respectively.

Character values outside the range of 0 to 127 may occupy one or more bytes, according to the character
encoding. Applications can control their own character sets, using different character set extensions for different
languages as appropriate. Although TIS-conformance does not restrict the character sets, they generally should
follow some simple guidelines:

ARM ELF

SWS ESPC 0003 A-08 Page 8 of 44

� Character values between 0 and 127 should correspond to the 7-bit ASCII code. That is, character sets with
encodings above 127 should include the 7-bit ASCII code as a subset.

� Multi-byte character encodings with values above 127 should contain only bytes with values outside the range
of 0 to 127. That is, a character set that uses more than one byte per character should not embed a byte
resembling a 7-bit ASCII character within a multi-byte, non-ASCII character.

� Multi-byte characters should be self-identifying. That allows, for example, any multi-byte character to be
inserted between any pair of multi-byte characters, without changing the characters' interpretations.

These cautions are particularly relevant for multilingual applications.

Note There are naming conventions for ELF constants that have processor ranges specified. Names such as
DT_, PT_, for processor specific extensions, incorporate the name of the processor: DT_M32_SPECIAL,
for example. However, pre-existing processor extensions not using this convention will be supported.

Pre-existing Extensions

DT_JMP_REL

3.2 ELF Header

Some object file control structures can grow, because the ELF header contains their actual sizes. If the object file
format changes, a program may encounter control structures that are larger or smaller than expected. Programs
might therefore ignore extra information. The treatment of missing information depends on context and will be
specified when and if extensions are defined.

Figure 3-3, ELF Header

#define EI_NIDENT 16

typedef struct {
unsigned char e_ident[EI_NIDENT];
Elf32_Half e_type;
Elf32_Half e_machine;
Elf32_Word e_version;
Elf32_Addr e_entry;
Elf32_Off e_phoff;
Elf32_Off e_shoff;
Elf32_Word e_flags;
Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e_phnum;
Elf32_Half e_shentsize;
Elf32_Half e_shnum;
Elf32_Half e_shstrndx;

} Elf32_Ehdr;

e_ident —The initial bytes mark the file as an object file and provide machine-independent data with which to
decode and interpret the file's contents. Complete descriptions appear below, in ELF Identification.

ARM ELF

SWS ESPC 0003 A-08 Page 9 of 44

e_type— This member identifies the object file type.

Name Value Meaning

ET_NONE 0 No file type

ET_REL 1 Re-locatable file

ET_EXEC 2 Executable file

ET_DYN 3 Shared object file

ET_CORE 4 Core file

ET_LOPROC 0xff00 Processor-specific

ET_HIPROC 0xffff Processor-specific

Although the core file contents are unspecified, type ET_CORE is reserved to mark the file type. Values from
ET_LOPROC through ET_HIPROC (inclusive) are reserved for processor-specific semantics. Other values are
reserved and will be assigned to new object file types as necessary.

e_machine —This member's value specifies the required architecture for an individual file.

Name Value Meaning

ET_NONE 0 No machine

EM_M32 1 AT&T WE 32100

EM_SPARC 2 SPARC

EM_386 3 Intel Architecture

EM_68K 4 Motorola 68000

EM_88K 5 Motorola 88000

EM_860 7 Intel 80860

EM_MIPS 8 MIPS RS3000 Big-Endian

EM_MIPS_RS4_BE 10 MIPS RS4000 Big-Endian

RESERVED 11-16 Reserved for future use

EM_ARM 40 ARM/Thumb Architecture

Other values are reserved and will be assigned to new machines as necessary. Processor-specific ELF names
use the machine name to distinguish them. For example, the flags mentioned below use the prefix EF_; a flag
named WIDGET for the EM_XYZ machine would be called EF_XYZ_WIDGET.

e_version —This member identifies the object file version.

Name Value Meaning

EV_NONE 0 Invalid version

EV_CURRENT 1 Current version

The value 1 signifies the original file format; extensions will create new versions with higher numbers. The value of
EV_CURRENT, though given as 1 above, will change as necessary to reflect the current version number.

ARM ELF

SWS ESPC 0003 A-08 Page 10 of 44

e_entry —This member gives the virtual address to which the system first transfers control, thus starting the
process. If the file has no associated entry point, this member holds zero.

e_phoff —This member holds the program header table's file offset in bytes. If the file has no program header
table, this member holds zero.

e_shoff —This member holds the section header table's file offset in bytes. If the file has no section header table,
this member holds zero.

e_flags —This member holds processor-specific flags associated with the file. Flag names take the form
EF_machine_flag.

e_ehsize —This member holds the ELF header's size in bytes.

e_phentsize —This member holds the size in bytes of one entry in the file's program header table; all entries are
the same size.

e_phnum —This member holds the number of entries in the program header table. Thus the product of
e_phentsize and e_phnum gives the table's size in bytes. If a file has no program header table, e_phnum
holds the value zero.

e_shentsize —This member holds a section header's size in bytes. A section header is one entry in the section
header table; all entries are the same size.

e_shnum —This member holds the number of entries in the section header table. Thus the product of
e_shentsize and e_shnum gives the section header table's size in bytes. If a file has no section header
table, e_shnum holds the value zero.

e_shstrndx —This member holds the section header table index of the entry associated with the section name
string table. If the file has no section name string table, this member holds the value SHN_UNDEF. See Sections
and String Table below for more information.

3.2.1 ELF Identification

As mentioned above, ELF provides an object file framework to support multiple processors, multiple data
encodings, and multiple classes of machines. To support this object file family, the initial bytes of the file specify
how to interpret the file, independent of the processor on which the inquiry is made and independent of the file's
remaining contents.

The initial bytes of an ELF header (and an object file) correspond to the e_ident member.

ARM ELF

SWS ESPC 0003 A-08 Page 11 of 44

Figure 3-4, e_ident[] Identification Indexes

Name Value Purpose

EI_MAG0 0 File identification

EI_MAG1 1 File identification

EI_MAG2 2 File identification

EI_MAG3 3 File identification

EI_CLASS 4 File class

EI_DATA 5 Data encoding

EI_VERSION 6 File version

EI_PAD 7 Start of padding bytes

EI_NIDENT 16 Size of e_ident[]

These indexes access bytes that hold the following values.

EI_MAG0 to EI_MAG3—A file's first 4 bytes hold a magic number, identifying the file as an ELF object file.

Name Value Meaning

ELFMAG0 0x7f e_ident[EI_MAG0]

ELFMAG1 ’E’ e_ident[EI_MAG1]

ELFMAG2 ’L’ e_ident[EI_MAG2]

ELFMAG3 ’F’ e_ident[EI_MAG3]

EI_CLASS—The next byte, e_ident[EI_CLASS] , identifies the file's class, or capacity.

Name Value Meaning

ELFCLASSNONE 0 Invalid class

ELFCLASS32 1 32-bit objects

ELFCLASS64 2 64-bit objects

The file format is designed to be portable among machines of various sizes, without imposing the sizes of the
largest machine on the smallest. Class ELFCLASS32 supports machines with files and virtual address spaces up
to 4 gigabytes; it uses the basic types defined above.

Class ELFCLASS64 is incomplete and refers to the 64-bit architectures. Its appearance here shows how the
object file may change. Other classes will be defined as necessary, with different basic types and sizes for object
file data.

ARM ELF

SWS ESPC 0003 A-08 Page 12 of 44

EI_DATA—Byte e_ident[EI_DATA] specifies the data encoding of the processor-specific data in the object
file. The following encodings are currently defined.

Name Value Meaning

ELFDATANONE 0 Invalid data encoding

ELFDATA2LSB 1 See Data encodings, below

ELFDATA2MSB 2 See Data encodings, below

More information on these encodings appears below. Other values are reserved and will be assigned to new
encodings as necessary.

EI_VERSION—Byte e_ident[EI_VERSION] specifies the ELF header version number. Currently, this value
must be EV_CURRENT, as explained above for e_version .

EI_PAD—This value marks the beginning of the unused bytes in e_ident . These bytes are reserved and set to
zero; programs that read object files should ignore them. The value of EI_PAD will change in the future if
currently unused bytes are given meanings.

A file's data encoding specifies how to interpret the basic objects in a file. As described above, class
ELFCLASS32 files use objects that occupy 1, 2, and 4 bytes. Under the defined encodings, objects are
represented as shown below. Byte numbers appear in the upper left corners.

Figure 3-5, Data encodings ELFDATA2LSB

Encoding ELFDATA2LSB specifies 2's complement values, with the least significant byte at the lowest address.

0

0x01 0x01

0 1

0x0102 0x02 0x01

0 1 2 3

0x01020304 0x04 0x03 0x02 0x01

ARM ELF

SWS ESPC 0003 A-08 Page 13 of 44

Figure 3-6, Data encodings ELFDATA2MSB

Encoding ELFDATA2MSB specifies 2's complement values, with the most significant byte at the lowest address.

0

0x01 0x01

0 1

0x0102 0x01 0x02

0 1 2 3

0x01020304 0x01 0x02 0x03 0x04

3.3 Sections

An object file's section header table lets one locate all the file's sections. The section header table is an array of
Elf32_Shdr structures as described below. A section header table index is a subscript into this array. The ELF
header's e_shoff member gives the byte offset from the beginning of the file to the section header table;
e_shnum tells how many entries the section header table contains; e_shentsize gives the size in bytes of
each entry.

Some section header table indexes are reserved; an object file will not have sections for these special indexes.

Figure 3-7, Special Section Indexes

Name Value

SHN_UNDEF 0

SHN_LORESERVE 0xff00

SHN_LOPROC 0xff00

SHN_HIPROC 0xff1f

SHN_ABS 0xfff1

SHN_COMMON 0xfff2

SHN_HIRESERVE 0xffff

SHN_UNDEF—This value marks an undefined, missing, irrelevant, or otherwise meaningless section reference.
For example, a symbol “defined” relative to section number SHN_UNDEFis an undefined symbol.

Note Although index 0 is reserved as the undefined value, the section header table contains an entry for index
0. That is, if the e_shnum member of the ELF header says a file has 6 entries in the section header
table, they have the indexes 0 through 5. The contents of the initial entry are specified later in this
section.

ARM ELF

SWS ESPC 0003 A-08 Page 14 of 44

SHN_LORESERVE—This value specifies the lower bound of the range of reserved indexes.

SHN_LOPROC throughSHN_HIPROC—Values in this inclusive range are reserved for processor-specific
semantics.

SHN_ABS—This value specifies absolute values for the corresponding reference. For example, symbols defined
relative to section number SHN_ABShave absolute values and are not affected by relocation.

SHN_COMMON—Symbols defined relative to this section are common symbols, such as FORTRAN COMMONor
unallocated C external variables.

SHN_HIRESERVE—This value specifies the upper bound of the range of reserved indexes. The system reserves
indexes between SHN_LORESERVEand SHN_HIRESERVE, inclusive; the values do not reference the section
header table. That is, the section header table does not contain entries for the reserved indexes.

Sections contain all information in an object file, except the ELF header, the program header table, and the
section header table. Moreover, object files' sections satisfy several conditions.

� Every section in an object file has exactly one section header describing it. Section headers may exist that do
not have a section.

� Each section occupies one contiguous (possibly empty) sequence of bytes within a file.

� Sections in a file may not overlap. No byte in a file resides in more than one section.

� An object file may have inactive space. The various headers and the sections might not cover every byte in an
object file. The contents of the inactive data are unspecified.

Figure 3-8, Section Header

A section header has the following structure.
typedef struct {

Elf32_Word sh_name;
Elf32_Word sh_type;
Elf32_Word sh_flags;
Elf32_Addr sh_addr;
Elf32_Off sh_offset;
Elf32_Word sh_size;
Elf32_Word sh_link;
Elf32_Word sh_info;
Elf32_Word sh_addralign;
Elf32_Word sh_entsize;

} Elf32_Shdr;

sh_name —This member specifies the name of the section. Its value is an index into the section header string
table section [see String Table below], giving the location of a null-terminated string.

sh_type —This member categorizes the section's contents and semantics. Section types and their descriptions
appear below.

sh_flags —Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions appear below.

sh_addr —If the section will appear in the memory image of a process, this member gives the address at which
the section's first byte should reside. Otherwise, the member contains 0.

sh_offset —This member's value gives the byte offset from the beginning of the file to the first byte in the section.
One section type, SHT_NOBITS described below, occupies no space in the file, and its sh_offset member
locates the conceptual placement in the file.

sh_size —This member gives the section's size in bytes. Unless the section type is SHT_NOBITS, the section
occupies sh_size bytes in the file. A section of type SHT_NOBITS may have a non-zero size, but it occupies
no space in the file.

ARM ELF

SWS ESPC 0003 A-08 Page 15 of 44

sh_link —This member holds a section header table index link, whose interpretation depends on the section type.
A table below describes the values.

sh_info —This member holds extra information, whose interpretation depends on the section type. A table below
describes the values.

sh_addralign —Some sections have address alignment constraints. For example, if a section holds a double-
word, the system must ensure double-word alignment for the entire section. That is, the value of sh_addr must
be congruent to 0, modulo the value of sh_addralign . Currently, only 0 and positive integral powers of two are
allowed. Values 0 and 1 mean the section has no alignment constraints.

sh_entsize —Some sections hold a table of fixed-size entries, such as a symbol table. For such a section, this
member gives the size in bytes of each entry. The member contains 0 if the section does not hold a table of fixed-
size entries. A section header's sh_type member specifies the section's semantics.

Figure 3-9, Section Types, sh_type

Name Value

SHT_NULL 0

SHT_PROGBITS 1

SHT_SYMTAB 2

SHT_STRTAB 3

SHT_RELA 4

SHT_HASH 5

SHT_DYNAMIC 6

SHT_NOTE 7

SHT_NOBITS 8

SHT_REL 9

SHT_SHLIB 10

SHT_DYNSYM 11

SHT_LOPROC 0x70000000

SHT_HIPROC 0x7fffffff

SHT_LOUSER 0x80000000

SHT_HIUSER 0xffffffff

SHT_NULL—This value marks the section header as inactive; it does not have an associated section. Other
members of the section header have undefined values.

SHT_PROGBITS—The section holds information defined by the program, whose format and meaning are
determined solely by the program.

SHT_SYMTAB andSHT_DYNSYM—These sections hold a symbol table.

SHT_STRTAB—The section holds a string table.

ARM ELF

SWS ESPC 0003 A-08 Page 16 of 44

SHT_RELA—The section holds relocation entries with explicit addends, such as type Elf32_Rela for the 32-bit
class of object files. An object file may have multiple relocation sections. See Relocation below for details.

SHT_HASH—The section holds a symbol hash table.

SHT_DYNAMIC—The section holds information for dynamic linking.

SHT_NOTE—This section holds information that marks the file in some way.

SHT_NOBITS—A section of this type occupies no space in the file but otherwise resembles SHT_PROGBITS.
Although this section contains no bytes, the sh_offset member contains the conceptual file offset.

SHT_REL—The section holds relocation entries without explicit addends, such as type Elf32_Rel for the 32-bit
class of object files. An object file may have multiple relocation sections. See Relocation below for details.

SHT_SHLIB—This section type is reserved but has unspecified semantics.

SHT_LOPROC through SHT_HIPROC—Values in this inclusive range are reserved for processor-specific
semantics.

SHT_LOUSER—This value specifies the lower bound of the range of indexes reserved for application programs.

SHT_HIUSER—This value specifies the upper bound of the range of indexes reserved for application programs.
Section types between SHT_LOUSER and SHT_HIUSER may be used by the application, without conflicting with
current or future system-defined section types.

Other section type values are reserved. As mentioned before, the section header for index 0 (SHN_UNDEF)
exists, even though the index marks undefined section references. This entry holds the following.

Figure 3-10, Section Header Table Entry: Index 0

Name Value Note

sh_name 0 No name

sh_type SHT_NULL Inactive

sh_flags 0 No flags

sh_addr 0 No address

sh_offset 0 No file offset

sh_size 0 No size

sh_link SHN_UNDEF No link information

sh_info 0 No auxiliary information

sh_addralign 0 No alignment

sh_entsize 0 No entries

A section header's sh_flags member holds 1-bit flags that describe the section's attributes. Defined values
appear below; other values are reserved.

ARM ELF

SWS ESPC 0003 A-08 Page 17 of 44

Figure 3-11, Section Attribute Flags, sh_flags

Name Value

SHF_WRITE 0x1

SHF_ALLOC 0x2

SHF_EXECINSTR 0x4

SHF_MASKPROC 0xf0000000

If a flag bit is set in sh_flags , the attribute is on for the section. Otherwise, the attribute is off or does not apply.
Undefined attributes are set to zero.

SHF_WRITE—The section contains data that should be writable during process execution.

SHF_ALLOC —The section occupies memory during process execution. Some control sections do not reside in
the memory image of an object file; this attribute is off for those sections.

SHF_EXECINSTR—The section contains executable machine instructions.

SHF_MASKPROC—All bits included in this mask are reserved for processor-specific semantics.

Two members in the section header, sh_link and sh_info , hold special information, depending on section
type.

Figure 3-12, sh_link and sh_info Interpretation

sh_type sh_link sh_info

SHT_DYNAMIC The section header index of the string
table used by entries in the section.

0

SHT_HASH The section header index of the symbol
table to which the hash table applies.

0

SHT_REL
SHT_RELA

The section header index of the
associated symbol table.

The section header index of the section
to which the relocation applies.

SHT_SYMTAB
SHT_DYNSYM

This information is operating system
specific.

This information is operating system
specific.

Other SHN_UNDEF 0

3.3.1 Special Sections

Various sections in ELF are pre-defined and hold program and control information. These sections are used by
the operating system and have different types and attributes for different operating systems.

Executable files are created from individual object files and libraries through the linking process. The linker
resolves the references (including subroutines and data references) among the different object files, adjusts the
absolute references in the object files, and relocates instructions. The linking and loading processes, which are
described in subsections 3.7onwards, require information defined in the object files and store this information in
specific sections such as .dynamic .

Each operating system supports a set of linking models, which fall into two categories:

� Static . A set of object files, system libraries and library archives are statically bound, references are resolved,
and an executable file is created that is completely self contained.

ARM ELF

SWS ESPC 0003 A-08 Page 18 of 44

� Dynamic . A set of object files, libraries, system shared resources and other shared libraries are linked
together to create the executable. When this executable is loaded, other shared resources and dynamic
libraries must be made available in the system for the program to run successfully.

The general method used to resolve references at execution time for a dynamically linked executable file is
described in the linkage model used by the operating system, and the actual implementation of this linkage
model will contain processor-specific components.

There are also sections that support debugging, such as .debug and .line , and program control, including
.bss , .data , .data1 , .rodata , and .rodata1 .

Figure 3-13, Special Sections

Name Type Attributes

.bss SHT_NOBITS SHF_ALLOC+SHF_WRITE

.comment SHT_PROGBITS none

.data SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.data1 SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.debug SHT_PROGBITS none

.dynamic SHT_DYNAMIC see below

.hash SHT_HASH SHF_ALLOC

.line SHT_PROGBITS none

.note SHT_NOTE None

.rodata SHT_PROGBITS SHF_ALLOC

.rodata1 SHT_PROGBITS SHF_ALLOC

.shstrtab SHT_STRTAB None

.strtab SHT_STRTAB see below

.symtab SHT_SYMTAB see below

.text SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.bss —This section holds uninitialized data that contribute to the program's memory image. By definition, the
system initializes the data with zeros when the program begins to run. The section occupies no file space, as
indicated by the section type, SHT_NOBITS.

.comment —This section holds version control information.

.data and .data1—These sections hold initialized data that contribute to the program's memory image.

.debug —This section holds information for symbolic debugging. The contents are unspecified. All section names
with the prefix .debug are reserved for future use.

.dynamic —This section holds dynamic linking information and has attributes such as SHF_ALLOC and
SHF_WRITE. Whether the SHF_WRITE bit is set is determined by the operating system and processor.

.hash —This section holds a symbol hash table.

ARM ELF

SWS ESPC 0003 A-08 Page 19 of 44

.line —This section holds line number information for symbolic debugging, which describes the correspondence
between the source program and the machine code. The contents are unspecified.

.note —This section holds information in the format that is described in the Note Section in subsection 3.7.2.

.rodata and .rodata1 —These sections hold read-only data that typically contribute to a non-writable segment in
the process image. See Program Header in subsection 3.7.1 for more information.

.shstrtab —This section holds section names.

.strtab —This section holds strings, most commonly only the strings that represent the names associated with
symbol table entries. If a file has a loadable segment that includes the symbol string table, the section's attributes
will include the SHF_ALLOC bit; otherwise, that bit will be off.

.symtab —This section holds a symbol table, as Symbol Table in subsection 3.5 describes. If a file has a loadable
segment that includes the symbol table, the section's attributes will include the SHF_ALLOC bit; otherwise, that bit
will be off.

.text —This section holds the text, or executable instructions, of a program.

Section names with a dot (.) prefix are reserved for the system, although applications may use these sections if
their existing meanings are satisfactory. Applications may use names without the prefix to avoid conflicts with
system sections. The object file format lets one define sections not in the list above. An object file may have more
than one section with the same name.

3.4 String Table

This section describes the default string table. String table sections hold null-terminated character sequences,
commonly called strings. The object file uses these strings to represent symbol and section names. One
references a string as an index into the string table section. The first byte, which is index zero, is defined to hold a
null character. Likewise, a string table's last byte is defined to hold a null character, ensuring null termination for all
strings. A string whose index is zero specifies either no name or a null name, depending on the context. An empty
string table section is permitted; its section header's sh_size member would contain zero. Non-zero indexes
are invalid for an empty string table.

A section header's sh_name member holds an index into the section header’s string table section, as designated
by the e_shstrndx member of the ELF header. The following figures show a string table with 25 bytes and the
strings associated with various indexes.

Index +0 +1 +2 +3 +4 +5 +6 +7 +8 +9

0 \0 n a m e . \0 V a r

10 I a b l e \0 a b l e

20 \0 \0 x x \0

ARM ELF

SWS ESPC 0003 A-08 Page 20 of 44

Figure 3-14, String Table Indexes

Index String

0 none

1 name.

7 Variable

11 able

16 able

24 null string

As the example shows, a string table index may refer to any byte in the section. A string may appear more than
once; references to sub-strings may exist; and a single string may be referenced multiple times. Unreferenced
strings also are allowed.

3.5 Symbol Table

An object file's symbol table holds information needed to locate and relocate a program's symbolic definitions and
references. A symbol table index is a subscript into this array. Index 0 both designates the first entry in the table
and serves as the undefined symbol index. The contents of the initial entry are specified later in this section.

Name Value

STN_UNDEF 0

Figure 3-15, Symbol Table Entry

typedef struct {
Elf32_Word st_name;
Elf32_Addr st_value;
Elf32_Word st_size;
unsigned char st_info;
unsigned char st_other;
Elf32_Half st_shndx;

} Elf32_Sym;

st_name —This member holds an index into the object file's symbol string table, which holds the character
representations of the symbol names.

st_value —This member gives the value of the associated symbol. Depending on the context this may be an
absolute value, an address, and so on; details appear below.

st_size —Many symbols have associated sizes. For example, a data object's size is the number of bytes
contained in the object. This member holds 0 if the symbol has no size or an unknown size.

st_info —This member specifies the symbol's type and binding attributes. A list of the values and meanings
appears below. The following code shows how to manipulate the values.

#define ELF32_ST_BIND(i) ((i)>>4)
#define ELF32_ST_TYPE(i) ((i)&0xf)
#define ELF32_ST_INFO(b,t) (((b)<<4)+((t)&0xf))

ARM ELF

SWS ESPC 0003 A-08 Page 21 of 44

st_other— This member currently holds 0 and has no defined meaning.

st_shndx —Every symbol table entry is “defined” in relation to some section; this member holds the relevant
section header table index. As subsection 0 describes, some section indexes indicate special meanings.

A symbol's binding determines the linkage visibility and behavior.

Figure 3-16, Symbol Binding, ELF32_ST_BIND

Name Value
STB_LOCAL 0

STB_GLOBAL 1

STB_WEAK 2

STB_LOPROC 13

STB_HIPROC 15

STB_LOCAL —Local symbols are not visible outside the object file containing their definition. Local symbols of the
same name may exist in multiple files without interfering with each other.

STB_GLOBAL —Global symbols are visible to all object files being combined. One file's definition of a global
symbol will satisfy another file's undefined reference to the same global symbol.

STB_WEAK —Weak symbols resemble global symbols, but their definitions have lower precedence.

STB_LOPROC through STB_HIPROC—Values in this inclusive range are reserved for processor-specific
semantics.

In each symbol table, all symbols with STB_LOCAL binding precede the weak and global symbols. A symbol's
type provides a general classification for the associated entity.

Figure 3-17, Symbol Types, ELF32_ST_TYPE

Name Value

STT_NOTYPE 0

STT_OBJECT 1

STT_FUNC 2

STT_SECTION 3

STT_FILE 4

STT_LOPROC 13

STT_HIPROC 15

STT_NOTYPE—The symbol's type is not specified.

STT_OBJECT—The symbol is associated with a data object, such as a variable, an array, and so on.

STT_FUNC—The symbol is associated with a function or other executable code.

STT_SECTION—The symbol is associated with a section. Symbol table entries of this type exist primarily for
relocation and normally have STB_LOCAL binding.

ARM ELF

SWS ESPC 0003 A-08 Page 22 of 44

STT_LOPROC through STT_HIPROC—Values in this inclusive range are reserved for processor-specific
semantics. If a symbol's value refers to a specific location within a section, its section index member, st_shndx,
holds an index into the section header table. As the section moves during relocation, the symbol's value changes
as well, and references to the symbol continue to point to the same location in the program. Some special section
index values give other semantics.

STT_FILE—A file symbol has STB_LOCAL binding, its section index is SHN_A BS, and it precedes the other
STB_LOCAL symbols for the file, if it is present.

The symbols in ELF object files convey specific information to the linker and loader. See the operating system
sections for a description of the actual linking model used in the system.

SHN_ABS—The symbol has an absolute value that will not change because of relocation.

SHN_COMMON—The symbol labels a common block that has not yet been allocated. The symbol's value gives
alignment constraints, similar to a section's sh_addralign member. That is, the link editor will allocate the storage
for the symbol at an address that is a multiple of st_value. The symbol's size tells how many bytes are required.

SHN_UNDEF—This section table index means the symbol is undefined. When the link editor combines this object
file with another that defines the indicated symbol, this file's references to the symbol will be linked to the actual
definition.

As mentioned above, the symbol table entry for index 0 (STN_UNDEF) is reserved; it holds the following.

Figure 3-18, Symbol Table Entry: Index 0

Name Value Note

st_name 0 No name

st_value 0 Zero value

st_size 0 No size

st_info 0 No type, local binding

st_other 0

st_shndx SHN_UNDEF No section

3.5.1 Symbol Values

Symbol table entries for different object file types have slightly different interpretations for the st_value
member.

� In relocatable files, st_value holds alignment constraints for a symbol whose section index is
SHN_COMMON.

� In relocatable files, st_value holds a section offset for a defined symbol. That is, st_value is an offset
from the beginning of the section that st_shndx identifies.

� In executable and shared object files, st_value holds a virtual address. To make these files' symbols more
useful for the dynamic linker, the section offset (file interpretation) gives way to a virtual address (memory
interpretation) for which the section number is irrelevant.

Although the symbol table values have similar meanings for different object files, the data allow efficient access by
the appropriate programs.

ARM ELF

SWS ESPC 0003 A-08 Page 23 of 44

3.6 Relocation

Relocation is the process of connecting symbolic references with symbolic definitions. For example, when a
program calls a function, the associated call instruction must transfer control to the proper destination address at
execution. In other words, relocatable files must have information that describes how to modify their section
contents, thus allowing executable and shared object files to hold the right information for a process's program
image. Relocation entriesare these data.

Relocation Entries

typedef struct {
Elf32_Addr r_offset;
Elf32_Word r_info;

} Elf32_Rel;

typedef struct {
Elf32_Addr r_offset;
Elf32_Word r_info;
Elf32_Sword r_addend;

} Elf32_Rela;

r_offset —This member gives the location at which to apply the relocation action. For a relocatable file, the value
is the byte offset from the beginning of the section to the storage unit affected by the relocation. For an executable
file or a shared object, the value is the virtual address of the storage unit affected by the relocation.

r_info —This member gives both the symbol table index with respect to which the relocation must be made, and
the type of relocation to apply. For example, a call instruction's relocation entry would hold the symbol table index
of the function being called. If the index is STN_UNDEF, the undefined symbol index, the relocation uses 0 as the
symbol value. Relocation types are processor-specific; descriptions of their behavior appear in section 4. When
the text in section 4 refers to a relocation entry's relocation type or symbol table index, it means the result of
applying ELF32_R_TYPE or ELF32_R_SYM, respectively, to the entry's r_info member.

#define ELF32_R_SYM(i) ((i)>>8)
#define ELF32_R_TYPE(i) ((unsigned char)(i))
#define ELF32_R_INFO(s,t) (((s)<<8)+(unsigned char)(t))

r_addend —This member specifies a constant addend used to compute the value to be stored into the re-
locatable field.

As shown above, only Elf32_Rela entries contain an explicit addend. Entries of type Elf32_Rel store an implicit
addend in the location to be modified. Depending on the processor architecture, one form or the other might be
necessary or more convenient. Consequently, an implementation for a particular machine may use one form
exclusively or either form depending on context.

A relocation section references two other sections: a symbol table and a section to modify. The section header's
sh_info and sh_link members, described in Sections above, specify these relationships. Relocation entries for
different object files have slightly different interpretations for the r_offset member.

� In re-locatable files, r_offset holds a section offset. That is, the relocation section itself describes how to
modify another section in the file; relocation offsets designate a storage unit within the second section.

� In executable and shared object files, r_offset holds a virtual address. To make these files' relocation entries
more useful for the dynamic linker, the section offset (file interpretation) gives way to a virtual address
(memory interpretation).

Although the interpretation of r_offset changes for different object files to allow efficient access by the relevant
programs, the relocation types' meanings stay the same.

ARM ELF

SWS ESPC 0003 A-08 Page 24 of 44

3.7 Program view

The following subsections describe the object file information and system actions that create running programs.
Executable and shared object files statically represent programs. To execute such programs, the system uses the
files to create dynamic program representations, or process images. A process image has segments that hold its
text, data, stack, and so on. This section describes the program header and complements preceding subsections
of section 3, by describing object file structures that relate directly to program execution. The primary data
structure, a program header table, locates segment images within the file and contains other information
necessary to create the memory image for the program.

Given an object file, the system must load it into memory for the program to run. After the system loads the
program, it must complete the process image by resolving symbolic references among the object files that
compose the process.

3.7.1 Program Header

An executable or shared object file's program header table is an array of structures, each describing a segment or
other information the system needs to prepare the program for execution. An object file segment contains one or
more sections. Program headers are meaningful only for executable and shared object files. A file specifies its
own program header size with the ELF header's e_phentsize and e_phnum members [see ELF Header in
subsection 3.2].

Figure 3-19, Program Header

typedef struct {
Elf32_Word p_type;
Elf32_Off p_offset;
Elf32_Addr p_vaddr;
Elf32_Addr p_paddr;
Elf32_Word p_filesz;
Elf32_Word p_memsz;
Elf32_Word p_flags;
Elf32_Word p_align;

} Elf32_Phdr;

p_type —This member tells what kind of segment this array element describes or how to interpret the array
element's information. Type values and their meanings are given in Figure 3-20, below.

p_offset —This member gives the offset from the beginning of the file at which the first byte of the segment
resides.

p_vaddr —This member gives the virtual address at which the first byte of the segment resides in memory.

p_paddr —On systems for which physical addressing is relevant, this member is reserved for the segment's
physical address. This member requires operating system specific information.

p_filesz —This member gives the number of bytes in the file image of the segment; it may be zero.

p_memsz —This member gives the number of bytes in the memory image of the segment; it may be zero.

p_flags —This member gives flags relevant to the segment. Defined flag values are given in Figure 3-21, below.

p_align —Loadable process segments must have congruent values for p_vaddr and p_offset, modulo the page
size. This member gives the value to which the segments are aligned in memory and in the file. Values 0 and 1
mean that no alignment is required. Otherwise, p_align should be a positive, integral power of 2, and p_addr
should equal p_offset, modulo p_align.

Some entries describe process segments; others give supplementary information and do not contribute to the
process image.

ARM ELF

SWS ESPC 0003 A-08 Page 25 of 44

Figure 3-20, Segment Types, p_type

Name Value

PT_NULL 0

PT_LOAD 1

PT_DYNAMIC 2

PT_INTERP 3

PT_NOTE 4

PT_SHLIB 5

PT_PHDR 6

PT_LOPROC 0x70000000

PT_HIPROC 0x7fffffff

PT_NULL—The array element is unused; other members' values are undefined. This type lets the program
header table have ignored entries.

PT_LOAD—The array element specifies a loadable segment, described by p_filesz and p_memsz. The bytes
from the file are mapped to the beginning of the memory segment. If the segment's memory size (p_memsz) is
larger than the file size (p_filesz), the extra bytes are defined to hold the value 0 and to follow the segment's
initialized area. The file size may not be larger than the memory size. Loadable segment entries in the program
header table appear in ascending order, sorted on the p_vaddr member.

PT_DYNAMIC—The array element specifies dynamic linking information. See subsection 5.8.

PT_INTERP—The array element specifies the location and size of a null-terminated path name to invoke as an
interpreter.

PT_NOTE—The array element specifies the location and size of auxiliary information.

PT_SHLIB—This segment type is reserved but has unspecified semantics.

PT_PHDR—The array element, if present, specifies the location and size of the program header table itself, both
in the file and in the memory image of the program. This segment type may not occur more than once in a file.
Moreover, it may occur only if the program header table is part of the memory image of the program. If it is
present, it must precede any loadable segment entry.

PT_LOPROC through PT_HIPROC—Values in this inclusive range are reserved for processor-specific semantics.

Note Unless specifically required elsewhere, all program header segment types are optional. That is, a file's
program header table may contain only those elements relevant to its contents.

Figure 3-21, Defined program header flags

Name Value Purpose

PF_X 1 The segment may be executed.

PF_W 2 The segment may be written to.

PF_R 4 The segment may be read.

PF_MASKPROC 0xf0000000 Reserved for processor-specific purposes

ARM ELF

SWS ESPC 0003 A-08 Page 26 of 44

3.7.2 Note Section

Sometimes a vendor or system builder needs to mark an object file with special information that other programs
will check for conformance, compatibility, etc. Sections of type SHT_NOTE and program header elements of type
PT_NOTE can be used for this purpose. The note information in sections and program header elements holds any
number of entries, each of which is an array of 4-byte words in the format of the target processor. Labels appear
below to help explain note information organization, but they are not part of the specification.

Figure 3-22, Note Information

namesz

descsz

type

Name
...

Desc
...

namesz and name—The first namesz bytes in name contain a null-terminated character representation of the
entry's owner or originator. There is no formal mechanism for avoiding name conflicts. By convention, vendors use
their own name, such as "XYZ Computer Company,'' as the identifier. If no name is present, namesz contains 0.
Padding is present, if necessary, to ensure 4-byte alignment for the descriptor. Such padding is not included in
namesz.

descsz and desc —The first descsz bytes in desc hold the note descriptor. ELF places no constraints on a
descriptor's contents. If no descriptor is present, descsz contains 0. Padding is present, if necessary, to ensure 4-
byte alignment for the next note entry. Such padding is not included in descsz.

type —This word gives the interpretation of the descriptor. Each originator controls its own types; multiple
interpretations of a single type value may exist. Thus, a program must recognize both the name and the type to
understand a descriptor. Types currently must be non-negative. ELF does not define what descriptors mean.

To illustrate, the note segment shown in Figure 3-24, below, holds two entries.

Note The system reserves note information with no name (namesz==0) and with a zero-length name
(name[0]=='\0') but currently defines no types. All other names must have at least one non-null
character.

Note Note information is optional. The presence of note information does not affect a program's TIS
conformance, provided the information does not affect the program's execution behavior. Otherwise, the
program does not conform to the TIS ELF specification and has undefined behavior.

Figure 3-24, Example Note Segment

+0 +1 +2 +3
namesz 7

descsz 0

type 1 No descriptor

name X Y Z

C o \0 pad

namesz 7

ARM ELF

SWS ESPC 0003 A-08 Page 27 of 44

descsz 8

type 3

name X Y Z

C o \0 pad

desc word 0

word 1

3.7.3 Program Loading

Program loading is the process by which the operating system creates or augments a process image. The manner
in which this process is accomplished and how the page management functions for the process are handled are
dictated by the operating system and processor. See section 5 for more details.

3.7.4 Dynamic Linking

The dynamic linking process resolves references either at process initialization time and/or at execution time.
Some basic mechanisms need to be set up for a particular linkage model to work, and there are ELF sections and
header elements reserved for this purpose. The actual definition of the linkage model is determined by the
operating system and implementation. Therefore, the contents of these sections are both operating system and
processor specific. (See sections 4, 5 and 6.)

3.8 Special Sections Names

Various sections hold program and control information. Sections in the list below are specified in section 3 and
section 5 of this specification.

Figure 3-25, Special sections names

.bss .dynstr .interp .rodata

.comment .dynsym .line .rodata1

.data .fini .note .shstrtab

.data1 .got .plt .strtab

.debug .hash .rel name .symtab

.dynamic .init .rela name .text

Figure 3-26, Dynamic Section Names

_DYNAMIC

Figure 3-27, Dynamic Array Tags, d_tag

DT_NULL DT_RELSZ DT_RELAENT

DT_PLTRELSZ DT_PLTREL DT_SYMENT

DT_HASH DT_TEXTREL DT_FINI

DT_SYMTAB DT_BIND_NOW DT_RPATH

ARM ELF

SWS ESPC 0003 A-08 Page 28 of 44

DT_RELASZ DT_HIPROC DT_REL

DT_STRSZ DT_NEEDED DT_RELENT

DT_INIT DT_PLTGOT DT_DEBUG

DT_SONAME DT_STRTAB DT_JMPREL

DT_SYMBOLIC DT_RELA DT_LOPROC

3.9 Pre-existing Extensions

There are naming conventions for ELF constants that have processor ranges specified. Names such as DT_,
PT_, for processor specific extensions, incorporate the name of the processor: DT_M32_SPECIAL, for example.
However, pre-existing processor extensions not using this convention will be supported.

Figure 3-28, Pre-existing Extensions

DT_JMP_REL

Section names reserved for a processor architecture are formed by placing an abbreviation of the architecture
name ahead of the section name. The name should be taken from the architecture names used for e_machine.
For instance .FOO.psect is the psect section defined by the FOO architecture. Existing extensions are called by
their historical names.

Figure 3-29, Pre-existing Extensions

. .conflict

.sdata .tdesc

.sbss .lit4

.lit8 .reginfo

.gptab .liblist

ARM ELF

SWS ESPC 0003 A-08 Page 29 of 44

4 ARM- AND THUMB-SPECIFIC DEFINITIONS

4.1 ELF header

Figure 4-1, ARM-specific ELF-header field values

Field Value and meaning

e_machine EM_ARM (decimal 40).

e_ident [EI_CLASS] ELFCLASS32—ARM and Thumb processors use 32-bit ELF.

e_ident [EI_DATA] ELFDATA2LSB when the target processor is little-endian.
ELFDATA2MSB when the target processor is big-endian.

Note The byte order of a field in an ELF file is its byte order in the target execution environment. This may
differ from the byte order in the host (static linker) execution environment.

4.2 Section names

An ARM section name is one of the standard names listed below that have pre-defined meanings, a name that
does not begin with a dot, or a name beginning “.debug”.

Figure 4-2, ARM standard section names and their meanings

Prefix Section type Section attributes Explanation

.bss SHT_NOBITS SHF_ALLOC+SHF_WRITE Uninitialized data—set to zero before execution.

.comment SHT_PROGBITS None A comment from the producing tool—version data.

.data SHT_PROGBITS SHF_ALLOC+SHF_WRITE Initialized data.

.debug… SHT_PROGBITS None Debugging tables (may include line number data).

.dynamic SHT_DYNAMIC SHF_ALLOC[+SHF_WRITE] Dynamic linking information—may not be writable.

.dynsym SHT_DYNSYM [SHF_ALLOC] A symbol table for dynamic linking.

.hash SHT_HASH [SHF_ALLOC] A symbol hash table.

.line SHT_PROGBITS None Line number data for debugging.

.rodata SHT_PROGBITS SHF_ALLOC Initialized read-only data.

.relname

.relaname
SHT_REL
SHT_RELA

[SHF_ALLOC] Relocation data. By convention, the continuation of
the name is the name of the section being relocated.

.shstrtab SHT_STRTAB None The section name string table.

.strtab SHT_STRTAB [SHF_ALLOC] A string table for a symbol table.

.symtab SHT_SYMTAB [SHF_ALLOC] A symbol table for static linking.

.text SHT_PROGBITS SHF_ALLOC+
SHF_EXECINSTR

Program instructions and inline literal data.

ARM ELF

SWS ESPC 0003 A-08 Page 30 of 44

Note Bracketed SHF_ALLOC flags are set only if the section is contained in a loadable program segment
(one of type PT_LOAD or PT_DYNAMIC).

Note There may be more than one section with the same name in a file.

4.3 Symbols

Symbol value

These statements repeat the definitions given in section 3.5.1, Symbol Values). In a re-locatable file:

� For a COMMON symbol defined in the SHN_COMMON section, st_value gives its alignment constraint (the
allocated address of the symbol must be zero modulo st_value).

� For a symbol definition, st_value gives its offset within the section identified by st_shndx.

These statements make more specific the definitions given in section 3.5.1, Symbol Values. In executable and
shared object files, for a symbol definition, st_value is a virtual address:

� For symbols defined in sections included in executable program segments, st_value is a target-system virtual
address.

� Otherwise, st_value is a virtual address in an address space specific to the operating environment.

Symbol size

For a symbol definition of type STT_FUNC, st_size gives the length of the function in bytes, or 0 if this is unknown.
For a symbol definition of type STT_OBJECT, st_size gives the length in bytes of the associated data object, or 0
if this is unknown.

4.4 Relocation types

ELF defines two sorts of relocation directive, SHT_REL, and SHT_RELA. Both identify:

� A section containing the storage unit—byte, half-word, word, or instruction—being relocated.

� An offset within the section—or the address within an executable program—of the storage unit itself.

� A symbol, the value of which helps to define a new value for the storage unit.

� A relocation type that defines the computation to be performed.

� An addend, that also helps to define a new value for the storage unit.

The addend may be encoded wholly in a field of the storage unit being relocated—relocation sort SHT_REL—or
partly there and partly in the addend field of the relocation directive—relocation sort SHT_RELA.

The table, ARM relocation types, below, describes the computation performed by each type of ARM relocation
directive, using the following notation:

A denotes the addend used to compute the new value of the storage unit being relocated.

- It is the value extracted from the storage unit being relocated (relocation directives of sort SHT_REL) or
the sum of that value and the addend field of the relocation directive (sort SHT_RELA).

- If it has a unit, the unit is bytes. An encoded address or offset value is converted to bytes on extraction
from an instruction and re-encoded on insertion into an instruction.

P denotes the place (section offset or address of the storage unit) being re-located. It is calculated using the
r_offset field of the relocation directive and the base address of the section being re-located.

ARM ELF

SWS ESPC 0003 A-08 Page 31 of 44

S denotes the value of the symbol whose index is given in the r_info field of the relocation directive.

B denotes the base address of the consolidated section in which the symbol is defined. For relocations of
type R_ARM_SBREL32, this is the lowest static data address (the static base). For relocations of type
R_ARM_AMP_VCALL9, this is the base address of the AMP co-processor code section.

Multiple relocation

A field may be relocated many times, but this should not be exploited to generate a compound relocation because
an intermediate step may overflow, even when the compound relocation would not (consider, for example, adding
0x1000004 to, then subtracting 0x1000000 from, a 16-bit field).

Figure 4-3, ARM relocation types

Type Name Field Computation and meaning

0 R_ARM_NONE Any No relocation.
Encodes dependencies between sections.

1 R_ARM_PC24 ARM B/BL S – P + A

2 R_ARM_ABS32 32-bit word S + A

3 R_ARM_REL32 32-bit word S – P + A

4 R_ARM_PC13 ARM LDR r, [pc,…] S – P + A

5 R_ARM_ABS16 16-bit half-word S + A

6 R_ARM_ABS12 ARM LDR/STR S + A

7 R_ARM_THM_ABS5 Thumb LDR/STR S + A

8 R_ARM_ABS8 8-bit byte S + A

9 R_ARM_SBREL32 32-bit word S – B + A

10 R_ARM_THM_PC22 Thumb BL pair S – P+ A

11 R_ARM_THM_PC8 Thumb LDR r, [pc,…] S – P + A

12 R_ARM_AMP_VCALL9 AMP VCALL S – B + A

13 R_ARM_SWI24 ARM SWI S + A

14 R_ARM_THM_SWI8 Thumb SWI S + A

15 R_ARM_XPC25 ARM BLX S – P+ A

16 R_ARM_THM_XPC22 Thumb BLX pair S – P+ A

249-
255

See next section—used by dynamically
linked images.

4.4.1 Field extraction and insertion

The byte order of a field in an ELF file is its byte order in the target execution environment. This may differ from
the byte order in the host (linker) execution environment.

ARM ELF

SWS ESPC 0003 A-08 Page 32 of 44

Fields of size 8, 16, and 32 bits are aligned on 1-, 2-, and 4-byte boundaries, respectively (types 2, 3, 5, 8, 9).
ARM instructions are 4-byte aligned (relocation types 1, 4, 6, 12, 13, 15). Thumb instructions are 2-byte aligned
(relocation types 7, 10, 11, 14, 16).

An ARM ELF consumer never needs to interpret an instruction word to determine how to relocate it. The sub-field
to relocate and the unit of relocation (byte, half word, word, or double word) are evident from the relocation type.

Labeling the least significant bit of a 32-bit ARM instruction word, or 16-bit Thumb instruction word, bit 0,
instruction fields to be relocated are given in the following two figures.

Figure 4-4, Re-locatable ARM instruction fields

R_ARM_PC24 Bits 0-23 encode a signed offset in units of 4-byte words.

R_ARM_PC13 Bits 0-11 encode an unsigned byte offset. Bit 23 encodes the direction of
the offset—0 means to a lower address than P, 1 to a higher address.

R_ARM_ABS12 Bits 0-11 encode an unsigned byte offset.

R_ARM_AMP_VCALL9 Bits 11-19 encode an unsigned offset in units of 8-byte AMP instructions.

R_ARM_SWI24 Bits 0-23 encode the ARM SWI number.

R_ARM_XPC25 Bits 0-23 encode a signed offset in units of 4-byte words. Bit 24 encodes
bit 1 of the target Thumb address.

Note The entry for R_ARM_XPC25 is provisional.

Figure 4-5, Re-locatable Thumb instruction fields

R_ARM_THM_ABS5 Bits 6-10 encode a 5-bit unsigned offset in units of 4-byte words (Thumb LDRB/LDRH
cannot be relocated).

R_ARM_THM_PC22 Bits 0-10 encode the 11 most significant bits of the branch offset, bits 0-10 of the next
instruction word the 11 least significant bits. The unit is 2-byte Thumb instructions.

R_ARM_THM_PC8 Bits 0-7 encode an 8-bit unsigned offset in units of 4-byte words. An initial offset of
255 must be interpreted as an offset of –1 (so the initial offset range is [-1, 254]).

R_ARM_THM_SWI8 Bits 0-7 encode the Thumb SWI number.

R_ARM_THM_XPC22 Bits 0-10 encode the 11 most significant bits of the branch offset, bits 1-10 of the next
instruction word the 10 least significant bits. The unit is 2-byte Thumb instructions. Bit
0 must be 0. The hardware forces bits 1 of the computed address to 0, and bit 0 (the
Thumb bit) to 0.

Note When a Thumb LDR [pc, …] instruction is subject to a REL-sort relocation of type R_ARM_THM_PC8,
there must be a way to encode the offset to the place containing the instruction in the initial value of the
instruction. Using the value 255 to encode –1 does this.

ARM ELF

SWS ESPC 0003 A-08 Page 33 of 44

5 ARM EABI SPECIFICS

5.1 Background

5.1.1 Re-locatable executable ELF

An ARM re-locatable-executable is both an absolute executable (e_type = ET_EXEC) that needs no relocation
and an executable that may be relocated.

The information that an executable may be relocated is conveyed through EF_ARM_RELEXEC in e_flags rather
than through a separate value of e_type.

5.1.2 Entry points

Entry point means a location to which control may be transferred by the execution environment.

A program may have many entry points—for example, corresponding to reset, interrupt, software interrupt,
undefined instruction, and so on. Such a program cannot be loaded and started by a program loader.

An ELF executable that can be loaded by a program loader has a unique entry address.

In a re-locatable ELF file:

� The section containing an entry point is flagged by SHF_ENTRYSECT.

� The ELF header field e_entry gives the offset of the entry point in that section.

� There can be at most one entry point in a re-locatable ELF file.

5.1.3 Static base

An ARM program may address its static data relative to a static base register. In order to relocate a multiple data-
segment executable, a program loader must know which data segment the static base addresses.

5.2 The ELF header

Figure 5-1, ARM-EABI-specific ELF-header field values

Field Value and meaning

e_flags EF_ARM_RELEXEC (0x01)—the dynamic segment (of type PT_DYNAMIC)
describes only how to relocate the program segments.

EF_ARM_HASENTRY (0x02)—e_entry contains a program-loader entry point.

EF_ARM_SYMSARESORTED (0x04)—each subsection of the symbol table is
sorted by symbol value.

EF_ARM_EABIMASK (0xFF000000)—see notes below.

e_entry In an executable ELF file, e_entry is the virtual address of the image’s unique
entry point, or 0 if the image does not have a unique entry point.

In a re-locatable ELF file, e_entry is the offset of the entry point in the section
flagged by SHF_ENTRYSECT, or 0.

ARM ELF

SWS ESPC 0003 A-08 Page 34 of 44

Note The program loader entry point may be 0. EF_ARM_HASENTRY distinguishes this case from that in
which there is no program loader entry point.

Note EF_ARM_EABIMASK masks an 8-bit version number, the version of the ARM EABI to which this ELF
file conforms. This EABI version is version 1. A value of 0 denotes unknown conformance.

5.3 Section headers

Figure 5-2, ARM-EABI-specific values for sh_flags

Name Value Purpose

SHF_ENTRYSECT 0x10000000 The section contains an entry point.

SHF_COMDEF 0x80000000 The section may be multiply defined in the input to a link step.

5.3.1 Common sections

The SHF_COMDEF attribute denotes that there may be multiple definitions of this section. From each set of
identically named sections having the SHF_COMDEF attribute, the linker retains only one representative (but it
retains all identically named sections not having the SHF_COMDEF attribute).

Object producers must ensure that it does not matter which version of a common section is retained. In general,
this requires:

� All versions of a common section to define the same global symbols.

� If the section contains code, all versions must have the same functional interface. However, different versions
may have a different size, a different content, or to be differently relocated.

� If the section contains data, all versions must have the same size, the same content, and be similarly
relocated.

This specification does not define which version of a section a linker should retain.

5.3.2 Section alignment

Under the ARM EABI, a loadable section is aligned on a 4-byte boundary. Any section having the SHF_ALLOC
attribute must have an sh_addralign value of 4 or more.

Figure 5-3, Interpretation of sh_link and sh_info

sh_type sh_link sh_info

SHT_SYMTAB,
SHT_DYNSYM

The section header index of
the associated string table.

One more than the symbol table index of the last local
symbol (the last one with binding STB_LOCAL).

ARM ELF

SWS ESPC 0003 A-08 Page 35 of 44

5.4 Symbols

5.4.1 Weak symbols

No library is searched to satisfy an undefined weak symbol (st_shndx = SHN_UNDEF, ELF32_ST_BIND =
STB_WEAK), or weak reference. It is not an error for a weak reference to remain unsatisfied. The value of an
undefined weak symbol is:

� P + 4 if location P is subject to branch relocation (R_ARM_PC24, .R_ARM_THM_PC22, R_ARM_XPC25,
R_ARM_THM_XPC22).

� Otherwise, P if location P is subject to a PC-relative (S – P + A type) relocation.

� Otherwise, 0.

You can think of these values as branch offset 0 (branch to the next instruction), offset 0, and absolute 0,
respectively. That is, the value of an undefined weak symbol is always the sort of 0 appropriate to the relocation
directive referring to it.

A weak symbol definition may coexist with a non-weak definition, but all references to the symbol resolve to the
non-weak definition.

A file may make both a weak reference and a non-weak reference through distinct symbols that have the same
name (this can help a linker perform unused section elimination).

5.4.2 Reserved symbol names

All symbol names containing a dollar character (‘$’) are reserved to the ARM EABI.

5.4.3 Case sensitivity

Symbol names are case sensitive and are matched exactly by linkers.

5.4.4 Sub-class and super-class symbols

A symbol $Sub$$name is the sub-class version of name. A symbol $Super$$name is the super-class version of
name. In the presence of a definition of both name and $Sub$$name:

� A reference to name resolves to the definition of $Sub$$name.

� A reference to $Super$$name resolves to the definition of name.

It is an error to refer to $Sub$$name, or to define $Super$$name, or to use $Sub$$… or $Super$$… recursively.

5.4.5 Function address constants and pointers to code

The address of an ARM function is a multiple of 4. So is the st_value field of a symbol representing an ARM-state
code address.

The address of a Thumb function is always odd—the least significant bit of the address denotes Thumb-state and
is always set. However, the st_value field of a symbol representing a Thumb-state code address is never odd—it
always addresses a Thumb-state instruction.

A linker must set the Thumb-state bit whenever it relocates a data value with respect to a Thumb-state code
symbol.

ARM ELF

SWS ESPC 0003 A-08 Page 36 of 44

5.4.6 Mapping symbols

A section of an ARM object or executable can contain a mixture of ARM code, Thumb code, and data.

There are inline transitions between code and data at literal pool boundaries. There can also be inline transitions
between ARM code and Thumb code, for example in ARM-Thumb inter-working veneers.

Linkers, machine-level debuggers, profiling tools, and disassembly tools need to map images accurately. For
example, setting an ARM breakpoint on a Thumb location, or in a literal pool, can crash the program being
debugged, ruining the debugging session.

ARM ELF entities are mapped using local symbols (with binding STB_LOCAL).

$a labels the first byte of a sequence of ARM instructions. Its type is STT_FUNC.

$b labels a Thumb BL instruction. Its type is STT_FUNC.

$d labels the first byte of a sequence of data items. Its type is STT_OBJECT.

$f labels a function pointer constant (static pointer to code). Its type is STT_OBJECT.

$p labels the final, PC-modifying instruction of an indirect function call. Its type is STT_FUNC.
(An indirect call is a call through a function pointer variable). $p does not label the PC-modifying
instruction of a function return sequence.

$t labels the first byte of a sequence of Thumb instructions. Its type is STT_FUNC.

Consumers ignore the st_size field of mapping symbols. Producers are permitted to set it to 0.

This list of mapping symbols is not exhaustive and others may be defined in the future.

Mapping symbols occur first in the symbol table, after any symbol of type STT_FILE but before other symbols with
binding STB_LOCAL.

5.4.7 Symbol table order

The order of symbols in the symbol table is:

� Mapping symbols

� Other local symbols

� Global symbols.

If the EF_ARM_SYMSARESORTED flag is set in the e_flags field of the ELF header, each subsection is sorted by
increasing st_value. Otherwise, a consumer must assume that the symbol table subsections are not sorted.

5.5 Type-dependent relocations

The effect of some relocation directives depends on the type of the entity with respect to which the relocation is
being performed. For example, as explained in section 5.4.5, Function address constants and pointers to code,
the address of a Thumb function must have bit 0 set to 1. Whether to set the bit depends on the type of the
location to which the relocated place refers (the target location).

Object producers must ensure that the type of a target location is the same as the type of the location addressed
by the symbol used by the relocation directive. Object consumers should ignore addends when determining the
type of the target location.

ARM ELF

SWS ESPC 0003 A-08 Page 37 of 44

5.6 Program headers

Figure 5-4, ARM-specific program header flags

Field Name Value Meaning

p_flags PF_ARM_SB 0x10000000 This segment contains the location addressed by the static base.

PF_ARM_PI 0x20000000 This segment is position-independent.

PF_ARM_ABS 0x40000000 This segment must be loaded at its base address.

5.7 Statically linked programs

Each segment of a statically linked program is linked at an absolute virtual address. Each segment is described in
the ELF execution view by a program header.

For a loadable program segment:

� p_align must be a power of 2 greater than or equal to 4 (4, 8, 16, 32, and so on).

� p_vaddr must be zero modulo p_align.

� The offset of the segment in the file must be 0 modulo 4 (an ARM executable is not usually paged from its
containing file, so the offset is not required to be multiple of p_align).

Figure 5-5, Program header fields for statically linked ARM executables

Field Value

p_type PT_LOAD

p_vaddr The virtual address at which the segment should be loaded.

p_paddr Unused in the ARM EABI. Set to zero by ARM tools.

p_flags Any combination of PF_X, PF_R, PF_W, PF_ARM_SB

p_align >= 4—all ARM and Thumb segments are at least word-aligned.

Figure 5-6, Interpretation of program header p_flags values by ARM ELF consumers

Flag set by a producer Value Interpretation by a consumer

PF_X 0x1 The program will fetch instructions from the segment.

PF_R 0x2 The program will read data from the segment.

PF_W 0x4 The program will write to the segment.

PF_ARM_SB 0x10000000 The segment contains the data pointed to by the static base.

Note Flag settings encode an assertion about the executable segment by its producer.

Note A consumer should grant the least access consistent with the segment’s requirements.

Note In general, an ARM executable segment must also be readable. A limited PC-relative addressing range
in both ARM and Thumb instruction sets virtually mandates that instructions and literal data are
interleaved in a segment.

ARM ELF

SWS ESPC 0003 A-08 Page 38 of 44

5.8 Dynamic linking and relocation

A program needs dynamic linking if it contains symbolic references to be resolved when it is loaded into memory.

If an ARM executable or shared object needs dynamic linking, or an ARM executable is re-locatable, it contains a
program segment of type PT_DYNAMIC. The format of the dynamic segment is given below.

The ARM EABI defines no semantics for the following fields of the program header of a dynamic segment.
Operating environments are free to define their own semantics for these fields:

� p_vaddr, p_paddr, p_memsz, p_align.

� The PF_MASKPROC sub-field of p_flags.

5.8.1 The dynamic segment

The dynamic segment (p_type = PT_DYNAMIC) begins with a section containing an array of structures of type:

typedef struct Elf32_Dyn
{

Elf32_Sword d_tag;
Elf32_Word d_val;

} Elf32_Dyn;

Each element is self-identifying through its d_tag field.

ARM ELF

SWS ESPC 0003 A-08 Page 39 of 44

Figure 5-7, Dynamic section tags

d_tag Tag name The value of d_val and the meaning of the array entry

0 DT_NULL Ignored. This entry marks the end of the dynamic array.

1 DT_NEEDED Index in the string table of the name of a needed library.

2 DT_PLTRELSZ These entries are unused by the ARM EABI.

3 DT_PLTGOT

4 DT_HASH The offset of the hash table section in the dynamic segment.

5 DT_STRTAB The offset of the string table section in the dynamic segment.

6 DT_SYMTAB The offset of the symbol table section in the dynamic segment.

7 DT_RELA The offset in the dynamic segment of an SHT_RELA relocation section.

8 DT_RELASZ Its byte size.

9 DT_RELAENT The byte size of an ARM RELA-type relocation entry—12.

10 DT_STRSZ The byte size of the string table section.

11 DT_SYMENT The byte size of an ARM symbol table entry—16.

12 DT_INIT Unused by the ARM EABI.

13 DT_FINI

14 DT_SONAME The offset in the string table of the name of this shared object.

15 DT_RPATH Unused by the ARM EABI.

16 DT_SYMBOLIC

17 DT_REL The offset in the dynamic segment of an SHT_REL relocation section.

18 DT_RELSZ Its byte size.

19 DT_RELENT The byte size of an ARM REL-type relocation entry—8.

20 DT_PLTREL Unused by the ARM EABI.

21 DT_DEBUG

22 DT_TEXTREL

23 DT_JMPREL

24 DT_BIND_NOW

Note The last entry in the dynamic array must have tag DT_NULL.

Note The relative order of DT_NEEDED entries may be important to a dynamic linker. Otherwise the order of
entries in the dynamic array has no significance.

Following the dynamic array, the dynamic segment may include a hash table section, symbol table section, string
table section, and relocation table section. The order of these sections is unimportant. The offset of each in the
dynamic segment is given by the corresponding entry in the dynamic array.

Optionally, section headers of the following types may describe the sub-sections of the dynamic segment:

� SHT_DYNAMIC—the dynamic array itself.

� SHT_HASH—the symbol hash table.

� SHT_DYNSYM—the symbol table.

� SHT_STRTAB—the string table.

� SHT_REL or SHT_RELA—the relocation section.

Dynamic linkers do not use this section view.

ARM ELF

SWS ESPC 0003 A-08 Page 40 of 44

5.8.2 Conforming behavior

A conforming ELF producer should generate a dynamic array entry for each non-italic tag name in the above table
that relates to a section in the dynamic segment. For example, if the dynamic segment contains REL-type
relocations, there must be entries with tags DT_REL, DT_RELSZ, and DT_RELENT.

A conforming ELF consumer must ignore tag values it does not understand. A conforming ELF consumer should
understand the values of all the non-italic tag names listed in the table above.

5.9 Re-locatable executables

An ARM re-locatable executable is a statically linked program containing information that allows each of its
segments to be relocated independently. This information is given in a segment of type PT_DYNAMIC.

A re-locatable executable does not need to be relocated. It is ready to run if its segments are loaded at their
statically linked addresses. In this case, the dynamic segment can be ignored.

The dynamic segment begins with a dynamic section containing the entries shown below.

Figure 5-8, Required dynamic section entries for re-locatable executables

Tag Purpose

DT_REL The offset of an SHT_REL relocation section in the dynamic segment.

DT_RELSZ The byte size of the relocation section.

DT_NULL Marks the end of the dynamic section.

The relocation section contains a sequence of R-type relocation directives in which an ELF32_R_SYM field with
value n is interpreted as a reference to the displacement of program segment n from its statically linked address.

Figure 5-9, R-type relocation directives for ARM re-locatable executables

Type R-type name Place Comment

255 R_ARM_RBASE None Identifies the segment being relocated.

254 R_ARM_RPC24 ARM B/BL For calls between program segments.

253 R_ARM_RABS32 Word Depends on target segment displacement only.

252 R_ARM_RREL32 Word For inter-segment offsets.

251 R_ARM_THM_RPC22 Thumb BL/BLX pair For calls between program segments.

250 R_ARM_RSBREL32 Word For SB-relative offsets

249 R_ARM_RXPC25 ARM BLX For calls between program segments.

The R_ARM_RBASE type informs a consumer that following relocation directives relocate places in the segment
indexed by its ELF32_R_SYM field. Its r_offset field is zero.

The R_ARM_RABS32 type directs a consumer to relocate the specified place by the displacement of the segment
indexed by the ELF32_R_SYM field of the relocation directive.

ARM ELF

SWS ESPC 0003 A-08 Page 41 of 44

The R_ARM_RPC24, R_ARM_RXPC25, R_ARM_RREL32, and R_ARM_THM_RPC22 types direct a consumer
to relocate the specified place by the difference between:

� The displacement of the segment indexed by the ELF32_R_SYM field of the relocation directive.

� The displacement of the segment containing the place to be relocated (the ELF32_R_SYM field of the latest
preceding directive of type R_ARM_RBASE indexes the segment being relocated).

A consumer processes R_ARM_RSBREL32 similarly to R_ARM_RABS32, except that the displacement of the
segment addressed by the static base register must also be subtracted from the place being relocated (the
FP_ARM_SB flag is set in the p_flags field of this program segment’s header).

The r_offset field of a relocation gives the virtual address of the place in the original statically linked executable.
The ELF32_R_SYM field of the latest preceding directive of type R_ARM_RBASE indexes the segment being
relocated, so the displacement of this segment must be added to r_offset to give the address in memory of the
place to be relocated after loading.

Note If an input relocation directive cannot be reduced to one of these R-types, the executable cannot be
relocated.

Note Re-location may fail at load time if program segments are moved apart too much—beyond the address
range of a BL instruction, for example.

Figure 5-10, Definition of relocation types used by ARM re-locatable executables, below, describes the
computations performed by these relocation types using the following notation:

A denotes the addend used to compute the new value of the storage unit being relocated.

P denotes the displacement of the segment containing the storage unit being relocated. The latest
preceding relocation directive of type R_ARM_RBASE indexes this segment.

S denotes the displacement of the segment indexed by this relocation directive.

SB denotes the displacement of the segment containing the static base (PF_ARM_SB is set in p_flags).

Figure 5-10, Definition of relocation types used by ARM re-locatable executables

Type R-type name Field Computation

255 R_ARM_RBASE None None.

254 R_ARM_RPC24 ARM B/BL S – P + A

253 R_ARM_RABS32 Word S + A

252 R_ARM_RREL32 Word S – P + A

251 R_ARM_THM_RPC22 Thumb BL pair S – P + A

250 R_ARM_RSBREL32 Word S – SB + A

PC-relative re-location is defined using the difference of two displacements to support the displacement of a
program by more than the maximum BL offset. For example, rigidly displacing a program from 0x0 (ROM) to
0x80000000 (RAM).

ARM ELF

SWS ESPC 0003 A-08 Page 42 of 44

6 FUTURE DIRECTIONS

6.1 Dynamically linked executables

A dynamically linked executable undergoes the final stage of linking when it is loaded into memory:

� It lists one or more shared objects (shared libraries) to which it should be linked.

� It refers to symbols that these shared objects define.

� It defines symbols to which these shared objects may refer.

� In general, some storage units will need to be relocated when symbolic references are resolved.

The dynamic segment of a dynamically linked executable therefore contains:

� A dynamic section (described below).

� A symbol table.

� One or more relocation tables.

� A string table (used by the symbol table).

� An optional hash table that accelerates use of the symbol table.

Figure 6-1, Dynamic section entries used by dynamically linked executables

d_tag Tag name The value of d_val and the meaning of the array entry Status

0 DT_NULL Ignored. This entry marks the end of the dynamic array. mandatory

1 DT_NEEDED Index in the string table of the name of a needed library. multiple

4 DT_HASH The offset of the hash table section in the dynamic segment. optional

5 DT_STRTAB The offset of the string table section in the dynamic segment. mandatory

6 DT_SYMTAB The offset of the symbol table section in the dynamic
segment.

mandatory

7 DT_RELA The offset of an SHT_RELA-type relocation section. multiple

8 DT_RELASZ Its byte size.

10 DT_STRSZ The byte size of the string table section. mandatory

17 DT_REL The offset of an SHT_REL-type relocation section. multiple

18 DT_RELSZ Its byte size.

Mandatory items appear exactly once. Multiple items may appear more than once, as needed.

An operating system may impose additional requirements on the dynamic section of a dynamically linked
executable or shared object.

ARM ELF

SWS ESPC 0003 A-08 Page 43 of 44

6.1.1 The hash table section

The hash table is mapped by the following pseudo-C structure:

struct Elf32_HashTable {
Elf32_Word nBuckets;
Elf32_Word nChains;
Elf32_Word bucket[nBuckets];
Elf32_Word chain[nChains];

};

Both bucket and chain hold symbol table indexes. Indexes start at 0. Bucket can have any convenient size.

Bucket and chain implement a chained overflow hash table access structure for the symbol table. If h is the result
of applying the ELF hash function (see below) to a symbol s name, bucket[h % nBuckets] is the symbol table
index of the start of the chain of symbols that hash to this bucket.

For each symbol index s, chain[s] gives the index of the next symbol that hashes to the same bucket. There is one
chain entry for each symbol in the symbol table (nChains = number of symbols). Zero indexes the dummy symbol
and is used as the null chain pointer.

Figure 6-2, The ELF hash function

unsigned long elf_hash(const unsigned char *name)
{

unsigned long h, g;

for (h = 0; *name != 0; ++name)
{

h = (h << 4) + *name;
g = h & 0xf0000000;
if (g != 0) h ^= g >> 24;
h &= ~g;

}
return h;

}

6.2 Shared objects

From the perspective of the dynamic linker, a shared object appears very much like an executable program,
except it has a different value of e_type in its ELF header (ET_DYN rather than ET_EXEC).

An executable that participates in dynamic linking has a dynamic segment containing:

� A dynamic section.

� A symbol table (and an optional hash table that accelerates use of the symbol table).

� One or more relocation tables.

� A string table (used by the symbol table).

The dynamic section is identical to that described in section Dynamically linked executables, except that it may
also contain an entry giving the name of the shared object:

Figure 6-3, Naming a shared object

d_tag Tag name The value of d_val and the meaning of the array entry Status

14 DT_SONAME The offset in the string table of the name of this shared object. mandatory

ARM ELF

SWS ESPC 0003 A-08 Page 44 of 44

	ABOUT THIS DOCUMENT
	Change control
	Current status and anticipated changes
	Change history

	References
	Terms and abbreviations

	SCOPE
	GENERIC 32-BIT ELF
	Introduction
	File Format
	Data Representation
	Character Representations

	ELF Header
	ELF Identification

	Sections
	Special Sections

	String Table
	Symbol Table
	Symbol Values

	Relocation
	Program view
	Program Header
	Note Section
	Program Loading
	Dynamic Linking

	Special Sections Names
	Pre-existing Extensions

	ARM- AND THUMB-SPECIFIC DEFINITIONS
	ELF header
	Section names
	Symbols
	Relocation types
	Field extraction and insertion

	ARM EABI SPECIFICS
	Background
	Re-locatable executable ELF
	Entry points
	Static base

	The ELF header
	Section headers
	Common sections
	Section alignment

	Symbols
	Type-dependent relocations
	Program headers
	Statically linked programs
	Dynamic linking and relocation
	Re-locatable executables

	FUTURE DIRECTIONS
	Dynamically linked executables
	Shared objects

