
Open Access

Advanced RISC Machines

ARM

Document Number: ARM DDI0080C

Issued: July 1996

Copyright Advanced RISC Machines Ltd (ARM) 1995

All rights reserved

ARM 8
Data Sheet

ENGLAND
Advanced RISC Machines Limited
Fulbourn Road
Cherry Hinton
Cambridge CB1 4JN
UK
Telephone: +44 1223 400400
Facsimile: +44 1223 400410
Email: info@armltd.co.uk

GERMANY
Advanced RISC Machines Limited
Otto-Hahn Str. 13b
85521 Ottobrunn-Riemerling
Munich
Germany
Telephone: +49 89 608 75545
Facsimile: +49 89 608 75599
Email: info@armltd.co.uk

JAPAN
Advanced RISC Machines K.K.
KSP West Bldg, 3F 300D, 3-2-1 Sakado
Takatsu-ku, Kawasaki-shi
Kanagawa
213 Japan
Telephone: +81 44 850 1301
Facsimile: +81 44 850 1308
Email: info@armltd.co.uk

USA
ARM USA Incorporated
Suite 5
985 University Avenue
Los Gatos
CA 95030 USA
Telephone: +1 408 399 5199
Facsimile: +1 408 399 8854
Email: info@arm.com

World Wide Web address: http://www.arm.com

Open Access

ii ARM8 Data Sheet
ARM DDI0080C

Proprietary Notice
ARM, the ARM Powered logo, and EmbeddedICE are trademarks of Advanced RISC Machines Ltd.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or
reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the product and
its use contained in this document are given by ARM in good faith. However, all warranties implied or expressed, including but not
limited to implied warranties or merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Ltd shall not be liable for any loss or damage
arising from the use of any information in this document, or any error or omission in such information, or any incorrect use of the
product.

Key
Document Number
This document has a number which identifies it uniquely. The number is displayed on the front page and at the foot of each
subsequent page.

Document Status
The document’s status is displayed in a banner at the bottom of each page. This describes the document’s confidentiality and its
information status.

Confidentiality status is one of:

ARM Confidential Distributable to ARM staff and NDA signatories only
Named Partner Confidential Distributable to the above and to the staff of named partner companies only
Partner Confidential Distributable within ARM and to staff of all partner companies
Open Access No restriction on distribution

Information status is one of:

Advance Information on a potential product
Preliminary Current information on a product under development
Final Complete information on a developed product

Change Log
Issue Date By Change

A Dec 1994 EH/BJH Created
- 00 Jan 1995 BH/AW Preliminary Draft finalised
B July 1995 SFK Minor edits
C July 1996 KTB Edits and reformatting

ARM XXX 0000 X - 00

(On review drafts only) Two-digit draft number
Release code in the range A-Z
Unique four-digit number
Document type

Open Access

Contents-1ARM8 Data Sheet
ARM DDI 0080C

Contents

1 Introduction 1-1
1.1 Overview of ARM8 1-2
1.2 ARM8 Instruction Set 1-3
1.3 Architecture 1-4
1.4 The ARM8 Prefetch Unit (PU) 1-5
1.5 The ARM8 Core 1-6
1.6 Interfaces 1-7
1.7 ARM8 Core Block Diagram 1-7

2 Signal Description 2-1
2.1 Clocking Signals 2-2
2.2 Configuration and Control Signals 2-3
2.3 ARM8 <-> Memory Interface Signals 2-4
2.4 ARM8 <-> Co-processor Interface Signals 2-6

3 Programmer’s Model 3-1
3.1 Hardware Configurations 3-2
3.2 Operating Modes 3-4
3.3 Registers 3-5
3.4 Exceptions 3-9
3.5 Reset 3-14

4 Instruction Set 4-1
4.1 Summary 4-2
4.2 Reserved Instructions and Usage Restrictions 4-2
4.3 The Condition Field 4-3
4.4 Branch and Branch with Link (B, BL) 4-4

Open Access

Contents

Contents-2 ARM8 Data Sheet
ARM DDI 0080C

4.5 Data Processing Instructions 4-6
4.6 PSR Transfer (MRS, MSR) 4-16
4.7 Multiply and Multiply-Accumulate (MUL, MLA) 4-22
4.8 Multiply Long and Multiply-Accumulate Long (MULL, MLAL) 4-24
4.9 Single Data Transfer (LDR, STR) 4-26
4.10 Halfword and Signed Data Transfer 4-33
4.11 Block Data Transfer (LDM, STM) 4-39
4.12 Single Data Swap (SWP) 4-48
4.13 Software Interrupt (SWI) 4-50
4.14 Coprocessor Data Operations (CDP) 4-53
4.15 Coprocessor Data Transfers (LDC, STC) 4-55
4.16 Coprocessor Register Transfers (MRC, MCR) 4-59
4.17 The Instruction Memory Barrier (IMB) Instruction 4-62
4.18 Undefined Instructions 4-65
4.19 Instruction Set Examples 4-66

5 The Prefetch Unit 5-1
5.1 Overview 5-2
5.2 The Prefetch Buffer 5-2
5.3 Branch Prediction 5-2

6 Memory Interface 6-1
6.1 Overview 6-2
6.2 Memory Interface Timing 6-3
6.3 Details of the Memory System Interface 6-4
6.4 Types of Responses from the Memory System 6-8

7 Coprocessor Interface 7-1
7.1 Introduction 7-2
7.2 Overview 7-3
7.3 Operational Summary 7-4
7.4 Data Buses 7-5
7.5 Busy-Waiting and Interrupts 7-6
7.6 MCR Instructions 7-7
7.7 MRC Instructions 7-10
7.8 Cancelled Coprocessor Instructions 7-13
7.9 Bouncing Coprocessor Instructions and Absent Coprocessors 7-14
7.10 Interlocking 7-17
7.11 Coprocessor Instructions not Supported on this Interface 7-18

8 Instruction Cycle Timings Summary 8-1
8.1 Branch and Branch with Link (B, BL) 8-2
8.2 PSR Transfers (MRS, MSR) 8-2
8.3 Data Processing Instructions 8-3
8.4 Multiply and Multiply-Accumulate 8-4
8.5 Block Data Transfers (LDM, STM) 8-5
8.6 Single Data Transfers (LDR, STR) 8-6
8.7 Single Data Swap (SWP) 8-6
8.8 Software Interrupt (SWI) 8-7
8.9 Coprocessor Register Transfers (MRC, MCR) 8-7
8.10 Undefined Instructions 8-7
8.11 Interlocking Instructions 8-7

Open Access

Contents

Contents-3ARM8 Data Sheet
ARM DDI 0080C

9 AC Parameters 8-1
9.1 AC Parameters for the ARM8 Interface 8-2
9.2 AC Parameters Table 8-4

10 DC Parameters 10-1

11 Backward Compatibility 11-1
11.1 Instruction Memory Barrier 11-2
11.2 Undefined Instructions 11-2
11.3 PC Offset 11-2
11.4 Write-back 11-2
11.5 Misaligned PC Loads and Stores 11-2
11.6 Data Aborts 11-2

A Instruction Set Changes A-1
A.1 General Compatibility A-2
A.2 Instruction Set Differences A-2

B 26-bit Operations on ARM8 B-1
B.1 Introduction B-2
B.2 Instruction Differences B-3
B.3 Performance Differences B-4
B.4 Hardware Compatibility Issues B-4

C Comparing ARM6 and Earlier ARM Processors C-1
C.1 Introduction C-2
C.2 The Program Counter and Program Status Register C-2
C.3 Operating Modes C-2
C.4 Instruction Set Changes C-3
C.5 Transferring between 26-bit and 32-bit Modes C-4

D Implementing the Instruction Memory Barrier Instruction D-1
D.1 Introduction D-2
D.2 ARM8 IMB Implementation D-2
D.3 Generic IMB Use D-2

Open Access

Contents

Contents-4 ARM8 Data Sheet
ARM DDI 0080C

Open Access

1-1ARM8 Data Sheet
ARM DDI 0080C

Introduction

This chapter introduces the ARM8 processor.

1.1 Overview of ARM8 1-2
1.2 ARM8 Instruction Set 1-3
1.3 Architecture 1-4
1.4 The ARM8 Prefetch Unit (PU) 1-5
1.5 The ARM8 Core 1-6
1.6 Interfaces 1-7
1.7 ARM8 Core Block Diagram 1-7

1

Open Access

Introduction

1-2 ARM8 Data Sheet
ARM DDI 0080C

1.1 Overview of ARM8
The ARM8 is part of the Advanced RISC Machines (ARM) family of general purpose
32-bit microprocessors, which offer very low-power consumption and price for
high-performance devices. The architecture is based on Reduced Instruction Set
Computer (RISC) principles, and the instruction set and related decode mechanism
are much simpler than those of microprogrammed Complex Instruction Set
Computers. This simplicity results in a high instruction throughput and impressive real-
time interrupt response from a small and cost-effective chip.

The ARM8 processor is a fully static CMOS implementation of the ARM which allows
the clock to be stopped in any part of the cycle with extremely low residual power
consumption and no loss of state. It has been designed to provide better system
performance through the new implementation and internal architecture design, giving
lower average cycles per instruction (CPI) and a higher clock speed than previous
ARM implementations.

The inclusion of a branch predicting Prefetch Unit and a double bandwidth on-chip
memory interface means that the overall CPI and power consumption of the Core are
reduced. This is mainly because fewer instructions are passed to the Core: some
branches can be removed from the instruction stream altogether.

The ARM8 design is optimised for use in systems that provide fast on-chip memory
(such as a cache), and can take advantage of the double-bandwidth interface. Control
signals are provided that make power-efficient use of on-chip memory accesses.
When used on its own, the ARM8 may exhibit performance degradations should the
memory system be incapable of supplying more than an average of one word per
cycle.

The memory interface has been designed to maximise performance without incurring
high costs in the memory system. Speed-critical control signals are pipelined to allow
system control functions to be implemented in standard low-power logic, and these
control signals facilitate the exploitation of on-chip memory.

ARM8 has a 32-bit address bus, but can be operated in 26-bit modes for backwards
compatibility with earlier processors.

Open Access

Introduction

1-3ARM8 Data Sheet
ARM DDI 0080C

1.2 ARM8 Instruction Set
The ARM8 uses the ARM instruction set, which comprises eleven basic instruction
types:

• Two perform high-speed operations on data in a bank of thirty one 32-bit
registers, using the on-chip arithmetic logic unit, shifter and multiplier.

• Three control data transfer between the registers and memory, one optimised
for flexibility of addressing, another for rapid context switching and the third for
swapping data.

• Three adjust the flow, privilege level and system control parameters of
execution.

• Three are dedicated to the control of coprocessors which allow the
functionality of the instruction set to be extended in an open and uniform way.
Note that ARM8 only supports register transfers between ARM8 and
coprocessors.

The ARM instruction set is a good target for compilers of many different high-level
languages, and is also straightforward to use when programming in assembly
language - unlike the instruction sets of some RISC processors which rely on
sophisticated compiler technology to manage complicated instruction
interdependencies.

ARM8 employs a Prefetch Buffer, along with instruction and data pipelining, to ensure
that all parts of the processing and memory systems can operate continuously.
Typically, while one instruction is being executed:

• its successor is being decoded
• the third is being fetched from the Prefetch Buffer
• further instructions are being prefetched from memory
• data for previous instructions is being read/written

Open Access

Introduction

1-4 ARM8 Data Sheet
ARM DDI 0080C

1.3 Architecture
The ARM8 consists of a Core and a Prefetch Unit (PU). An ARM8 system would
typically comprise the ARM8 and some fast on-chip memory. The memory system is
expected to be able to provide the Core (or the PU) with two words of data (or
instructions) on each cycle. These double-bandwidth transfers may be supplied with
no wait states for maximum performance, or with wait states at a reduced overall
performance.

The Core and PU can be forced to make single-bandwidth transfers (at a reduced
performance) should the memory system dictate this.

Open Access

Introduction

1-5ARM8 Data Sheet
ARM DDI 0080C

1.4 The ARM8 Prefetch Unit (PU)
The presence of the double-bandwidth interface to on-chip memory means that
instructions can be prefetched (and pre-processed) ahead of the Core. The ARM8
Prefetch Unit (PU) prefetches and buffers instructions, and makes use of the extra
bandwidth by removing some of the Branches from the instruction stream altogether -
giving them a CPI of zero. The removal procedure uses a scheme that predicts
whether or not a Branch will be taken. If a Branch is predicted taken, then its
destination address is calculated, and further instructions are fetched from there.

Some branches cannot be predicted, because the prediction takes one or more cycles,
and occasionally the PU becomes empty. Around 65% of all Branches are predictable,
and calculations show that the average Branch CPI can be reduced to around 1.0
compared to ARM7's average Branch CPI of about 2.4.

Open Access

Introduction

1-6 ARM8 Data Sheet
ARM DDI 0080C

1.5 The ARM8 Core
The most significant change to the Core when compared to earlier ARM processors is
the extension of the data pipeline to four stages, making the ARM8 a processor with a
5-stage pipeline. This means that execution is spread over more cycles, reducing the
amount of work done at each stage and thus allowing the use of higher clock rates.

The four-stage data pipeline requires more careful instruction scheduling to maximise
performance: for example, a cycle is wasted each time an LDR instruction is followed
immediately by an instruction that uses the loaded value. Improvements to the ARM
C compiler will take account of this wherever possible.

In addition to the pipeline changes, the shifter and adder now operate in parallel rather
than in series. This also reduces the Core cycle time (since the adder and shifter no
longer contribute to the same cycle) but means that the shifter and adder cannot be
used in the same cycle. The penalty for this change is an extra cycle for instructions
that require both the adder and some shifter operations, since the result of the shifter
goes through the adder in the following cycle (note that this does not apply to simple
left-shifts by 0, 1, 2 or 3). Usually, under 1% of instructions require the extra cycle
(rising to 10% for some code). The increase in clock speed resulting from the parallel
arrangement , however, outweighs this extra cycle penalty.

Double-bandwidth reads to the on-chip memory reduces the average Load Multiple
CPI value by nearly a factor of 1.5 for most software. Also, the single Load and Store
instructions have been reduced to a single cycle for the normal cases. (This assumes
zero-wait-state on-chip memory and no interlocking.)

The ARM8 multiplier is bigger than that of ARM7 and similar (in algorithm) to that of
ARM70DM. It operates on 8 bits per cycle.

Existing code will run on ARM8 with only a few rare exceptions as a result of the above
changes. Please refer to Chapter 11, Backward Compatibility for further
information.

Instruction set changes and additions are detailed in this datasheet and are
summarised in Appendix A, Instruction Set Changes .

Open Access

Introduction

1-7ARM8 Data Sheet
ARM DDI 0080C

1.6 Interfaces

1.6.1 Coprocessor
The Coprocessor interface is entirely on-chip. This means that existing coprocessors
are not directly supported.

The on-chip interface provides a means to support all of the current coprocessor
instructions in hardware should software emulation be too slow. Existing coprocessors
may be connected via an on-chip “interfacing coprocessor” should the functionality of
this off-chip device be required. Such an “interfacing coprocessor” would conform to
the ARM8 coprocessor interface on one side, and the off-chip coprocessor on the
other. This interfacing coprocessor is not implemented as part of ARM8.

Note: ARM8 only supports register-transfers in the coprocessor interface.

1.6.2 Hardware Debug/Scan Support
ARM8 does not support this feature.

1.7 ARM8 Core Block Diagram
The block diagram for the ARM8 core is shown in Figure 1-1: ARM8 data-flow block
diagram on page 1-8.

Open Access

Introduction

1-8 ARM8 Data Sheet
ARM DDI 0080C

 Figure 1-1: ARM8 data-flow block diagram

R
da

ta

Coprocessors

R
eg

is
te

r
D

ec
od

e
an

d
C

on
tr

ol
 L

og
ic

R
eg

is
te

r
B

an
k

W
da

ta

S
hi

fte
r/

A
LU

P
S

R
s

In
st

ru
ct

io
n

P
C

A
R

M
8

C
or

e
P

re
fe

tc
h

M
em

or
y

In
te

rf
ac

e

F
IF

O

In
cr

em
en

te
r

U
ni

t

In
st

ru
ct

In
st

ru
ct

io
n R

da
ta

LD
R

 fo
rw

ar
d

P
C

A
 B

us

B Bus

R
da

ta
 []

A Bus

V
A

dd
re

ss
 []

C
op

ro
ce

ss
or

In
st

ru
ct

io
ns

P
C

F
IF

O

M
ul

tip
lie

r

W
rit

e
D

at
a

P
ip

el
in

e

C
In

st
ru

ct

W
da

ta
[]

V
A

dd
re

ss

P
C

A
dd

re
ss

B
uf

fe
r

Result Bus

Result Bus

R
da

ta

R
es

ul
t B

us
Result Bus

C Data

Coproc
Data

Open Access

2-1ARM8 Data Sheet
ARM DDI 0080C

Signal Description

This chapter lists the ARM8 signal descriptions.

2.1 Clocking Signals 2-2
2.2 Configuration and Control Signals 2-3
2.3 ARM8 <-> Memory Interface Signals 2-4
2.4 ARM8 <-> Co-processor Interface Signals 2-6

2

Open Access

Signal Description

2-2 ARM8 Data Sheet
ARM DDI 0080C

In the following tables, Phase 1 refers to the time that gclk is LOW, and Phase 2 to the
time that gclk is HIGH.

2.1 Clocking Signals

Signal I/O Description

gclk IN Global clock input
This clock signal drives the ARM8 core, the Prefetch Unit, and all
coprocessors that are present.

Confirm IN Stable Phase 1, Changes Phase 2
This signal is used to gate the internal clock of ARM8 in order to stop
ARM8 continuing when the Memory System is unable to deliver what
was requested of it in time. During Phase 1, if NConfirm is HIGH, the
ARM8’s internal clock is stopped from going low. If NConfirm is LOW
during Phase1 the ARM8’s internal clock continues as normal (ie. is
gclk)

 Table 2-1: Clocking signals

Open Access

Signal Description

2-3ARM8 Data Sheet
ARM DDI 0080C

2.2 Configuration and Control Signals

Signal I/O Description

BIGEND IN Stable Phase 1, Changes Phase 2
When this signal is HIGH, the processor treats bytes in memory as being
in big-endian format. When it is LOW, little-endian format is assumed.
This is a hardware configuration signal, and is expected to be hardwired
to a chosen value. If it is required to change this during operation, then
ensure that no data memory accesses occur during or immediately after
that change.

ISYNC IN Stable Phase 1, Changes Phase 2
This configuration signal controls whether the nFIQ and nIRQ signal
inputs should be synchronised by ARM8. When this signal is LOW then
the interrupts are synchronised by ARM8, otherwise they are not.

nFIQ IN Asynchronous (ISYNC = 0),
Synchronous (ISYNC = 1): Changes Phase 1, Stable Phase 2
This is the Active LOW Fast Interrupt request to ARM8. When driven
LOW it interrupts the processor if the appropriate interrupt enable bit of
the CPSR is active (LOW). This is a level-sensitive input, and must be
held LOW until the processor provides a suitable response.

nIRQ IN Asynchronous (ISYNC = 0),
Synchronous (ISYNC = 1): Changes Phase 1, Stable Phase 2
This is the Active LOW Interrupt Request to ARM8. This behaves in the
same way as does the nFIQ signal, but has a lower priority than nFIQ.
When driven LOW, the processor will be interrupted if the appropriate
interrupt enable bit of the CPSR is active (LOW).

PredictOn IN Stable Phase 1, Changes Phase 2
When this signal is HIGH, Branch Prediction is turned ON. When it is
LOW, no Branch Prediction takes place, and all branches are passed to
the core.

nReset IN Asynchronous
This is a level-sensitive input signal which starts the processor from a
known address. A low level makes the processor abnormally terminate
the execution of any current instruction. When nRESET becomes HIGH
for at least one clock cycle, the processor will restart from address 0.
nRESET must remain low for at least two clock cycles.

 Table 2-2: Configuration and control signals

Open Access

Signal Description

2-4 ARM8 Data Sheet
ARM DDI 0080C

2.3 ARM8 <-> Memory Interface Signals
Please refer to Chapter 6, Memory Interface , for timing details and further
information, in particular on the values that ARequest[] , AResponse[] , RRequest[]
and AResponse[] can take.

Signal I/O Description

VAddress[31:0] OUT Stable Phase 1, Changes Phase 2
This is a single bandwidth bus that is driven by the ARM8 to the mem-
ory system. It provides the Virtual Addresses whenever the memory
system requires it. At the end of any Phase 2, when ARequest[] is
not AREQ_NONE, this bus contains the address associated with the
ACCESS Request.
VAddress[] is also driven with coprocessor data during the execute
stage of an MCR instruction. This additional functionality can reduce
the routing requirements of the CData bus in some external memory
systems.

Wdata[31:0] OUT Changes Phase 1, Stable Phase 2
This is a single bandwidth bus that is driven by the ARM8 to the mem-
ory system. It provides the data values for a Store operation to the
Address on VAddress[] . The value of Wdata[31:0] will be left
unchanged in other Phase 1s.

Privileged OUT ✝Stable Phase 1, Changes Phase 2
At the end of any Phase 2 when ARequest[] is not AREQ_NONE,
this signal indicates whether the memory access is being made from a
privileged (HIGH) or from User (LOW) mode. Its value at the end of
any other Phase 2 should be ignored by the memory system.

TwentySixBit OUT Stable Phase 1, Changes Phase 2
At the end of any Phase 2 when ARequest[] is not AREQ_NONE,
this signal indicates whether the memory access originates from a
26-bit mode (HIGH) or a 32-bit mode (LOW). Its value at the end of
any other Phase 2 should be ignored by the memory system.

WdataOE IN Asynchronous
This input signal directly controls whether ARM8 drives the Wdata[]
bus (WdataOE HIGH) or does not drive Wdata[] (WdataOE LOW).
External memory systems may make use of this functionality to imple-
ment Wdata[] as a multi-source bus.

ARequest[] OUT ✝Stable Phase 1, Changes Phase 2
This control bus contains the ARM8 Request to the memory system
and indicates how it should use the VAddress[] and Wdata[] buses
during the next cycle.

AResponse[] IN Changes Phase 1, Stable Phase 2
During Phase 1 this control bus changes to reflect a provisional
response to the ARequest[] made at the end of the previous Phase
2.

 Table 2-3: ARM8 <-> Memory interface signals

Open Access

Signal Description

2-5ARM8 Data Sheet
ARM DDI 0080C

✝These signals can change in Phase 1 if Confirm is taken LOW and either
RResponse[] or AResponse[] are changed by the memory system.

IExhausted IN Changes Phase 1, Stable Phase 2
During Phase 1 the memory system changes this signal to a provi-
sional indication of whether the ARM8 can request further Sequential
Instructions from the instruction buffer, using RRequestIC or RRe-
questIP without the need to issue an ARequest[] as well.

DExhausted IN Changes Phase 1,Stable Phase 2
During Phase 1 the memory system changes this signal to a provi-
sional indication of whether the ARM8 can request further Sequential
Data (during LDM instructions) from the data buffer, using RRe-
questD[] without the need to issue an ARequest[] as well.

Rdata[31:0] IN Changes Phase 1 and Phase 2
This is a double bandwidth bus that is driven by the Memory System.
Data or Instructions (as specified by the previous RRequestD[] and
NRRequestI) are returned to the ARM8. The first word is driven onto
Rdata[] during, and is sampled at the end of, Phase 2. The second
word, if it exists, is driven onto Rdata[] during, and is sampled at the
end of the following, Phase 1.The RResponse[] control bus indi-
cates what is being returned on Rdata[] .

RRequestD[] OUT ✝Stable Phase 1, Changes Phase 2
This control bus contains the ARM8 request to the memory system for
what DATA to return on the Rdata[] bus during the next cycle.
This request may ask for none, one or two Data words from the mem-
ory system.

RRequestIC OUT ✝Stable Phase 1, Changes Phase 2
This control signal indicates the ARM8 core’s request for instructions
to be returned on the Rdata[] bus during the next cycle. When this
signal is zero at the end of Phase 2, no instruction return request is
being made by the core. When it is one, a return request for two
instructions is being made by the core.

RRequestIP OUT ✝Stable Phase 1, Changes Phase 2
This control signal indicates the ARM8 prefetch unit’s request for
instructions be returned on the Rdata[] bus during the next cycle.
When this signal is zero at the end of Phase 2, no instruction return
request is being made by the prefetch unt. When it is one, a return
request for two instructions is being made by the prefetch unit.

RResponse[] IN Changes Phase 1, Stable Phase 2.
During Phase 1 this control bus changes to reflect a provisional
response to the RRequestD[], RRequestIC and RRequestIP
made at the end of the previous Phase 2.

Signal I/O Description

 Table 2-3: ARM8 <-> Memory interface signals (Continued)

Open Access

Signal Description

2-6 ARM8 Data Sheet
ARM DDI 0080C

2.4 ARM8 <-> Co-processor Interface Signals
Please refer to Chapter 7, Coprocessor Interface for detailed timing and further
information.

Signal I/O Description

CData[31:0] IN/OUT✝ Changes Phase 1, Stable Phase 2
This is a 32-bit bidirectional bus that changes in Phase 1.
When an MRC instruction is in the Execute stage of the ARM8, then
this bus will be driven in Phase 1 to transfer register data from the
Coprocessor to the ARM8.
ARM8 is designed such that for an MCR instruction, the data to trans-
fer to the coprocessor is put onto the VAddress bus and optionally
onto the CData bus. In the first implementation of ARM8 the CData
bus is not used, and the bus is treated as input-only.
✝In the first implementation of ARM8, CData is an input-only bus.

CInstruct[25:0] OUT Changes Phase 1, Stable Phase 2
When an instruction enters the Decode stage of the ARM8 at the end
of Phase 2, then during the following Phase 1:

• If it is a Coprocessor Instruction then CInstruct[25:0]
become the corresponding bits of the instruction.

• If it is NOT a Coprocessor instruction then CInstruct[25:24]
become "11" and CInstruct[23:0] are undefined.

When no instruction enters the Decode stage of ARM8 at the end of
Phase 2, then all of CInstruct[25:0] become undefined during the
following Phase 1.

CEnterDecode OUT Changes Phase 1, Stable Phase 2
This control signal is set during Phase 1 if an instruction entered the
Decode stage of ARM8 at the end of the preceding Phase 2.

CEnterExecute OUT Changes Phase 1, Stable Phase 2
This control signal is set during Phase 1 if an instruction entered the
Execute stage of ARM8 at the end of the preceding Phase 2.

CExecute OUT Changes Phase 1, Stable Phase 2
During the Phase 1, one cycle after CEnterExecute is asserted, or 3
phases after the Coprocessor asserts CBusyWaitE , this control sig-
nal is set HIGH if the instruction should complete its execution or
brought LOW if it should not. If it is brought LOW, no permanent
change to the Coprocessor state must take place as a result of that
instruction.

CBounceD IN Stable Phase 1, Changes Phase 2
This control signal is set during Phase 2 to bounce the instruction in
the Decode stage of ARM8 if it enters the Execute stage of ARM8 at
the end of the next Phase 1 (i.e. as a result of CEnterExecute =1).
Otherwise the signal is cleared to indicate that the instruction should
not bounce.

 Table 2-4: ARM8 <-> Coprocessor interface signals

Open Access

Signal Description

2-7ARM8 Data Sheet
ARM DDI 0080C

CBounceE IN Stable Phase 1, Changes Phase 2
When the instruction in the Execute stage of ARM8 is busy-waiting,
this signal is set in Phase 2 to bounce it at the end of the following
Phase 1, or cleared to indicate that it should not bounce.
When the instruction in the Execute stage of the ARM8 is NOT
busy-waiting, this signal must be cleared during Phase 2. This means
that this mechanism may not be used to bounce instructions in the
Execute stage of ARM8 unless they are busy-waiting.

CBusyWaitD IN Stable Phase 1, Changes Phase 2
This control signal is set in Phase 2 to indicate that the instruction in
the Decode stage of the ARM8 will require busy-waiting if it enters the
Execute stage at the end of the next Phase 1 (i.e. as a result of CEn-
terExecute =1). The signal is cleared to indicate that no busy-waiting
should occur.

CBusyWaitE IN Stable Phase 1, Changes Phase 2
When the instruction in the Execute stage of ARM8 is busy-waiting,
this signal is set in Phase 2 to indicate that it should continue to
busy-wait at the end of the following Phase 1, or cleared to indicate
that it should not.
When the instruction in the Execute stage of the ARM8 is NOT busy-
waiting, this signal must be cleared during Phase 2. This means that
busy-waiting may not be restarted once it has finished, and if CBusy-
WaitD was not asserted as the instruction was entering the Execute
stage, then the instruction cannot be busy-waited at all.

Interlock OUT Stable Phase 1, Changes Phase 2
If this signal becomes 1 during any Phase 2, this indicates that the
ARM8 will become interlocked in the immediately following cycle.
The coprocessor must delay its use of CExecute and CData[] . This
signal must not be evaluated until the END of Phase 1.

CPrivileged OUT Stable Phase 1, Changes Phase 2
During a Phase 1 in which CEnterDecode becomes 1, this signal
indicates whether the instruction arriving on CInstruct[] i s being exe-
cuted:

• in a privileged mode (1)
• in an unprivileged mode (0)

Its value in Phase 1s where CEnterDecode becomes 0 should be
ignored by coprocessors.

Signal I/O Description

 Table 2-4: ARM8 <-> Coprocessor interface signals (Continued)

Open Access

Signal Description

2-8 ARM8 Data Sheet
ARM DDI 0080C

Open Access

3-1ARM8 Data Sheet
ARM DDI 0080C

Programmer’s Model

This chapter describes the operating configurations supported by ARM8. Some are
controlled by hardware and are known as hardware configurations. Others may be
controlled by software and are referred to as operating modes.

3.1 Hardware Configurations 3-2
3.2 Operating Modes 3-4
3.3 Registers 3-5
3.4 Exceptions 3-9
3.5 Reset 3-14

3

Open Access

Programmer’s Model

3-2 ARM8 Data Sheet
ARM DDI 0080C

3.1 Hardware Configurations

3.1.1 Big- and Little-Endian Memory Formats (the BIGEND Signal)
Memory is viewed as a linear collection of bytes numbered upwards from zero. Bytes
0 to 3 hold the first stored word, bytes 4 to 7 the second and so on. ARM8 can treat
words in memory as being stored either in big-endian or little-endian format,
depending on the state of the BIGEND input.

The Load/Store instructions are the only ones affected by the endianness.

Little-endian format

In little-endian format (BIGEND LOW) the lowest numbered byte in a word is
considered the least significant byte of the word, and the highest numbered byte the
most significant. Byte 0 of the memory system should therefore be connected to data
lines 7 through 0.

 Figure 3-1: Little-endian addresses of bytes within words

Big-endian format

In big-endian format (BIGEND HIGH) the most significant byte of a word is stored at
the lowest numbered byte and the least significant byte at the highest numbered byte.
Byte 0 of the memory system should therefore be connected to data lines 31 through
24.

 Figure 3-2: Big-endian addresses of bytes within words

Higher
Address

31 24 23 16 15 8 7 0 Word Address

11 10 9 8 8

7 6 5 4 4

3 2 1 0 0

Lower Address • Least significant byte is at lowest address

• Word is addressed by byte address of least significant byte

Higher
Address

31 24 23 16 15 8 7 0 Word Address

8 9 10 11 8

4 5 6 7 4

0 1 2 3 0

Lower Address • Most significant byte is at lowest address

• Word is addressed by byte address of most significant byte

Open Access

Programmer’s Model

3-3ARM8 Data Sheet
ARM DDI 0080C

3.1.2 Interrupt Synchronisation (the ISYNC Signal)
This signal controls the synchronisation of the nFIQ and nIRQ inputs. When ISYNC is
LOW, the interrupts are synchronised to the next falling edge of gclk . If ISYNC is HIGH
the inputs are not synchronised by the ARM and so these inputs must be applied in
synchrony as directed in 2.2 Configuration and Control Signals on page 2-3.

Open Access

Programmer’s Model

3-4 ARM8 Data Sheet
ARM DDI 0080C

3.2 Operating Modes
ARM8 supports byte (8-bit), half-word (16-bit), and word (32-bit) data types.
Instructions are exactly one word long, and must be aligned to four-byte boundaries.
Data operations, such as ADD, are only performed on word quantities. Load and Store
operations are able to transfer bytes, half-words or words.

ARM8 supports seven modes of operation:

Mode Description

User mode (usr) normal program execution state

FIQ mode (fiq) used for fast or higher priority interrupt handling

IRQ mode (irq) used for general-purpose interrupt handling

Supervisor mode (svc) a protected mode for the operating system

System mode (sys) a privileged user mode for the operating system

Abort mode (abt) entered after a data or instruction prefetch abort

Undefined mode (und) entered when an undefined instruction is
executed

Mode changes may be made under software control, or may be brought about by
external interrupts or exception processing. Most application programs will execute in
User mode. The other modes, known as privileged modes, are entered in order to
service interrupts or exceptions, or to access protected resources.

Open Access

Programmer’s Model

3-5ARM8 Data Sheet
ARM DDI 0080C

3.3 Registers
ARM8 has a total of 37 registers—31 general-purpose 32-bit registers and six status
registers—but these cannot all be seen at once. The processor mode dictates which
registers are available to the programmer. At any one time, 16 general registers and
one or two status registers are visible. In privileged (non-User) modes, mode-specific
banked registers are switched in. Figure 3-3: Register organisation on page 3-6
shows which registers are available in each processor mode: each of the banked
registers is marked with a shaded triangle.

In all modes there are 16 directly accessible registers: R0 to R15. All of these except
R15 are general-purpose registers which may be used to hold either data or address
values. Register R15 holds the Program Counter (PC). When read, bits [1:0] of R15
are zero and bits [31:2] contain the PC. A seventeenth register, the CPSR (Current
Program Status Register), is also accessible. This contains condition code flags and
the current mode bits, and may be thought of as an extension to the PC.

R14 is used as the subroutine link register (LR). This receives a copy of R15 when a
Branch and Link (BL) instruction is executed. At all other times it may be treated as a
general-purpose register. The corresponding banked registers R14_svc, R14_irq,
R14_fiq, R14_abt and R14_und are similarly used to hold the return values of R15
when interrupts and exceptions arise, or when Branch and Link instructions are
executed within exception routines.

FIQ mode has seven banked registers mapped to R8-14 (R8_fiq-R14_fiq). Many FIQ
handlers will not need to save any registers. User, IRQ, Supervisor, Abort and
Undefined each have two banked registers mapped to R13 and R14, allowing each of
these modes to have a private stack pointer (SP) and link register (LR).

Open Access

Programmer’s Model

3-6 ARM8 Data Sheet
ARM DDI 0080C

 Figure 3-3: Register organisation

Supervisor, IRQ, Abort and Undefined mode programs which require more than these
two banked registers are expected to save some or all of the caller's registers (R0 to
R12) on their respective stacks. They are then free to use these registers, which they
will restore before returning to the caller.

In addition there are five SPSRs (Saved Program Status Registers) which are loaded
with the CPSR whenever an exception occurs. There is one SPSR for each privileged
(non-User) mode, except System mode.

Note: No SPSR exists for User or System modes because no exceptions enter these modes.
Instructions that attempt to access this SPSR should not be executed in User or
System mode.

3.3.1 Program Status Register Format
Figure 3-4: Program Status Register (PSR) format shows the format of the Program
Status Registers.

General Registers and Program Counter

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_svc

R14_svc

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_abt

R14_abt

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_irq

R14_irq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_und

R14_und

R15 (PC)

System & User FIQ Supervisor Abort IRQ Undefined

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

Program Status Registers

Open Access

Programmer’s Model

3-7ARM8 Data Sheet
ARM DDI 0080C

 Figure 3-4: Program Status Register (PSR) format

Condition code flags

The N, Z, C and V bits are the condition code flags. These may be changed as a result
of arithmetic and logical operations in the processor, and may be tested by any
instruction to determine whether the instruction is to be executed.

Interrupt disable bits

The I and F bits are the interrupt disable bits. When set, these disable the IRQ and FIQ
interrupts respectively.

Mode bits

The M4, M3, M2, M1 and M0 bits (M[4:0]) are the mode bits. These determine the
mode in which the processor operates. The interpretation of the mode bits is shown in
Table 3-1: The mode bits on page 3-8. Not all mode bit combinations define a valid
processor mode: you should only use those which are explicitly described.

Control bits

The bottom 8 bits of a PSR (incorporating I, F and M[4:0]) are known collectively as
the control bits. These will change when an exception arises. If the processor is
operating in a privileged mode, they can also be manipulated by software.

Reserved bits

The remaining bits in the PSRs are reserved. When changing a PSR’s flag or control
bits, you must ensure that these unused bits are not changed by using a read-modify-
write scheme. Also, your program should not rely on them containing specific values,
since in future processors they may read as one or zero.

0123456782728293031

M0M1M2M3M4.FIVCZN

Overflow
Carry / Borrow / Extend
Zero
Negative / Less Than

Mode bits
FIQ disable
IRQ disable

. ..

flags control

Open Access

Programmer’s Model

3-8 ARM8 Data Sheet
ARM DDI 0080C

M[4:0] Mode Accessible Registers

10000 User PC, R14..R0 CPSR

10001 FIQ PC, R14_fiq..R8_fiq, R7..R0 CPSR, SPSR_fiq

10010 IRQ PC, R14_irq..R13_irq, R12..R0 CPSR, SPSR_irq

10011 Supervisor PC, R14_svc..R13_svc, R12..R0 CPSR, SPSR_svc

10111 Abort PC, R14_abt..R13_abt, R12..R0 CPSR, SPSR_abt

11011 Undefined PC, R14_und..R13_und, R12..R0 CPSR, SPSR_und

11111 System PC, R14..R0 CPSR

 Table 3-1: The mode bits

Open Access

Programmer’s Model

3-9ARM8 Data Sheet
ARM DDI 0080C

3.4 Exceptions
Exceptions arise whenever there is a need for the normal flow of program execution to
be broken, so that the processor can be diverted to handle an interrupt from a
peripheral, for example. The processor state immediately prior to handling the
exception must be preserved, to ensure that the original program can be resumed
when the exception routine has completed. It is possible for more than one exception
to arise at the same time.

When handling an exception, ARM8 makes use of the banked registers to save state.
The old PC and CPSR contents are copied into the appropriate R14 and SPSR, and
the PC and the CPSR mode bits are forced to a value which depends on the exception.
Where necessary, the interrupt disable flags are set to prevent otherwise
unmanageable nestings of exceptions; this is detailed in the following sections.

In the case of a re-entrant interrupt handler, R14 and the SPSR should be saved onto
a stack in main memory before the interrupt is re-enabled. When transferring the
SPSR register to and from a stack, it is important to transfer the whole 32-bit value and
not just the flag or control fields. When multiple exceptions arise simultaneously, a
fixed priority determines the order in which they are handled: see 3.4.7 Exception
Priorities on page 3-13 for more information.

3.4.1 FIQ
The FIQ (Fast Interrupt reQuest) exception is externally generated by taking the nFIQ
input LOW. This input can accept asynchronous transitions provided that ISYNC is
LOW so that the ARM will perform the synchronisation. This synchronisation delays
the effect of the input transition on the processor execution flow for one cycle. If ISYNC
is HIGH then all transitions must be made synchronously according to 2.2
Configuration and Control Signals on page 2-3.

FIQ is designed to support a fast or high priority interrupt, and has sufficient private
registers to remove the need for register saving in such applications (thus minimising
the overhead of context switching). The FIQ exception may be disabled by setting the
CPSR’s F flag (but note that this is not possible from User mode). If the F flag is clear,
ARM8 checks for a LOW level on the FIQ logic output at the end of each instruction
(including cancelled ones), and at the end of any coprocessor busy-wait cycle
(allowing the busy-wait state to be interrupted).

On detecting a FIQ, ARM8:

• saves the address of the next instruction to be executed plus 4 in R14_fiq
• saves the CPSR in SPSR_fiq
• forces M[4:0]=10001 (FIQ mode) and sets the F and I bits in the CPSR
• forces the PC to fetch the next instruction from the FIQ vector

To return normally from FIQ, use SUBS PC,R14_fiq,#4 . This restores both the PC
(from R14) and the CPSR (from SPSR_fiq), and resumes execution of the interrupted
code.

3.4.2 IRQ
The IRQ (Interrupt ReQuest) exception is externally generated by taking the nIRQ
input LOW. This input can accept asynchronous transitions provided that ISYNC is
LOW so that the ARM will perform the synchronisation. This synchronisation delays
the effect of the input transition on the processor execution flow for one cycle. If ISYNC
is HIGH then all transitions must be made synchronously according to
2.2 Configuration and Control Signals on page 2-3.

Open Access

Programmer’s Model

3-10 ARM8 Data Sheet
ARM DDI 0080C

IRQ has a lower priority that FIQ and is automatically masked out when a FIQ
sequence is entered. The IRQ exception may be disabled by setting the CPSR’s I flag
(but note that this is not possible from User mode). If the I flag is clear, ARM8 checks
for a LOW level on the IRQ logic output at the end of each instruction (including
cancelled ones) and at the end of any coprocessor busy-wait cycle (allowing the busy-
wait state to be interrupted).

On detecting an IRQ, ARM8:

• saves the address of the next instruction to be executed plus 4 in R14_irq
• saves the CPSR in SPSR_irq
• forces M[4:0]=10010 (IRQ mode) and sets the I bit in the CPSR
• forces the PC to fetch the next instruction from the IRQ vector

To return normally from IRQ, use SUBS PC,R14_irq,#4 . This restores both the PC
(from R14) and the CPSR (from SPSR_irq), and resumes execution of the interrupted
code.

3.4.3 Aborts
Not all requests to the Memory System for Data or Instructions will result in a
successful completion of the transaction. Such transactions result in an Abort.
The rest of this section describes sources and types of aborts, and what happens
once they occur.

Abort Sources

Aborts can be generated by Store instructions (STR, STM, SWP (for the write part)),
by Data Read instructions (LDR, LDM, SWP (for the read part)) and by Instruction
Prefetching. The aborts caused by stores can only be signalled by setting the
AResponse[] signal to ARESP_ABORT. Data reads and instruction prefetches can
signal an abort either through the AResponse[] signal or through RResponse[]
setting RRESP_EXTABORT_I (for instruction fetches) or RRESP_EXTABORT_D (for
Data Reads and Swaps).

Please refer to Chapter 6, Memory Interface for further details on the Response
signals.

Note: Although there are two methods for signalling aborts, ARM8 treats both of them
identically.

Open Access

Programmer’s Model

3-11ARM8 Data Sheet
ARM DDI 0080C

Signalling Aborts

This section gives guidelines on the intended use of the different abort signalling
methods that the ARM8 provides. The abort sources can be split into two types:

• Memory Management Aborts
• External Memory Aborts

Memory Management Aborts: When a memory access is made to an address that the
Memory Management Unit considers needs further attention by some service routine,
then this is signalled to ARM8 in the AResponse[] control signal by returning
ARESP_ABORT. This may happen, for instance, in a virtual memory system when the
data corresponding to the current address has been swapped out to disc. This requires
considerable processor activity in order to recover the data from disc before the access
can be retried and performed successfully.

External Memory Aborts: When an external memory access generates some form of
error, then this can be signalled to the ARM8 in the RResponse[] control signal by
returning RRESP_EXTABORT_I (if this occurred during an Instruction fetch), or
RRESP_EXTABORT_D (if it occurred during a Data Read). This sort of abort may be
generated by some Parity-checking hardware, for example, where the Data read may
fail the parity check and require some action from the processor in response.

Abort types

Aborts are classified as either Prefetch or Data Abort types depending upon the
transaction taking place at the time. Each type has its own exception vector to allow
branching to the relevant service routine to deal with them. These exception vectors
are the Prefetch Abort Vector and the Data Abort Vector and their locations are
summarised in 3.4.6 Exception Vector Summary on page 3-13.

Prefetch Aborts

If the transaction taking place when the abort happened was an Instruction fetch, then
a Prefetch Abort is indicated. The instruction is marked as invalid, but the abort
exception vector is not taken immediately. Only if the instruction is about to get
executed will the Prefetch Abort exception vector be taken. In the case of a marked
abort on a prefetched instruction after a predicted branch, if the branch's condition
code determines that the branch has been wrongly predicted, then the abort-marked
instruction does not fall into the Prefetch Abort trap - it should never have been fetched,
as far as the real instruction stream is concerned.

For Prefetch Aborts, ARM8:

1 Saves the address of the aborted instruction plus 4 into R14_abt
2 Saves the CPSR into SPSR_abt
3 Forces M[4:0] to 10111 (Abort Mode) and sets the I bit in the CPSR
4 Forces the PC to fetch the next instruction from the Prefetch Abort vector.

Returning from a Prefetch Abort: After fixing the reason for the Prefetch Abort, use:

 SUBS PC,R14_abt,#4

This restores both the PC (from R14) and the CPSR (from SPRS_abt), and retries the
instruction.

Open Access

Programmer’s Model

3-12 ARM8 Data Sheet
ARM DDI 0080C

Data Aborts

If the transaction taking place when the abort happened was a Data Access (Read or
Write), then a Data Abort is indicated, and the action depends upon the instruction
type that caused it. In ALL cases, any base register is restored to the value it had
before the instruction started whether or not writeback is specified. In addition:

• The LDR instruction does not overwrite the destination register.
• The SWP Instruction is aborted as though it had not executed, although

externally the read access may have taken place.
• The LDM Instruction ensures that the PC is not overwritten and will restore the

base register such that the instruction can be restarted. All registers up to the
aborting one may have been overwritten, but no further ones will be.

• The STM Instruction will ensure that the base register is restored, and any
stores up to the aborting one will have already been made - the details
depending upon the Memory System itself.

For Data Aborts, ARM8:

1 Saves the address of the instruction which caused the abort plus 8 into
R14_abt

2 Saves the CPSR into SPSR_abt
3 Forces M[4:0] to 10111 (Abort Mode) and sets the I bit in the CPSR
4 Forces the PC to fetch the next instruction from the Data Abort vector.

Returning from a Data Abort: After fixing the reason for the Data Abort, use:

 SUBS PC,R14_abt,#8

This restores both the PC (from R14) and the CPSR (from SPSR_abt), and retries the
instruction. Note, that in the case of LDM, some registers may be re-loaded.

3.4.4 Software interrupt
The software interrupt instruction (SWI) is used for entering Supervisor mode, usually
to request a particular supervisor function. When a SWI is executed, ARM8:

• saves the address of the SWI instruction plus 4 in R14_svc
• saves the CPSR in SPSR_svc
• forces M[4:0]=10011 (Supervisor mode) and sets the I bit in the CPSR
• forces the PC to fetch the next instruction from the SWI vector

To return from a SWI, use MOVS PC,R14_svc . This restores the PC (from R14) and
CPSR (from SPSR_svc), and returns to the instruction following the SWI.

Open Access

Programmer’s Model

3-13ARM8 Data Sheet
ARM DDI 0080C

3.4.5 Undefined instruction trap
When the ARM8 decodes an instruction bit-pattern that it cannot process, it takes the undefined
instruction trap.

Note: Not all non-instruction bit patterns are detected, but such bit patterns will not halt or corrupt the
processor and its state.

The trap may be used for software emulation of a coprocessor in a system which does not have
the coprocessor hardware (and therefore cannot process), or for general-purpose instruction
set extension by software emulation.

When ARM8 takes the undefined instruction trap, it:

• saves the address of the Undefined instruction plus 4 in R14_und
• saves the CPSR in SPSR_und
• forces M[4:0]=11011 (Undefined mode) and sets the I bit in the CPSR
• forces the PC to fetch the next instruction from the Undefined vector

To return from this trap after servicing or emulating the trapped instruction, use MOVS
PC,R14_und . This restores the PC (from R14) and the CPSR (from SPSR_und) and returns
to the instruction following the undefined instruction.

3.4.6 Exception Vector Summary

These are byte addresses, and will normally contain a branch instruction pointing to the relevant
routine.

To enhance FIQ response time, the FIQ routine might reside at 0x1C onwards, and thereby
avoid the need for (and execution time of) a branch instruction.

3.4.7 Exception Priorities
When multiple exceptions arise at the same time, a fixed priority system determines the order
in which they are handled.

1 Reset (highest priority)
2 Data Abort
3 FIQ
4 IRQ
5 Prefetch Abort
6 Undefined Instruction, Software interrupt (lowest priority)

Address Exception Mode on Entry

0x00000000 Reset Supervisor

0x00000004 Undefined instruction Undefined

0x00000008 Software interrupt Supervisor

0x0000000C Abort (prefetch) Abort

0x00000010 Abort (data) Abort

0x00000014 -- reserved -- --

0x00000018 IRQ IRQ

0x0000001C FIQ FIQ

 Table 3-2: Exception vectors

Open Access

Programmer’s Model

3-14 ARM8 Data Sheet
ARM DDI 0080C

Not all of the exceptions can occur at once: Undefined Instruction and Software Interrupt are
mutually exclusive, since they each correspond to particular (non-overlapping) decodings of the
current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (ie the CPSR’s F flag
is clear), ARM8 enters the data abort handler and then immediately proceeds to the FIQ vector.
A normal return from FIQ will cause the data abort handler to resume execution. Placing data
abort at a higher priority than FIQ is necessary to ensure that the transfer error does not escape
detection. The time for this exception entry should be added to worst-case FIQ latency
calculations.

3.5 Reset
nRESET can be asserted asynchronously, but must be removed whilst gclk is LOW. When the
nRESET signal goes LOW, ARM8 abandons the executing instruction. When nRESET goes
HIGH again, ARM8:

• overwrites R14_svc and SPSR_svc (by copying the current values of the PC and
CPSR into them) with undefined values.

• forces M[4:0]=10011 (Supervisor mode) and sets the I and F bits in the CPSR
• forces the PC to fetch the next instruction from the Reset vector

Open Access

4-1ARM8 Data Sheet
ARM DDI 0080C

Instruction Set

This chapter details the ARM8 instruction set.

4.1 Summary 4-2
4.2 Reserved Instructions and Usage Restrictions 4-2
4.3 The Condition Field 4-3
4.4 Branch and Branch with Link (B, BL) 4-4
4.5 Data Processing Instructions 4-6
4.6 PSR Transfer (MRS, MSR) 4-16
4.7 Multiply and Multiply-Accumulate (MUL, MLA) 4-22
4.8 Multiply Long and Multiply-Accumulate Long (MULL, MLAL) 4-24
4.9 Single Data Transfer (LDR, STR) 4-26
4.10 Halfword and Signed Data Transfer 4-33
4.11 Block Data Transfer (LDM, STM) 4-39
4.12 Single Data Swap (SWP) 4-48
4.13 Software Interrupt (SWI) 4-50
4.14 Coprocessor Data Operations (CDP) 4-53
4.15 Coprocessor Data Transfers (LDC, STC) 4-55
4.16 Coprocessor Register Transfers (MRC, MCR) 4-59
4.17 The Instruction Memory Barrier (IMB) Instruction 4-62
4.18 Undefined Instructions 4-65
4.19 Instruction Set Examples 4-66

4

Open Access

Instruction Set

4-2 ARM8 Data Sheet
ARM DDI 0080C

4.1 Summary
The ARM8 instruction set is summarized below.

 Figure 4-1: ARM8 instruction set

Note: The instruction cycle times given in this section assume that there is no register
interlocking. For details of interlock behaviour, please refer to Chapter 8, Instruction
Cycle Timings Summary .

4.2 Reserved Instructions and Usage Restrictions
ARM8 enters an Undefined Instruction trap if it encounters an instruction bit pattern
that it does not recognize. However, there are some bit patterns which are not defined,
but which do not cause the Undefined Instruction trap to be taken. These reserved
instructions must not be used, as their action may change in future ARM
implementations, and may differ from previous ARM implementations.

In addition, this datasheet states that some plausible instruction usages must not be
used - particular register combinations for example. In all cases where this is so,
should the rules be broken, the processor will not halt or become damaged in any way,
though its internal state may well be changed.

Please refer to 4.18 Undefined Instructions on page 4-65 for details of which
instruction bit patterns fall into the Undefined Instruction trap.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond 0 0 I Opcode S Rn Rd Operand 2 Data Processing / PSR Transfer

Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm Multiply

Cond 0 0 0 0 1 U A S RdHi RdLo Rn 1 0 0 1 Rm Multiply Long

Cond 0 0 0 1 0 B 0 0 Rn Rd 0 0 0 0 1 0 0 1 Rm Single Data Swap

Cond 0 0 0 P U 0 W L Rn Rd 0 0 0 0 1 S H 1 Rm Halfword Data Transfer:
register offset

Cond 0 0 0 P U 1 W L Rn Rd Offset 1 S H 1 Offset Halfword Data Transfer:
immediate offset

Cond 0 1 I P U B W L Rn Rd Offset Single Data Transfer

Cond 0 1 1 1 Undefined

Cond 1 0 0 P U S W L Rn Register List Block Data Transfer

Cond 1 0 1 L Offset Branch

Cond 1 1 0 P U N W L Rn CRd CP# Offset Coprocessor Data Transfer

Cond 1 1 1 0 CP Opc CRn CRd CP# CP 0 CRm Coprocessor Data Operation

Cond 1 1 1 0 CP Opc L CRn Rd CP# CP 1 CRm Coprocessor Register Transfer

Cond 1 1 1 1 Ignored by processor Software Interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Open Access

Instruction Set

4-3ARM8 Data Sheet
ARM DDI 0080C

4.3 The Condition Field
All ARM8 instructions are conditionally executed. This means that their execution may
or may not take place depending on the values of the N, Z, C and V flags in the CPSR.
Figure 4-2: Condition Codes shows the condition encoding.

 Figure 4-2: Condition Codes

If the always (AL) condition is specified in an instruction, the instruction will be
executed regardless of the CPSR flags.

Note: A condition field of 1111 is reserved and should not be used. Instructions with such a
condition field may be redefined in future variants of the ARM architecture.

The assembler treats the absence of a condition code qualifier as though AL had been
specified. If you require a NOP, use MOV R0,R0 .

The other condition codes have meanings as detailed in Figure 4-2: Condition
Codes . For example, code 0000 (EQual) causes an instruction to be executed only if
the Z flag is set. This corresponds to the case in which a compare (CMP) instruction
has found its two operands to be equal. If the two operands are different, the compare
will have cleared the Z flag, and the instruction will not be executed.

Cond

272831

Condition field
0000 = EQ - Z set (equal)
0001 = NE - Z clear (not equal)
0010 = CS - C set (unsigned higher or same)
0011 = CC - C clear (unsigned lower)
0100 = MI - N set (negative)
0101 = PL - N clear (positive or zero)
0110 = VS - V set (overflow)
0111 = VC - V clear (no overflow)
1000 = HI - C set and Z clear (unsigned higher)
1001 = LS - C clear or Z set (unsigned lower or same)
1010 = GE - N set and V set, or N clear and V clear (greater or equal)
1011 = LT - N set and V clear, or N clear and V set (less than)
1100 = GT - Z clear, and either N set and V set, or N clear and V clear (greater than)
1101 = LE - Z set, or N set and V clear, or N clear and V set (less than or equal)
1110 = AL - Always

0

Open Access

Instruction Set

4-4 ARM8 Data Sheet
ARM DDI 0080C

4.4 Branch and Branch with Link (B, BL)
A Branch instruction is only executed if the specified condition is true: the various
conditions are defined at the beginning of this chapter. Figure 4-3: Branch
instructions shows the instruction encoding.

 Figure 4-3: Branch instructions

Branch instructions contain a signed 2's complement 24-bit offset. This is shifted left
two bits, sign extended to 32 bits, and added to the PC. An instruction can therefore
specify a branch of +/- 32MB. The branch offset must take account of the fact that the
PC is 2 words (8 bytes) ahead of the current instruction.

Branches beyond +/- 32MB must use an offset or an absolute destination that has
been previously loaded into a register. For Branch with Link operations that exceed
32MB, the PC must be saved manually into R14 and the offset added to the PC, or the
absolute destination moved to the PC.

4.4.1 The link bit
Branch with Link (BL) writes the old PC into the link register (R14) of the current bank.
In the process, 4 is subtracted from the PC value, so that R14 will contain the address
of the instruction immediately following the BL instruction. The CPSR is not saved with
the PC.

To return from a routine called by Branch with Link, use:

MOV PC,R14 if the link register is still valid.

or

LDM Rn!,{..PC} if the link register has been saved onto a stack pointed to by
Rn.

4.4.2 Branch prediction and removal
The ARM8 Prefetch Unit will attempt to remove a Branch instruction before it reaches
the Core. If a Branch is predictable and predicted taken, the Prefetch Unit will start
prefetching from the target address, so removing the Branch altogether if predicted
correctly. For more information, refer to Chapter 5, The Prefetch Unit .

4.4.3 Instruction cycle times
A Branch (B) or Branch with Link (BL) instruction takes 3 cycles. If optimised by the
Prefetch Unit, a Branch will take fewer cycles - possibly 0 - and a Branch with Link will
take a minimum of 1 cycle if taken, and 0 cycles if not taken.

Cond 101 L offset

31 28 27 25 24 23 0

Link bit
0 = Branch
1 = Branch with Link

Condition field

Open Access

Instruction Set

4-5ARM8 Data Sheet
ARM DDI 0080C

4.4.4 Assembler syntax
Branch instructions have the following syntax:

B{L}{cond} <expression>

where

{L} requests a Branch with Link.

{cond} is one of the two-character mnemonics, shown in
Figure 4-2: Condition Codes on page 4-3. The assembler
assumes AL (ALways) if no condition is specified.

<expression> is the destination address. The assembler calculates the
offset, taking into account that the PC is 8 ahead of the
current instruction.

4.4.5 Examples
here BAL here ; assembles to 0xEAFFFFFE

; (note effect of PC offset)
B there ; ALways condition used as default

CMP R1,#0 ; compare R1 with zero and branch to fred
BEQ fred ; if R1 was zero, otherwise continue to next

; instruction

BL sub+ROM ; call subroutine at address computed by
; Assembler

ADDS R1,R1,#1 ; add 1 to register 1, setting CPSR flags
BLCC sub ; on the result, then call subroutine if the

; C flag is clear, which will be
; the case unless R1 held 0xFFFFFFFF

Open Access

Instruction Set

4-6 ARM8 Data Sheet
ARM DDI 0080C

4.5 Data Processing Instructions
A data processing instruction is only executed if the specified condition is true: the
various conditions are defined at the beginning of this chapter. Figure 4-4: Data
processing instructions shows the instruction encoding.

 Figure 4-4: Data processing instructions

0000 = AND - Rd:= Op1 AND Op2
0001 = EOR - Rd:= Op1 EOR Op2
0010 = SUB - Rd:= Op1 - Op2
0011 = RSB - Rd:= Op2 - Op1
0100 = ADD - Rd:= Op1 + Op2
0101 = ADC - Rd:= Op1 + Op2 + C
0110 = SBC - Rd:= Op1 - Op2 + C - 1
0111 = RSC - Rd:= Op2 - Op1 + C - 1
1000 = TST - set condition codes on Op1 AND Op 2
1001 = TEQ - set condition codes on Op1 EOR Op2
1010 = CMP - set condition codes on Op1 - Op2
1011 = CMN - set condition codes on Op1 + Op2
1100 = ORR - Rd:= Op1 OR Op2
1101 = MOV - Rd:= Op2
1110 = BIC - Rd:= Op1 AND NOT Op2
1111 = MVN - Rd:= NOT Op2

Cond 0 0 I

011122124272831

Condition Field

OpCode S Rn Rd Operand 2

25 19 16 152026

Immediate operand

 Rmshift

 Rotate Imm

0 = Operand 2 is a register

011 4 3

Unsigned 8-bit immediate valueRotation applied to Imm

011 8 7

1 = Operand 2 is an immediate value

Operation Code

Destination register

1st operand register

Set condition codes
0 = do not set condition codes
1 = set condition codes

Open Access

Instruction Set

4-7ARM8 Data Sheet
ARM DDI 0080C

The instructions in this class produce a result by performing a specified operation on
one or two operands, where:

• The first operand is always a register (Rn).
• The second operand may be a shifted register (Rm) or a rotated 8-bit

immediate value (Imm) depending on the value of the instruction’s I bit.

The CPSR flags may be preserved or updated as a result of this instruction, depending
on the value of the instruction’s S bit.

Certain operations (TST, TEQ, CMP, CMN) do not write the result to Rd. They are used
only to perform tests and to set the CPSR flags on the result, and therefore always
have the S bit set.

The data processing instructions and their effects are listed in Table 4-1: ARM data
processing instructions .

Assembler
mnemonic OpCode Action Note

AND 0000 operand1 AND operand2

EOR 0001 operand1 EOR operand2

SUB 0010 operand1 - operand2

RSB 0011 operand2 - operand1

ADD 0100 operand1 + operand2

ADC 0101 operand1 + operand2 + carry

SBC 0110 operand1 - operand2 + carry - 1

RSC 0111 operand2 - operand1 + carry - 1

TST 1000 as AND, but result is not written Rd is ignored and should be 0x0000

TEQ 1001 as EOR, but result is not written Rd is ignored and should be 0x0000

CMP 1010 as SUB, but result is not written Rd is ignored and should be 0x0000

CMN 1011 as ADD, but result is not written Rd is ignored and should be 0x0000

ORR 1100 operand1 OR operand2

MOV 1101 operand2 Rn is ignored and should be 0x0000

BIC 1110 operand1 AND NOT operand2 Bit clear

MVN 1111 NOT operand2 Rn is ignored and should be 0x0000

 Table 4-1: ARM data processing instructions

Open Access

Instruction Set

4-8 ARM8 Data Sheet
ARM DDI 0080C

4.5.1 Effects on CPSR flags
Data processing operations are classified as logical or arithmetic.

Logical operations

The logical operations (AND, EOR, TST, TEQ, ORR, MOV, BIC, MVN) perform the
logical action on all the corresponding bits of the operand or operands to produce the
result.

If the S bit is set (and Rd is not R15 - see below), they affect the CPSR flags as follows:

N is set to the logical value of bit 31 of the result.

Z is set if and only if the result is all zeros.

C is set to the carry out from the shifter (so is unchanged when no shift
operation occurs - see 4.5.2 Shifts and 4.5.3 Immediate operand
rotates for the exact details of this).

V is preserved.

Arithmetic operations

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each
operand as a 32-bit integer (either unsigned or 2's complement signed).

If the S bit is set (and Rd is not R15), they affect the CPSR flags as follows:

N is set to the value of bit 31 of the result. This indicates a negative
result if the operands are being treated as 2’s complement signed.

Z is set if and only if the result is zero.

C is set to the carry out of bit 31 of the ALU.

V is set if a signed overflow occurs into bit 31 of the result. This can be
ignored if the operands are considered as unsigned, but warns of a
possible error if they are being treated as 2’s complement signed.

Open Access

Instruction Set

4-9ARM8 Data Sheet
ARM DDI 0080C

4.5.2 Shifts
When the second operand is a shifted register, the instruction’s Shift field controls the
operation of the shifter. This indicates the type of shift to be performed (Logical Left
or Right, Arithmetic Right or Rotate Right).

The amount by which the register should be shifted may be contained either in an
immediate field in the instruction, or in the bottom byte of another register (other than
R15). The encoding for the different shift types is shown in Figure 4-5: ARM shift
operations .

 Figure 4-5: ARM shift operations

Instruction-specified shifts

When specified in the instruction, the shift amount is contained in a 5-bit field which
may take any value from 0 to 31. A logical shift left (LSL) takes the contents of Rm,
and moves each bit to a more significant position by the specified amount. The least
significant bits of the result are filled with zeros, and the high bits of Rm that do not
map into the result are discarded, with the exception of the least significant discarded
bit. This becomes the shifter carry output, which may be latched into the C bit of the
CPSR when the ALU operation is in the logical class (see Logical operations on
page 4-8).

As an example, Figure 4-6: Logical shift left shows the effect of LSL #5.

 Figure 4-6: Logical shift left

Note that LSL #0 is a special case, where the shifter carry out is the old value of the
CPSR C flag. The contents of Rm are used directly as the second operand.

0 0 1Rs

11 8 7 6 5 411 7 6 5 4

Shift type

Shift amount
5 bit unsigned integer

00 = logical left
01 = logical right
10 = arithmetic right
11 = rotate right

Shift type

Shift register

00 = logical left
01 = logical right
10 = arithmetic right
11 = rotate right

Shift amount specified in
bottom byte of Rs

0 0 0 0 0

contents of Rm

value of operand 2

31 27 26 0

carry out

Open Access

Instruction Set

4-10 ARM8 Data Sheet
ARM DDI 0080C

Logical shift right : A logical shift right (LSR) is similar, but the contents of Rm are
moved to less significant positions in the result. For example, LSR #5 has the effect
shown in Figure 4-7: Logical shift right .

 Figure 4-7: Logical shift right

The form of the shift field which might be expected to correspond to LSR #0 is used to
encode LSR #32, which has a zero result with bit 31 of Rm as the carry output. Logical
shift right zero is redundant, as it is the same as logical shift left zero, so the assembler
converts LSR #0 (as well as ASR #0 and ROR #0) into LSL #0, and allows LSR #32
to be specified.

Arithmetic shift right: An arithmetic shift right (ASR) is similar to a logical shift right,
except that the high bits are filled with bit 31 of Rm instead of zeros. This preserves
the sign in 2's complement notation. Figure 4-8: Arithmetic shift right shows the
effect of ASR #5.

 Figure 4-8: Arithmetic shift right

The form of the shift field which might be expected to give ASR #0 is used to encode
ASR #32. Bit 31 of Rm is again used as the carry output, and each bit of operand 2 is
also equal to bit 31 of Rm. The result is therefore all ones or all zeros, depending on
the value of bit 31 of Rm.

Rotate right: Rotate right (ROR) operations re-use the bits which “overshoot” in a
logical shift right operation by reintroducing them at the high end of the result, in place
of the zeros used to fill the high end in logical shift right operations. To illustrate this,
the effect of ROR #5 is shown in Figure 4-9: Rotate right .

contents of Rm

value of operand 2

31 0

carry out

0 0 0 0 0

5 4

contents of Rm

value of operand 2

31 0

carry out

5 430

Open Access

Instruction Set

4-11ARM8 Data Sheet
ARM DDI 0080C

 Figure 4-9: Rotate right

The form of the shift field which might be expected to give ROR #0 is used to encode
a special function of the shifter, rotate right extended (RRX). This is a rotate right by
one bit position of the 33-bit quantity formed by appending the CPSR C flag to the most
significant end of the contents of Rm as shown in Figure 4-10: Rotate right
extended .

 Figure 4-10: Rotate right extended

contents of Rm

value of operand 2

31 0

carry out

5 4

contents of Rm

value of operand 2

31 0

carry
out

1

C
in

Open Access

Instruction Set

4-12 ARM8 Data Sheet
ARM DDI 0080C

Register-specified shifts

Only the least significant byte of Rs is used to determine the shift amount. Rs can be
any general register other than R15.

Byte value Description

0 the unchanged contents of Rm will be used as the second operand,
and the old value of the CPSR C flag will be passed on as the shifter
carry output

1- 31 the shifted result will exactly match that of an instruction specified shift
with the same value and shift operation

32 the result will be a logical extension of the shift described above:

• LSL by 32 has result zero, carry out equal to bit 0 of Rm.
• LSL by more than 32 has result zero, carry out zero.
• LSR by 32 has result zero, carry out equal to bit 31 of Rm.
• LSR by more than 32 has result zero, carry out zero.
• ASR by 32 or more has result filled with and carry out equal

to bit 31 of Rm.
• ROR by 32 has result equal to Rm, carry out equal to bit 31

of Rm.
• ROR by n where n is greater than 32 will give the same result

and carry out as ROR by n-32; therefore repeatedly subtract
32 from n until the amount is in the range 1 to 32

Note: Bit 7 of an instruction with a register-controlled shift must be 0: a 1 in this bit will cause
the instruction to be something other than a data processing instruction.

4.5.3 Immediate operand rotates
An immediate operand is constructed by taking the 8-bit immediate in the 'Imm' field,
zero-extending it to 32 bits, and rotating it by twice the value in the 'Rotate' field. This
enables many common constants to be generated, for example all powers of two.

If the value in the 'Rotate' field is zero, the shifter carry out is set to the old value of the
CPSR C flag. Otherwise, the shifter carry out is set to bit 31 of the shifter result, just
as though an ROR had been performed (see Figure 4-9: Rotate right on page 4-11).

4.5.4 Writing to R15
When Rd is a register other than R15, the condition code flags in the CPSR may be
updated from the ALU flags as described above.

When Rd is R15 and the S flag in the instruction is not set, the result of the operation
is placed in R15 and the CPSR is unaffected.

When Rd is R15 and the S flag is set, the result of the operation is placed in R15 and
the SPSR corresponding to the current mode is moved to the CPSR. This allows state
changes which automatically restore both PC and CPSR. This form of instruction must
not be used in User mode or System mode.

Note: Bits [1:0] of R15 are set to zero when read from, and ignored when written to.

Open Access

Instruction Set

4-13ARM8 Data Sheet
ARM DDI 0080C

4.5.5 Using R15 as an operand
If R15 (the PC) is used as an operand in a data processing instruction and the shift
amount is instruction-specified, the PC value will be the address of the instruction plus
8 bytes.

For any register-controlled shift instructions, neither Rn nor Rm may be R15.

4.5.6 MOV and MVN opcodes
With MOV and MVN opcodes, the Rn field is ignored and should be set to 0000.

4.5.7 TEQ, TST, CMP and CMN opcodes
These instructions do not write the result of their operation but do set flags in the
CPSR. An assembler will always set the S flag for these instructions, even if you do
not specify this in the mnemonic. The Rd field is ignored and should be set to 0000.

In 32-bit modes, the TEQP form of the instruction used in earlier processors should
not be used: the PSR transfer operations (MRS, MSR) must be used instead. Please
refer to Appendix B, 26-bit Operations on ARM8 for information on 26-bit mode
operation.

Note: The S bit (bit 20) of these instructions must be a 1; a 0 in this bit will cause the
instruction to be something other than a data processing instruction.

4.5.8 Instruction cycle times
Data Processing instructions vary in the number of incremental cycles taken, as
shown in Table 4-2: Instruction cycle times :

Description Cycles

Normal 1

If the opcode is one of ADD, ADC, CMP, CMN, RSB, RSC, SUB, SBC
and there is a complex shift (anything other than LSL #0, LSL #1, LSL #2 or LSL #3)

+1

If a register-specified shift is used +1

With PC written and the S bit is clear +2

With PC written and the S bit is set +3

 Table 4-2: Instruction cycle times

Open Access

Instruction Set

4-14 ARM8 Data Sheet
ARM DDI 0080C

4.5.9 Assembler syntax
The data processing instructions have the following syntax:

One operand instructions

MOV, MVN

<opcode>{cond}{S} Rd,<Op2>

Instructions that do not produce a result

CMP, CMN, TEQ, TST

<opcode>{cond} Rn,<Op2>

Two operand instructions

AND, EOR, SUB, RSB, ADD, ADC, SBC, RSC, ORR, BIC

<opcode>{cond}{S} Rd,Rn,<Op2>

where:

{cond} is a two-character condition mnemonic. The assembler assumes AL
(ALways) if no condition is specified.

{S} if present, specifies that the CPSR flags will be affected (implied for
CMP, CMN, TEQ, TST).

Rd is an expression evaluating to a valid register number.

Rn is an expression evaluating to a valid register number.

<Op2> is Rm{,<shift>} or #<expression>, where <shift> is one of:

<shiftname> <register>

<shiftname> #<expression> ,
RRX (rotate right one bit with extend).

<shiftname> can be:
• ASL (ASL is a synonym for LSL)
• LSL
• LSR
• ASR
• ROR

If #<expression> is used, the assembler will attempt to generate a
rotated immediate 8-bit field to match the expression. If this proves
impossible, it will give an error.

If there is a choice of forms (for example as in #0, which can be
represented using 0 rotated by 0, 2, 4,...30) the assembler will use a
rotation by 0 wherever possible. This affects whether C will be
changed in a logical operation with the S bit set - see 4.5.3 Immediate
operand rotates on page 4-12. If the rotation is 0, then C won’t be
modified. If the rotation is non-zero, it will be set to the last rotated bit
as shown in Figure 4-9: Rotate right on page 4-11.

It is also possible to specify the 8-bit immediate and the rotation
amount explicitly, by writing <Op2> as:

#<immediate>,<rotate>

Open Access

Instruction Set

4-15ARM8 Data Sheet
ARM DDI 0080C

where:

<immediate> is a number in the range 0-255

<rotate> is an even number in the range 0-30

4.5.10 Examples
ADDEQ R2,R4,R5 ; if the Z flag is set make R2:=R4+R5

TEQS R4,#3 ; test R4 for equality with 3
; (the S is in fact redundant as the
; assembler inserts it automatically)

SUB R4,R5,R7,LSR R2; logical right shift R7 by the number in
; the bottom byte of R2, subtract result
; from R5, and put the answer into R4

MOV PC,R14 ; return from subroutine

MOVS PC,R14 ; return from exception and restore CPSR
; from SPSR_mode

MOVS R0,#1 ; R0 becomes 1; N and Z flags cleared;
; C and V flags unchanged

MOVS R0,#4,2 ; R0 becomes 1 (4 rotated right by 2);
; N, Z and C flags cleared, V flag unchanged

Open Access

Instruction Set

4-16 ARM8 Data Sheet
ARM DDI 0080C

4.6 PSR Transfer (MRS, MSR)
A PSR Transfer instruction is only executed if the specified condition is true. The
various conditions are defined at the beginning of this chapter.

The MRS and MSR instructions are formed from a subset of the Data Processing
operations, and are implemented using the TEQ, TST, CMN and CMP instructions
without the S flag set. Figure 4-11: MSR (transfer register contents or immediate
value to PSR) on page 4-17 and Figure 4-12: MRS (transfer PSR contents to a
register) on page 4-18 show the encodings.

These instructions allow access to the CPSR and SPSR registers.

MRS allows the contents of the CPSR or SPSR_<mode> register to be moved to a
general register. MSR allows the contents of a general register or an immediate value
to be moved to the CPSR or SPSR_<mode> register, with the options of affecting:

• the flag bits only
• the control bits only
• both the flag and control bits

4.6.1 MSR operands
A register operand is any general-purpose register except R15.

An immediate operand is constructed by taking the 8-bit immediate in the “Imm” field,
zero-extending it to 32 bits, and rotating it by twice the value in the “Rotate” field. This
enables many common constants to be generated, for example all powers of two.

4.6.2 Operand restrictions
In User mode, the control bits of the CPSR are protected so that only the condition
code flags can be changed. In other (privileged) modes, it is possible to alter the entire
CPSR.

The mode at the time of execution determines which of the SPSR registers is
accessible: for example, only SPSR_fiq can be accessed when the processor is in FIQ
mode.

R15 cannot be specified as the source or destination register.

Note: Do not attempt to access an SPSR in User mode or System mode, since no such
register exists.

Open Access

Instruction Set

4-17ARM8 Data Sheet
ARM DDI 0080C

4.6.3 Reserved bits
Only eleven bits of the PSR are defined in ARM8 (N, Z, C, V, I, F and M[4:0]).
The remaining bits (PSR[27:8,5]) are reserved for use in future versions of the
processor.

To ensure the maximum compatibility between ARM8 programs and future
processors, you should observe the following rules:

• Reserved bits must be preserved when changing the value in a PSR.
• Programs must not rely on specific values from reserved bits when checking

the PSR status, since in future processors they may read as one or zero.

A read-modify-write strategy should therefore be used when altering the control bits of
any PSR register. This involves using the MRS instruction to transfer the appropriate
PSR register to a general register, changing only the relevant bits, and then
transferring the modified value back to the PSR register using the MSR instruction.

The reserved flag bits (bits 27:24) are an exception to this rule; they may have any
values written to them. Any future use of these bits will be compatible with this.
In particular, there is no need to use the read-modify-write strategy on these bits.

 Figure 4-11: MSR (transfer register contents or immediate value to PSR)

Cond 0 0 I 0

011122124 22272831

Destination PSR
0 = CPSR
1 = SPSR_<current mode>

Condition Field

1 Pd 1 0 Mask 1 1 1 1 Source operand

25 19 16 1523 2026

Immediate operand

 Rm0 0 0 00 0 0 0

 Rotate Imm

0 = Source operand is a register
011 4 3

Unsigned 8-bit immediate valueRotation applied to Imm

011 8 7
1 = Source operand is an immediate value

Destination bits to change
0001 = Control bits only
1000 = Flag bits only
1001 = Control and Flag bits

Other values reserved

Open Access

Instruction Set

4-18 ARM8 Data Sheet
ARM DDI 0080C

 Figure 4-12: MRS (transfer PSR contents to a register)

For example, the following sequence performs a mode change:

MRS R0,CPSR ; take a copy of the CPSR
BIC R0,R0,#0x1F ; clear the mode bits
ORR R0,R0,#new_mode ; select new mode
MSR CPSR,R0 ; write back the modified CPSR

When the aim is simply to change the condition code flags in a PSR, a value can be
written directly to the flag bits without disturbing the control bits. The following example
sets the N, Z, C and V flags:

MSR CPSR_flg,#0xF0000000; set all the flags regardless of
; their previous state (does not
; affect any control bits)

You should not attempt to write an 8-bit immediate value into the whole PSR, since
such an operation cannot preserve the reserved bits.

4.6.4 Instruction cycle times
The MRS instruction takes 1 cycle.

The MSR instruction takes 1 cycle when the flag variant is used, or the destination is
SPSR_<mode>. In all other cases, MSR takes 3 cycles.

Cond 0 0 0 0

0111215162123 22272831

Destination register

Source PSR
0 = CPSR
1 = SPSR_<current mode>

Condition Field

1 Ps Rd0 0 1 11 1 0 0 0 00 0 0 0 0 00 0

Open Access

Instruction Set

4-19ARM8 Data Sheet
ARM DDI 0080C

4.6.5 Assembler syntax
The PSR transfer instructions have the following syntax:

Transfer PSR contents to a register

MRS{cond} Rd,<psr>

Transfer register contents to PSR

MSR{cond} <psr>_<fields>,Rm

Transfer immediate value to PSR

MSR{cond} <psr>_f,#<expression>

where:

{cond} is a two-character condition mnemonic. The assembler
assumes AL (ALways) if no condition is specified.

Rd and Rm are expressions evaluating to a register number other than
R15.

<psr> is CPSR or SPSR.

<fields> is one of:

_c to set the control field mask bit (bit 0)

_x to set the extension field mask bit (bit 1)

_s to set the status field mask bit (bit 2)

_f to set the flags field mask bit (bit 3)

#<expression> is used by the assembler to generate a shifted immediate 8-
bit field. If this impossible, the assembler gives an error.

Open Access

Instruction Set

4-20 ARM8 Data Sheet
ARM DDI 0080C

4.6.6 Previous, deprecated MSR assembler syntax
This section describes the old assembler syntax for MSR instructions. These will still
work on ARM8, but should be replaced by the new syntax as described in section 4.6.5
Assembler syntax on page 4-19.

Transfer register contents to PSR

MSR{cond} <psrf>,Rm

Transfer immediate value to PSR

MSR{cond} <psrf>,#<expression>

where:

{cond} is a two-character condition mnemonic. The assembler
assumes AL (ALways) if no condition is specified.

Rd and Rm are expressions evaluating to a register number other than
R15.

<psrf> is one of CPSR, CPSR_all, CPSR_flg, CSPR_ctl,
SPSR, SPSR_all, SPSR_flg or SPSR_ctl.

#<expression> is used by the assembler to generate a shifted immediate
8-bit field. If this is impossible, the assembler gives an error.

4.6.7 Examples

User mode

In User mode, the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]

MSR CPSR_flg,#0xA0000000 ; CPSR[31:28] <- 0xA
; (i.e. set N,C; clear Z,V)

MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

Open Access

Instruction Set

4-21ARM8 Data Sheet
ARM DDI 0080C

System mode

In system mode, the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:0] <- Rm[31:0]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_ctl,Rm ; CPSR[7:0] <- Rm[7:0]

MSR CPSR_flg,#0x50000000 ; CPSR[31:28] <- 0x5
; (i.e. set Z,V; clear N,C)

MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

Other privileged modes

In other privileged modes, the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:0] <- Rm[31:0]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_ctl,Rm ; CPSR[7:0] <- Rm[7:0]

MSR CPSR_flg,#0x50000000 ; CPSR[31:28] <- 0x5
; (i.e. set Z,V; clear N,C)

MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

MSR SPSR_all,Rm ; SPSR_<mode>[31:0] <- Rm[31:0]
MSR SPSR_flg,Rm ; SPSR_<mode>[31:28] <- Rm[31:28]
MSR SPSR_ctl,Rm ; SPSR_<mode>[7:0] <- Rm[7:0]

MSR SPSR_flg,#0xC0000000 ; SPSR_<mode>[31:28] <- 0xC
; (i.e. set N,Z; clear C,V)

MRS Rd,SPSR ; Rd[31:0] <- SPSR_<mode>[31:0]

Open Access

Instruction Set

4-22 ARM8 Data Sheet
ARM DDI 0080C

4.7 Multiply and Multiply-Accumulate (MUL, MLA)
A multiply instruction is only executed if the specified condition is true. The various
conditions are defined at the beginning of this chapter. Figure 4-13: Multiply
instructions shows the instruction encoding.

 Figure 4-13: Multiply instructions

The multiply and multiply-accumulate instructions perform integer multiplication,
optionally accumulating another integer to the product.

Multiply instruction

The multiply instruction (MUL) gives Rd:=Rm*Rs. Operand Rn is ignored, and the Rn
field should be set to zero for compatibility with possible future upgrades to the
instruction set.

Multiply-accumulate

Multiply-accumulate (MLA) gives Rd:=Rm*Rs+Rn. In some circumstances this can
save an explicit ADD instruction.

The result of a signed multiply of 32-bit operands differs from that of an unsigned
multiply of 32-bit operands only in the upper 32 bits - the low 32 bits of signed and
unsigned results are identical. Since MUL and MLA only produce the low 32 bits of a
multiply, they can be used for both signed and unsigned multiplies. Consider the
following:

Operand A Operand B Result

0xFFFFFFF6 0x00000014 0xFFFFFF38

Signed operands: When the operands are interpreted as signed, A has the value -10
and B has the value 20. The result is -200, which is correctly represented as
0xFFFFFF38.

Unsigned operands: When the operands are interpreted as unsigned, A has the
value 4294967286, B has the value 20 and the result is 85899345720, which is
represented as 0x13FFFFFF38, the least significant 32 bits of which are 0xFFFFFF38.
Again, the representation of the result is correct.

Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm

034781112151619202122272831

Operand registers
Destination register
Set condition code

Accumulate

0 = do not alter condition codes
1 = set condition codes

0 = multiply only
1 = multiply and accumulate

Condition Field

Open Access

Instruction Set

4-23ARM8 Data Sheet
ARM DDI 0080C

4.7.1 Operand restrictions
• The destination register (Rd) must not be the same as Rm.
• R15 must not be used as Rd, Rm, Rn or Rs.

4.7.2 CPSR flags
Setting the CPSR flags is optional, and is controlled by the S bit. If this is set:

N is made equal to bit 31 of the result.

Z is set if and only if the result is zero.

C is set to a meaningless value.

V is unaffected.

4.7.3 Instruction cycle times
MUL and MLA take from 3 to 6 cycles to execute, depending upon the early
termination, as follows:

Basic cycle count 6 (including any accumulate)

Early termination -(0 to 3)
(see 8.4 Multiply and Multiply-
Accumulate on page 8-4 for further details)

4.7.4 Assembler syntax
The multiply instructions have the following syntax:

MUL{cond}{S} Rd,Rm,Rs

MLA{cond}{S} Rd,Rm,Rs,Rn

where:

{cond} is a two-character condition mnemonic. The assembler
assumes AL (ALways) if no condition is specified.

{S} if present, specifies that the CPSR flags will be affected.

Rd,Rm,Rs,Rn are expressions evaluating to a register number other than
R15.

4.7.5 Examples
MUL R1,R2,R3 ; R1:=R2*R3

MLAEQS R1,R2,R3,R4 ; conditionally R1:=R2*R3+R4,
; setting condition codes

Open Access

Instruction Set

4-24 ARM8 Data Sheet
ARM DDI 0080C

4.8 Multiply Long and Multiply-Accumulate Long (MULL, MLAL)
A multiply long instruction is only executed if the specified condition is true. The various
conditions are defined at the beginning of this chapter. The instruction encoding is
shown in Figure 4-14: Multiply long instructions .

 Figure 4-14: Multiply long instructions

The multiply long instructions perform integer multiplication on two 32-bit operands
and produce 64-bit results. Signed and unsigned multiplication each with optional
accumulate give rise to four variations.

Multiply (UMULL and SMULL)

UMULL and SMULL take two 32-bit numbers and multiply them to produce a 64-bit
result of the form RdHi,RdLo := Rm * Rs. The lower 32 bits of the 64-bit result are
written to RdLo, the upper 32 bits of the result are written to RdHi.

Multiply-accumulate (UMLAL and SMLAL)

UMLAL and SMLAL take two 32-bit numbers, multiply them, and add a 64-bit number
to produce a 64-bit result of the form RdHi,RdLo := Rm * Rs + RdHi,RdLo. The lower
32 bits of the 64-bit number to add are read from RdLo. The upper 32 bits of the 64-bit
number to add are read from RdHi. The lower 32 bits of the 64-bit result are written to
RdLo, and the upper 32 bits of the 64-bit result are written to RdHi.

UMULL and UMLAL treat all of their operands as unsigned binary numbers, and write
an unsigned 64-bit result. The SMULL and SMLAL instructions treat all of their
operands as two's-complement signed numbers and write a two's-complement signed
64-bit result.

4.8.1 Operand restrictions
• R15 must not be used as an operand or as a destination register.
• RdHi, RdLo and Rm must all specify different registers.

Cond 0 0 0 0 1 U A S RdHi RdLo Rs 1 0 0 1 Rm

03478111215161920212223272831

Operand registers
Destination registers
Set condition code

Accumulate

Unsigned

0 = do not alter condition codes
1 = set condition codes

0 = multiply only
1 = multiply and accumulate

0 = unsigned
1 = signed

Condition Field

Open Access

Instruction Set

4-25ARM8 Data Sheet
ARM DDI 0080C

4.8.2 CPSR flags
Setting the CPSR flags is optional, and is controlled by the S bit. If this is set:

N is made equal to bit 63 of the result

Z is set if and only if all 64 bits of the result are zero

C is set to a meaningless value

V is set to a meaningless value

4.8.3 Instruction cycle times
MULL and MLAL take from 4 to 7 cycles to execute, depending upon the early
termination, as follows:

Basic cycle count 7 (including any accumulate)

Early termination -(0 to 3)
(see 8.4 Multiply and Multiply-
Accumulate on page 8-4 for further details)

4.8.4 Assembler syntax
The multiply long instructions have the following syntax:

Unsigned multiply long (32 x 32 = 64)

UMULL{cond}{S} RdLo,RdHi,Rm,Rs

Unsigned multiply and accumulate long (32 x 32 + 64 = 64)

UMLAL{cond}{S} RdLo,RdHi,Rm,Rs

Signed multiply long (32x 32 = 64)

SMULL{cond}{S} RdLo,RdHi,Rm,Rs

Signed multiply and accumulate long (32 x 32 + 64 = 64)

SMLAL{cond}{S} RdLo,RdHi,Rm,Rs

where

{cond} is a two-character condition mnemonic. The
assembler assumes AL (ALways) if no condition is
specified.

{S} if present, specifies that the CPSR flags will be
affected.

RdLo,RdHi,Rm,Rs are expressions evaluating to a register number
other than R15.

Examples

UMULL R1,R4,R2,R3;; R4,R1:=R2*R3

UMLALS R1,R5,R2,R3;; R5,R1:=R2*R3+R5,R1, also ; ;
; setting condition codes

Open Access

Instruction Set

4-26 ARM8 Data Sheet
ARM DDI 0080C

4.9 Single Data Transfer (LDR, STR)
A single data transfer instruction is only executed if the specified condition is true. The
various conditions are defined at the beginning of this chapter. Figure 4-15: Single
data transfer instructions shows the instruction encoding.

 Figure 4-15: Single data transfer instructions

Single data transfer instructions are used to load or store single bytes or words of data.
The memory address used in the transfer is calculated by adding or subtracting an
offset from a base register. If auto-indexing is required, the result may be written back
into the base register.

Cond I Rn Rd

011121516192021242526272831

01 P U B W L Offset

2223

011

Source/Destination register
Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit

Byte/Word bit

0 = no write-back
1 = write address into base

0 = transfer word quantity
1 = transfer byte quantity

Up/Down bit

Pre/Post indexing bit

0 = offset is an immediate value
Immediate offset

Immediate offset

Unsigned 12 bit immediate offset
1 = offset is a register

11 0

shift applied to Rm

34

Condition field

0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer
1 = pre; add offset before transfer

Offset register

Shift Rm

Open Access

Instruction Set

4-27ARM8 Data Sheet
ARM DDI 0080C

4.9.1 Offsets and auto-indexing
The offset from the base may be either a 12-bit unsigned binary immediate value in
the instruction, or a second register (possibly shifted in some way).

The offset may be added to (U=1) or subtracted from (U=0) the base register Rn. The
offset modification may be performed either before (pre-indexed, P=1) or after (post-
indexed, P=0) the base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The
modified base value may be written back into the base (W=1), or the old base value
may be kept (W=0).

In the case of post-indexed addressing, the write-back bit is redundant, since the old
base value can be retained by setting the offset to zero. Therefore post-indexed data
transfers always write back the modified base. The only use of the W bit in a post-
indexed data transfer is in privileged mode code, where setting the W bit forces non-
privileged mode for the transfer, allowing the operating system to generate a user
address in a system where the memory management hardware makes suitable use of
this facility.

4.9.2 Shifted register offset
The 8 shift control bits are described in 4.5.2 Shifts on page 4-9. However,
register-specified shift amounts are not available in this instruction class.

4.9.3 Bytes and words
This instruction class may be used to transfer a byte (B=1) or a word (B=0) between
an ARM8 register and memory.

The action of LDR(B) and STRB instructions is influenced by the BIGEND control
signal. The two possible configurations are:

• Little-endian
• Big-endian

Little-endian configuration

Byte load (LDRB) expects the data on data bus inputs 7 through 0 if the
supplied address is on a word boundary, on data bus inputs
15 through 8 if it is a word address plus one byte, and so on.
The selected byte is placed in the bottom 8 bits of the
destination register, and the remaining bits of the register are
filled with zeros. Please see Figure 3-1: Little-endian
addresses of bytes within words on page 3-2.

Byte store (STRB) repeats the bottom 8 bits of the source register four times
across data bus outputs 31 through 0. The external memory
system should activate the appropriate byte subsystem to
store the data.

Word load (LDR) Any non word-aligned address will cause the data read to be
rotated into the register so that the addressed byte occupies
bits 0 to 7. This means that halfwords accessed at offsets 0
and 2 from the word boundary will be correctly loaded into
bits 0 through 15 of the register. Two shift operations are then
required to clear or to sign extend the upper 16 bits. This is
illustrated in Figure 4-16: Little-endian offset addressing
on page 4-28.

Open Access

Instruction Set

4-28 ARM8 Data Sheet
ARM DDI 0080C

Note: The LDRH and LDRSH insrtuctions provide a more efficient
way to load half-words on ARM8. This method of loading
half-words should therefore only be used if compatibility with
previous ARM processors is required. See 4.10 Halfword
and Signed Data Transfer on page 4-33 for further details.

Word store (STR) will normally generate a word-aligned address. The word
presented to the data bus is not affected if the address is non-
word-aligned, so bit 31 of the register being stored always
appears on data bus output 31.

 Figure 4-16: Little-endian offset addressing

Big-endian configuration

Byte load (LDRB) expects the data on data bus inputs 31 through 24 if the
supplied address is on a word boundary, on data bus inputs
23 through 16 if it is a word address plus one byte, and so on.
The selected byte is placed in the bottom 8 bits of the
destination register, and the remaining bits of the register are
filled with zeros. Please see Figure 3-2: Big-endian
addresses of bytes within words on page 3-2.

Byte store (STRB) repeats the bottom 8 bits of the source register four times
across data bus outputs 31 through 0. The external memory
system should activate the appropriate byte subsystem to
store the data.

Word load (LDR) will normally generate a word-aligned address. An address
offset of 0 or 2 from a word boundary will cause the data to
be rotated into the register so that the addressed byte
occupies bits 31 through 24. This means that halfwords
accessed at these offsets will be correctly loaded into bits 16

A

B

C

D

memory

A+3

A+2

A+1

A

24

16

8

0

A

B

C

D

register

24

16

8

0
LDR from word-aligned address

A

B

C

D

24

16

8

0

C

D

A

B

24

16

8

0
LDR from address offset by 2

A+3

A+2

A+1

A

Open Access

Instruction Set

4-29ARM8 Data Sheet
ARM DDI 0080C

through 31 of the register. A shift operation is then required to
move (and optionally sign extend) the data into the bottom 16
bits. An address offset of 1 or 3 from a word boundary will
cause the data to be rotated into the register so that the
addressed byte occupies bits 15 through 8.

Note: The LDRH and LDRSH instructions provide a more efficient
way to load half-words on ARM8. This method of loading
half-words should therefore only be used if compatibility with
previous ARM processors is required. See 4.10 Halfword
and Signed Data Transfer on page 4-33 for details.

Word store (STR) will normally generate a word-aligned address. The word
presented to the data bus is not affected if the address is not
word-aligned, so that bit 31 of the register being stored
always appears on data bus output 31.

 Figure 4-17: Big-endian offset addressing

A

B

C

D

memory

A+3

A+2

A+1

A 24

16

8

0

A

B

C

D

register

24

16

8

0
LDR from word-aligned address

A

B

C

D

24

16

8

0

C

D

A

B

24

16

8

0
LDR from address offset by 2

A+3

A+2

A+1

A

Open Access

Instruction Set

4-30 ARM8 Data Sheet
ARM DDI 0080C

4.9.4 Use of R15
Do not specify write-back if R15 is the base register (Rn). When using R15 as the base
register, it must be remembered that it contains an address 8 bytes on from the
address of the current instruction.

Do not specify post-indexing (forcing writeback) to Rn when Rn is R15.

Do not specify R15 as the register offset (Rm).

When R15 is the source register (Rd) of a register store (STR) instruction, the stored
value will be the address of the instruction plus 8. Note that this is different from
previous ARM processors, which stored the address of the register plus 12.

When R15 is the source register (Rd) of a register store (STR) instruction, or the
destination register (Rd) of a register load (LDR) instruction, the byte form of the
instruction (LDRB or STRB) must not be used, and the address must be word-aligned.

Note: Bits [1:0] of R15 are set to zero when read from, and are ignored when written to.

4.9.5 Restrictions on the use of the base register
In the following example, it may sometimes be impossible to calculate the initial value
of R0 after an abort in order to restart the instruction:

LDR R0,[R1],R1

Therefore a post-indexed LDR or STR where Rm is the same register as Rn should
not be used.

When an LDR instruction specifies (or implies) base writeback, register positions Rd
and Rn should not be the same register.

4.9.6 Data aborts
Please refer to 3.4.3 Aborts on page 3-10 for details of aborts in general.

In some situations a transfer to or from an address may cause a memory management
system to generate an abort.

For example, in a system which uses virtual memory, the required data may be absent
from main memory. The memory manager can signal a problem by signalling a Data
Abort to the processor, whereupon the Data Abort trap will be taken. It is up to the
system software to resolve the cause of the problem, after which the instruction can
be restarted and the original program continued.

In all cases, the base register is restored to its original value before the Abort trap is
taken. In the case of an LDR or LDRB, the destination register (Rd) will not have been
altered.

Open Access

Instruction Set

4-31ARM8 Data Sheet
ARM DDI 0080C

4.9.7 Instruction cycle times
LDR instructions take 1 cycle:

• +1 cycle if there is a register offset with a shift other than LSL #0, LSL #1, LSL
#2 or LSL #3

• +4 cycles for loading the PC

STR instructions take 1 cycle:

• +1 cycle if there is a register offset (regardless of shift type)

4.9.8 Assembler syntax
The single data transfer instructions have the following syntax:

<LDR|STR>{cond}{B}{T} Rd,<Addr>

where:

LDR loads from memory into a register.

STR stores from a register into memory.

{cond} is a two-character condition mnemonic. If omitted, the assembler
assumes ALways.

{B} if present, specifies byte transfer. If omitted, word transfer is used.

{T} if present, sets the W bit in a post-indexed instruction, forcing non-
privileged mode for the transfer cycle. T is not allowed when a pre-
indexed addressing mode is specified or implied.

Rd is an expression evaluating to a valid register number.

<Addr> is one of:

An <expression> specifying an address:

The assembler will attempt to address this location by generating an
instruction that uses the PC as a base, along with a corrected
immediate offset. This will be a PC relative, pre-indexed address.
If the address is out of range, an error is generated.

A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,#<expression>]{!} offset of <expression> bytes
[Rn,{+/-}Rm{,<shift>}]{!} offset of +/- contents of index

register, shifted by <shift>

A post-indexed addressing specification:
[Rn],#<expression> offset of <expression> bytes
[Rn],{+/-}Rm{,<shift>} offset of +/- contents of index

register, shifted by <shift> .

Rn and Rm are expressions evaluating to a register number. If Rn is R15, neither
post-indexed addressing nor {!} should be specified.

<shift> is one of:

Open Access

Instruction Set

4-32 ARM8 Data Sheet
ARM DDI 0080C

<shiftname> #expression

RRX (rotate right one bit with extend)
<shiftname> is ASL, LSL, LSR, ASR or ROR

(ASL is a synonym for LSL)

{!} if present, sets the W bit so that the base register is written back.

4.9.9 Examples
STR R1,[R2,R4]! ; store R1 at R2+R4 (both are registers)

; and write back address to R2

STR R1,[R2],R4 ; store R1 at R2. Write back R2+R4 to R2

LDR R1,[R2,#16] ; load R1 from contents of R2+16.
; Don't write back

LDR R1,[R2,R3,LSL#2]; load R1 from contents of R2+R3*4

LDREQB R1,[R6,#5] ; conditionally load byte at R6+5 into R1
; bits 0 - 7, filling bits 8 - 31 with 0s

STR R1,PLACE ; assembler generates PC relative
; offset to address PLACE

•
•

PLACE

Open Access

Instruction Set

4-33ARM8 Data Sheet
ARM DDI 0080C

4.10 Halfword and Signed Data Transfer

(LDRH/STRH/LDRSB/LDRSH)
The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in Figure
4-18: Halfword and signed data transfer with register offset and Figure 4-19:
Halfword and signed data transfer with immediate offset .

These instructions are used to load or store halfwords of data and also load
sign-extended bytes or halfwords of data. The memory address used in the transfer is
calculated by adding an offset to or subtracting an offset from a base register. The
result of this calculation may be written back into the base register if auto-indexing is
required.

 Figure 4-18: Halfword and signed data transfer with register offset

Cond 0 0 0 P U 0 W L Rn Rd 0 0 0 0 Rm

034781112151619202122272831

Offset register

Base register

S H

Source/Destination register

00 = SWP or mutiply instruction
01 = Unsigned halfword

0 = store to memory
1 = load from memory

Load/Store

1 S H 1

10 = Signed byte
11 = Signed halfword

0 = no write-back
1 = write address into base

Write-back

0 = down: subtract offset from
base

Up/Down

1 = up: add offset to base

0 = post: add/subtract offset
Pre/Post indexing

after transfer
1 = pre: add/subtract offset

before transfer

Condition field

232425 56

Open Access

Instruction Set

4-34 ARM8 Data Sheet
ARM DDI 0080C

 Figure 4-19: Halfword and signed data transfer with immediate offset

4.10.1 Offsets and auto-indexing
The offset from the base may be either an 8-bit unsigned binary immediate value in
the instruction, or a second register. In the case of an immediate value, bits 11:8 (xxxx)
and bits 3:0 (yyyy) combine to form the offset (xxxxyyyy). The offset may be added to
(U=1) or subtracted from (U=0) the base register Rn. The offset modification may be
performed either before (pre-indexed, P=1) or after (post-indexed, P=0) the base
register is used as the transfer address.

The W bit gives optional auto-increment and decrement addressing modes. The
modified base value may be written back into the base (W=1), or the old base may be
kept (W=0). In the case of post-indexed addressing, the write back bit is redundant and
is always set to zero, since the old base value can be retained if necessary by setting
the offset to zero. Therefore post-indexed data transfers always write back the
modified base.

The Write-back bit must not be set high (W=1) when post-indexed addressing is
selected.

Cond 0 0 0 P U 1 W L Rn Rd Offset

034781112151619202122272831

Base register

S H

Source/Destination

00 = SWP or multiply instruction
01 = Unsigned halfword

0 = store to memory
1 = load from memory

Load/Store

1 S H 1

10 = Signed byte
11 = Signed halfword

register

0 = no write-back
1 = write address into base

Write-back

0 = down: subtract offset from
base

Up/Down

1 = up: add offset to base

0 = post: add/subtract offset
Pre/Post indexing

after transfer
1 = pre: add/subtract offset

before transfer

Condition field

232425 56

 Offset

Immediate Offset

Open Access

Instruction Set

4-35ARM8 Data Sheet
ARM DDI 0080C

4.10.2 Halfword load and stores
Setting S=0 and H=1 may be used to transfer unsigned Halfwords between a register
and memory.

The action of LDRH and STRH instructions is influenced by the BIGEND control
signal. The two possible configurations are described in the section below.

4.10.3 Signed byte and halfword loads
The S bit controls the loading of sign-extended data. When S=1 the H bit selects
between Bytes (H=0) and Halfwords (H=1). The L bit should not be set LOW (Store)
when Signed (S=1) operations have been selected.

The LDRSB instruction loads the selected Byte into bits 7 to 0 of the destination
register and bits 31 to 8 of the destination register are set to the value of bit 7, the sign
bit.

The LDRSH instruction loads the selected Halfword into bits 15 to 0 of the destination
register and bits 31 to 16 of the destination register are set to the value of bit 15, the
sign bit.

The action of the LDRSB and LDRSH instructions is influenced by the BIGEND control
signal. The two possible configurations are described in the following section.

4.10.4 Endianness and byte/halfword selection

Little-endian configuration

Signed byte load (LDRSB): This load expects data on data bus inputs 7 through to 0
if the supplied address is on a word boundary, on data bus inputs 15 through to 8 if it
is a word address plus one byte, and so on. The selected byte is placed in the bottom
8 bits of the destination register, and the remaining bits of the register are filled with
the sign bit, the most significant bit of the byte. Please see Figure 3-1: Little-endian
addresses of bytes within words on page 3-2.

Halfword load (LDRSH or LDRH): This load expects data on data bus inputs 15
through to 0 if the supplied address is on a word boundary and on data bus inputs 31
through to 16 if it is on an odd halfword boundary, (A[1]=1).The supplied address
should always be on a halfword boundary. If bit 0 of the supplied address is HIGH, an
unpredictable value will be loaded. The selected halfword is placed in the bottom 16
bits of the destination register. For unsigned halfwords (LDRH), the top 16 bits of the
register are filled with zeros and for signed halfwords (LDRSH) the top 16 bits are filled
with the sign bit, the most significant bit of the halfword.

Halfword store (STRH): This store repeats the bottom 16 bits of the source register
twice across the data bus outputs 31 through to 0. The external memory system
should activate the appropriate halfword subsystem to store the data.

Note: The address must be halfword aligned; if bit 0 of the address is HIGH this causes
unpredictable behaviour.

Big-endian configuration

Signed byte load (LDRSB): This load (LDRSB) expects data on data bus inputs 31
through to 24 if the supplied address is on a word boundary, on data bus inputs 23
through to 16 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bits of the destination register, and the remaining bits of the
register are filled with the sign bit, the most significant bit of the byte. Please see
Figure 3-2: Big-endian addresses of bytes within words on page 3-2.

Open Access

Instruction Set

4-36 ARM8 Data Sheet
ARM DDI 0080C

Halfword load (LDRSH or LDRH): This load expects data on data bus inputs 31
through to 16 if the supplied address is on a word boundary and on data bus inputs 15
through to 0 if it is on an odd halfword boundary, (A[1]=1). The supplied address should
always be on a halfword boundary. If bit 0 of the supplied address is HIGH, an
unpredictable value is loaded. The selected halfword is placed in the bottom 16 bits of
the destination register. For unsigned halfwords (LDRH), the top 16 bits of the register
are filled with zeros and for signed halfwords (LDRSH) the top 16 bits are filled with
the sign bit, the most significant bit of the halfword.

Halfword store (STRH): This store repeats the bottom 16 bits of the source register
twice across the data bus outputs 31 through to 0. The external memory system
should activate the appropriate halfword subsystem to store the data. Note that the
address must be halfword aligned, if bit 0 of the address is HIGH this will cause
unpredictable behaviour.

4.10.5 Use of R15
Do not specify R15 as:

• the register offset (Rm)
• the destination register (Rd) of a load instruction (LDRH, LDRSH, LDRSB)
• the source register (Rd) of a store instruction (STRH, STRSH, STRSB)

Base register

Do not specify either write-back or post-indexing (which forces write-back) if R15 is
specified as the base register (Rn). When using R15 as the base register you must
remember that it contains an address 8 bytes on from the address of the current
instruction.

4.10.6 Restrictions on the use of the base register
Do not specify post-indexed loads and stores where Rm and Rn are the same register,
as they can be impossible to unwind after an abort.

Do not set register positions Rd and Rn to be the same register when a load instruction
specifies (or implies) base write-back.

Open Access

Instruction Set

4-37ARM8 Data Sheet
ARM DDI 0080C

4.10.7 Data aborts
Please refer to 3.4.3 Aborts on page 3-10 for details of aborts in general.

In some situations a transfer to or from an address may cause a memory management
system to generate an abort.

For example, in a system which uses virtual memory, the required data may be absent
from main memory. The memory manager can signal a problem by signalling a Data
Abort to the processor, whereupon the Data Abort trap will be taken. It is up to the
system software to resolve the cause of the problem, after which the instruction can
be restarted and the original program continued.

In all cases, the base register is restored to its original value before the Abort trap is
taken. In the case of an LDRH, LDRSB or LDRSH, the destination register (Rd) will
not have been altered.

4.10.8 Instruction cycle times
The cycle times are the same as LDR/STR for all cases of (H, SH, SB).

Load instructions take 1 cycle.

Store instructions take 1 cycle.

4.10.9 Assembler syntax
<LDR|STR>{cond}<H|SH|SB> Rd,<Addr>

LDR load from memory into a register

STR Store from a register into memory

{cond} two-character condition mnemonic. See 4.3 The Condition Field on
page 4-3

H Transfer halfword quantity

SB Load sign extended byte (Only valid for LDR)

SH Load sign extended halfword (Only valid for LDR)

Rd is an expression evaluating to a valid register number.

<Addr> is one of:

1 An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using
the PC as a base and an immediate offset to address the
location given by evaluating the expression. This will be a
PC-relative, pre-indexed address. If the address is out of
range, this generates an error.

2 A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>]{!} offset of <expression>
bytes

[Rn,{+/-}Rm]{!} offset of +/- contents of
index register

Open Access

Instruction Set

4-38 ARM8 Data Sheet
ARM DDI 0080C

3 A post-indexed addressing specification:

[Rn],<#expression> offset of <expression>
bytes

[Rn],{+/-}Rm offset of +/- contents of
index register.

Rn and Rm are expressions evaluating to a register number. If Rn is R15, neither
post-indexed addressing nor {!} should be specified.

{!} writes back the base register (sets the W bit) if ! is present.

4.10.10 Examples
LDRH R1,[R2,-R3]!; Load R1 from the contents of the

; Halfword address contained in
; R2-R3 (both of which are registers)
; and write back address to R2

STRH R3,[R4,#14] ; Store the halfword in R3 at R14+14
; Don't write back

LDRSB R8,[R2],#-223; Load R8 with the sign extended
; contents of the byte address
; contained in R2 and write back R2-223
; to R2

LDRNESH R11,[R0] ; Conditionally load R11 with the sign
; extended contents of the halfword
; address contained in R0.

HERE STRH R5,[(PC, # (FRED-HERE-8)]
. ; Generate PC relative offset to
. ; address FRED. Store the halfword
. ; in R5 at address FRED
.
.

FRED

Open Access

Instruction Set

4-39ARM8 Data Sheet
ARM DDI 0080C

4.11 Block Data Transfer (LDM, STM)
A block data transfer instruction is only executed if the specified condition is true. The
various conditions are defined at the beginning of this chapter. Figure 4-20: Block
data transfer instructions shows the instruction encoding.

 Figure 4-20: Block data transfer instructions

Block data transfer instructions are used to load (LDM) or store (STM) any subset of
the currently visible registers. They support all possible stacking modes, maintaining
full or empty stacks which can grow up or down memory, and are very efficient
instructions for saving or restoring context, or for moving large blocks of data around
main memory.

4.11.1 The register list
The instruction can cause the transfer of any registers in the current bank (and non-
user mode programs can also transfer to and from the user bank, see below). The
register list is a 16-bit field in the instruction, with each bit corresponding to a register.
A 1 in bit 0 of the register field will cause R0 to be transferred, a 0 will cause it not to
be transferred; similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction
is that the register list must not be empty.

Whenever R15 is stored to memory the stored value is the address of the STM
instruction plus 8. Note that this is different from previous ARMs which stored the
address of the instruction plus 12 (or 8 if R15 is the only register in the list.)

Cond Rn

015161920212425272831

P U W L

2223

100 S Register list

Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit
0 = no write-back
1 = write address into base

Up/Down bit

Pre/Post indexing bit

0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer
1 = pre; add offset before transfer

PSR & force user bit
0 = do not load PSR or force user mode
1 = load PSR or force user mode

Condition field

Open Access

Instruction Set

4-40 ARM8 Data Sheet
ARM DDI 0080C

4.11.2 Addressing modes
The transfer addresses are determined by the contents of the base register (Rn), the
pre/post bit (P) and the up/down bit (U). The registers are stored such that the lowest
register is always at the lowermost address in memory, the highest numbered register
is always at the uppermost address, and the others are stored in numerical order
between them.

The register transfers will occur in ascending order. By way of illustration, consider the
transfer of R1, R5 and R7 in the case where Rn=0x1000 and write-back of the modified
base is required (W=1). Figures Figure 4-21: Post-increment addressing to Figure
4-24: Pre-decrement addressing starting on page 4- 41 show the sequence of
register transfers, the addresses used, and the value of Rn after the instruction has
completed.

In all cases, if write-back of the modified base was not required (W=0), Rn would have
retained its initial value of 0x1000 unless it was also in the transfer list of a load multiple
register instruction, when it would have been overwritten with the loaded value.

4.11.3 Address alignment
The address should normally be a word-aligned quantity. Non-word-aligned addresses
do not affect the instruction: no data rotation occurs (as would happen in LDR.)
However, the bottom 2 bits of the address will appear on A[1:0] and might be
interpreted by the memory system.

4.11.4 Use of the S bit
When the S bit is set in a LDM/STM instruction, its meaning depends on whether R15
is in the transfer list and also on the type of instruction. The S bit should only be set if
the instruction is to execute in a privileged mode other than System mode.

LDM with R15 in transfer list and S bit set (Mode changes)

If the instruction is an LDM, then SPSR_<mode> is transferred to CPSR at the same
time as R15 is loaded.

STM with S bit set (User bank transfer)

The registers to be transferred are taken from the User bank rather than the bank
corresponding to the current mode. This is useful for saving the user state on process
switches. Base write-back must not be used when this mechanism is employed.

LDM with R15 not in transfer list and S bit set (User bank transfer)

The user bank registers are loaded, rather than those in the bank corresponding to the
current mode. This is useful for restoring the user state on process switches. Do not
use base write-back when this mechanism is employed. Also, take care not to read
from a banked register during the following cycle. (Inserting a NOP after the LDM will
ensure safety.)

4.11.5 Use of R15
R15 must not be used as the base register in any LDM or STM instruction.

Note: Bits [1:0] of R15 are set to zero when read from, and are ignored when written to.

Open Access

Instruction Set

4-41ARM8 Data Sheet
ARM DDI 0080C

4.11.6 Inclusion of the base in the register list
When write-back is specified during an STM, if the base register is the lowest
numbered register in the list, then the original base value is stored. Otherwise the
value stored is not specified and should not be used.

4.11.7 Data aborts
Please refer to 3.4.3 Aborts on page 3-10 for details of Aborts in general.

When a Data Abort occurs during LDM or STM instructions, further register transfers
are stopped. The base register is always restored to its original value (before the
instruction had executed) regardless of whether writeback was specified or not. As
such, the instruction can always be restarted without any need to adjust the value of
the base register in the Data Abort service routine code.

 Figure 4-21: Post-increment addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

Open Access

Instruction Set

4-42 ARM8 Data Sheet
ARM DDI 0080C

 Figure 4-22: Pre-increment addressing

 Figure 4-23: Post-decrement addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

Open Access

Instruction Set

4-43ARM8 Data Sheet
ARM DDI 0080C

 Figure 4-24: Pre-decrement addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

Open Access

Instruction Set

4-44 ARM8 Data Sheet
ARM DDI 0080C

4.11.8 Instruction cycle times
The cycle count for LDM instructions depends on the number of ordinary registers
being loaded (excluding R15), and whether R15 is being loaded.

 The following table shows the basic cycle count for LDM.

The above assumes that the memory system supports double-bandwidth transfer.
If this is not so, then count N cycles for the number of registers being transferred, plus
5 cycles if R15 is loaded, with a minimum of two cycles overall.

A common example of where this might happen in a cached memory system would be
when uncacheable memory is being accessed.

Additional cycles may be incurred if the memory system indicates that it is only able to
transfer one item of data where two were requested. For example, when accessing the
last word in a cache line in a cached memory system. The RResponse[] control
indicates this. See Chapter 6, Memory Interface for details.

Number of Ordinary
Registers transferred

Cycles when PC (R15)
is not in register list

Cycles when PC (R15)
is in register list

0 - 5

1 2 6

2 2 6

3 3 7

4 3 7

5 4 8

6 4 8

7 5 9

8 5 9

9 6 10

10 6 10

11 7 11

12 7 11

13 8 12

14 8 12

15 9 13

 Table 4-3: Basic cycle count for LDM

Open Access

Instruction Set

4-45ARM8 Data Sheet
ARM DDI 0080C

The following table shows the cycle counts for STM instructions.

Note: PC is stored as the address of the current instruction plus 8.

4.11.9 Assembler syntax
The block data transfer instructions have the following syntax:

<LDM|STM>{cond}<addressmode> Rn{!},<Rlist>{^}

where:

LDM loads from memory to registers.

STM stores from registers to memory.

{cond} is a two-character condition mnemonic. The assembler
assumes AL (ALways) if no condition is specified.

<addressmode > is one of <FD|ED|FA|EA|IA|IB|DA|DB>.
Note that <addressmode > is not optional.
(See Table 4-5: Addressing mode names on page 4-46)

Rn is an expression evaluating to a register number.

<Rlist> is a list of registers and register ranges enclosed in {} (eg.

Number of Ordinary
Registers transferred

Cycles when PC (R15)
is not in register list

Cycles when PC (R15)
is in register list

0 - 2

1 2 2

2 2 3

3 3 4

4 4 5

5 5 6

6 6 7

7 7 8

8 8 9

9 9 10

10 10 11

11 11 12

12 12 13

13 13 14

14 14 15

15 15 16

 Table 4-4: Basic cycle count for STM

Open Access

Instruction Set

4-46 ARM8 Data Sheet
ARM DDI 0080C

{R0,R2-R7,R10}).

{!} if present, requests write-back (W=1), otherwise W=0.

{^} if present, sets the S bit. See 4.11.4 Use of the S bit on
page 4-40.

Addressing mode names

There are different assembler mnemonics for each of the addressing modes,
depending on whether the instruction is being used to support stacks or for other
purposes. These are shown in Table 4-5: Addressing mode names on page 4-46.

Key to table:

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the form
of stack required.

F Full stack (a pre-index has to be done before storing to the stack)

E Empty stack

A Ascending stack (a STM will go up and LDM down)

D Descending stack (a STM will go down and LDM up)

IA, IB, DA, DB allow control when LDM/STM are not being used for stacks:

IA Increment After

IB Increment Before

DA Decrement After

DB Decrement Before

Name Stack Other L bit P bit U bit

pre-increment load LDMED LDMIB 1 1 1

post-increment load LDMFD LDMIA 1 0 1

pre-decrement load LDMEA LDMDB 1 1 0

post-decrement load LDMFA LDMDA 1 0 0

pre-increment store STMFA STMIB 0 1 1

post-increment store STMEA STMIA 0 0 1

pre-decrement store STMFD STMDB 0 1 0

post-decrement store STMED STMDA 0 0 0

 Table 4-5: Addressing mode names

Open Access

Instruction Set

4-47ARM8 Data Sheet
ARM DDI 0080C

4.11.10 Examples
LDMFD SP!,{R0,R1,R2} ; unstack 3 registers
STMIA R0,{R0-R15} ; save all registers

LDMFD SP!,{R15} ; unstack R15,CPSR unchanged

LDMFD SP!,{R15}^ ; unstack R15, CPSR <- SPSR_mode
; (allowed only in privileged modes)

STMFD R13,{R0-R14}^ ; Save user mode regs on stack
; (allowed only in privileged modes)

These instructions may be used to save state on subroutine entry, and restore it
efficiently on return to the calling routine:

STMED SP!,{R0-R3,R14}; save R0 to R3 to use as workspace
; and R14 for returning

BL somewhere ; this nested call will overwrite R14

LDMED SP!,{R0-R3,R15}; restore workspace and return

Open Access

Instruction Set

4-48 ARM8 Data Sheet
ARM DDI 0080C

4.12 Single Data Swap (SWP)
A data swap instruction is only executed if the specified condition is true. The various
conditions are defined at the beginning of this chapter. Figure 4-25: Swap instruction
shows the instruction encoding.

 Figure 4-25: Swap instruction

The data swap instruction is used to swap a byte or word quantity between a register
and external memory. It is implemented as a memory read followed by a memory write
which are “locked” together. The processor cannot be interrupted until both operations
have completed, and the memory manager is warned to treat them as inseparable.

This class of instruction is particularly useful for implementing software semaphores.

The swap address is determined by the contents of the base register (Rn). The
processor first reads the contents of the swap address. It then writes the contents of
the source register (Rm) to the swap address, and stores the old memory contents in
the destination register (Rd). The same register may be specified as both the source
and destination.

ARequest[] takes special values for the read and write operations to signal to the
external memory manager that they are locked together, and should be allowed to
complete without interruption. See Chapter 6, Memory Interface for futher details.
This is important in multi-processor systems, where the swap instruction is the only
indivisible instruction which may be used to implement semaphores. Do not remove
control of the memory from a processor while it is performing a sequence of locked
operations.

4.12.1 Bytes and words
This instruction class may be used to swap a byte (B=1) or a word (B=0) between an
ARM8 register and memory. The SWP instruction is implemented as a LDR followed
by a STR and the action of these is as described in 4.9 Single Data Transfer (LDR,
STR) on page 4-26. In particular, the description of big- and little-endian configuration
applies to the SWP instruction. Note that there is no halfword SWP.

0111215161920272831 23 78 4 3

Condition field

Cond Rn Rd 10010000 Rm00B00010

22 21

Destination register
Source register

Base register
Byte/Word bit

0 = swap word quantity
1 = swap byte quantity

Open Access

Instruction Set

4-49ARM8 Data Sheet
ARM DDI 0080C

4.12.2 Use of R15
R15 must not be used as an operand (Rd, Rn or Rm) in a SWP instruction.

4.12.3 Data aborts
Please refer to 3.4.3 Aborts on page 3-10 for details of Aborts in general.

In some situations, a transfer to or from an address may cause the memory
management system to generate an Abort.

This can happen on either the read or the write cycle. In either case, the Data Abort
trap will be taken, and neither Rd nor the contents of the memory location will have
been altered. It is up to the system software to resolve the cause of the problem. Once
this has been done, the instruction can be restarted and the original program
continued.

4.12.4 Instruction cycle times
SWP instructions take 2 cycles.

4.12.5 Assembler syntax
The SWP instruction has the following syntax:

<SWP>{cond}{B} Rd,Rm,[Rn]

where:

{cond} is a two-character condition mnemonic. The assembler
assumes AL (ALways) if no condition is specified.

{B} specifies byte transfer. If omitted, word transfer is used.

Rd,Rm,Rn are expressions evaluating to valid register numbers.

4.12.6 Examples
SWP R0,R1,[R2] ; load R0 with the word addressed by R2,

; and store R1 at R2

SWPB R2,R3,[R4] ; load R2 with the byte addressed by R4,
; and store bits 0 to 7 of R3 at R4

SWPEQ R0,R0,[R1] ; conditionally swap the contents of the
; word addressed by R1 with R0

Open Access

Instruction Set

4-50 ARM8 Data Sheet
ARM DDI 0080C

4.13 Software Interrupt (SWI)
A SWI instruction is only executed if the specified condition is true. The various
conditions are defined at the beginning of this chapter. Figure 4-26: Software
interrupt instruction shows the instruction encoding.

 Figure 4-26: Software interrupt instruction

The software interrupt is used to enter Supervisor mode in a controlled manner. It
causes the software interrupt trap to be taken, which effects the mode change. The PC
is then forced to the SWI vector and the CPSR is saved in SPSR_svc. See 3.4.4
Software interrupt on page 3-12 for more details.

If the SWI vector address is suitably protected (by external memory management
hardware) from modification by the user, a fully protected operating system may be
constructed.

4.13.1 Return from the supervisor
The PC is saved in R14_svc and the CPSR in SPSR_svc upon entering the software
interrupt trap, with the PC adjusted to point to the word after the SWI instruction. MOVS
PC,R14_svc will return to the calling program and restore the CPSR.

The link mechanism is not re-entrant, so if the supervisor code wishes to use software
interrupts within itself, it must first save a copy of the return address and SPSR.

4.13.2 Comment field
The bottom 24 bits of the instruction are ignored by the processor, and may be used
to communicate information to the supervisor code. For instance, the supervisor may
look at this field and use it to index into an array of entry points for routines which
perform the various supervisor functions. This is commonly referred to as the “SWI
number”.

Cond

272831

Condition field

1 1 1 1

2324 0

The “SWI number” comment field (ignored by processor)

Open Access

Instruction Set

4-51ARM8 Data Sheet
ARM DDI 0080C

4.13.3 Architecturally-defined SWIs
The ARM Architecture V4 reserves SWI numbers 0xF00000 to 0xFFFFFF inclusive for
current and future Architecturally Defined SWI functions. These SWI numbers should
not be used for functions other than those defined by ARM. Please see 4.17 The
Instruction Memory Barrier (IMB) Instruction on page 4-62 for examples of two
such definitions.

Architecturally defined SWI functions are used to provide a well-defined interface
between code which is:

• independent of the ARM processor implementation on which it is running, and
• specific to the ARM processor implementation on which it is running.

The implementation-independent code is provided with a function that is available on
all processor implementations via the SWI interface, and which may be accessed by
privileged and, where appropriate, non-priviledged (User mode) code.

The Architecturally defined SWI instructions must be implemented in the SWI handler
using processor specific code sequences supplied by ARM. Please refer to Appendix
D, Implementing the Instruction Memory Barrier Instruction for details.

4.13.4 Instruction cycle times
SWI instructions take 4 cycles to execute.

4.13.5 Assembler syntax
The SWI instruction has the following syntax:

SWI{cond} <expression>

where:

{cond} is a two-character condition mnemonic. The assembler
assumes AL (ALways) if no condition is specified.

<expression> is evaluated and placed in the comment field (which is
ignored by ARM8).

4.13.6 Examples
SWI ReadC ; get next character from read stream
SWI WriteI+”k” ; output a ”k” to the write stream
SWINE 0 ; conditionally call supervisor

; with 0 in comment field

The above examples assume that suitable supervisor code exists at the SWI vector
address, for instance:

B Supervisor ; SWI entry point
.
.

EntryTable ; addresses of supervisor routines
DCD ZeroRtn
DCD ReadCRtn
DCD WriteIRtn
.
.
Zero EQU 0

Open Access

Instruction Set

4-52 ARM8 Data Sheet
ARM DDI 0080C

ReadC EQU 256
WriteI EQU 512

Supervisor

; SWI has routine required in bits 8-23 and data (if any)
; in bits 0-7.
; Assumes R13_svc points to a suitable stack

STMFD R13,{R0-R2,R14} ; save work registers and
; return address

LDR R0,[R14,#-4]; get SWI instruction
BIC R0,R0,#0xFF000000; clear top 8 bits
MOV R1,R0,LSR#8 ; get routine offset
ADR R2,EntryTable; get entry table start address
LDR R15,[R2,R1,LSL#2]; branch to appropriate routine

WriteIRtn ; enter with character in
; R0 bits 0-7

.

.
LDMFD R13,{R0-R2,R15}^; restore workspace and return

; restoring processor mode
; and flags

Note: ADR is a directive that instructs the assembler to use an ADD or SUB instruction to
create the address of a label, so in the above instance

ADR R2,EntryTable

is equivalent to

SUB R2,R15,#{PC}+8-EntryTable

Open Access

Instruction Set

4-53ARM8 Data Sheet
ARM DDI 0080C

4.14 Coprocessor Data Operations (CDP)
ARM8 expects the coprocessor interface to bounce all CDP instructions so that the
undefined instruction trap will be taken. This may be used to emulate the coprocessor
instruction. If the coprocessor does not bounce CDP, unpredictable behaviour will
result.

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in
Figure 4-27: Coprocessor data operation instruction .

This class of instruction is used to tell a coprocessor to perform some internal
operation. No result is communicated back to the ARM8, and it may not wait for the
operation to complete. The coprocessor could contain a queue of such instructions
awaiting execution, and their execution can overlap other activity, allowing the
coprocessor and the ARM8 to perform independent tasks in parallel.

 Figure 4-27: Coprocessor data operation instruction

4.14.1 The coprocessor fields
Only bit 4 and bits 24 to 31 are significant to the processor. The remaining bits are
used by coprocessors. The above field names are used by convention, and particular
coprocessors may redefine the use of all fields except CP# as appropriate. The CP#
field is used to contain an identifying number (in the range 0 to 15) for each
coprocessor, and a coprocessor must ignore any instruction which does not contain
its number in the CP# field.

The conventional interpretation of the instruction is that the coprocessor should
perform an operation specified in the CP Opc field (and possibly in the CP field) on the
contents of CRn and CRm, and place the result in CRd.

4.14.2 Instruction cycle times
All CDP instructions must be emulated in software: the number of cycles taken will
depend on the coprocessor support software.

Cond

011121516192024272831 23

CRd CP#

78

1110 CP Opc CRn CP 0 CRm

5 4 3

Coprocessor number

Condition field

Coprocessor information
Coprocessor operand register

Coprocessor destination register
Coprocessor operand register
Coprocessor operation code

Open Access

Instruction Set

4-54 ARM8 Data Sheet
ARM DDI 0080C

4.14.3 Assembler syntax
CDP{cond} p#,<expression1>,cd,cn,cm{,<expression2>}

where:

{cond} two character condition mnemonic, see Figure 4-2:
Condition Codes on page 4-3

p# the unique number of the required coprocessor

<expression1> evaluated to a constant and placed in the CP Opc field

cd, cn and cm evaluate to the valid coprocessor register numbers CRd, CRn
and CRm respectively

<expression2> where present is evaluated to a constant and placed in the
CP field

4.14.4 Examples
CDP p1,10,c1,c2,c3; request coproc 1 to do operation 10

; on CR2 and CR3, and put the result in
; CR1

CDPEQ p2,5,c1,c2,c3,2; if Z flag is set request coproc 2 to
; do operation 5 (type 2) on CR2 and
; CR3, and put the result in CR1

Open Access

Instruction Set

4-55ARM8 Data Sheet
ARM DDI 0080C

4.15 Coprocessor Data Transfers (LDC, STC)
ARM8 expects the coprocessor interface to bounce all LDC and STC instructions so
that the undefined instruction trap is taken. This may be used to emulate the
coprocessor instructions. If the coprocessor does not bounce these instructions,
unpredictable behaviour will result.

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in Figure
4-29: Coprocessor register transfer instructions .

This class of instruction is used to load (LDC) or store (STC) a subset of a
coprocessors’s registers directly to memory. The processor is responsible for
supplying the memory address, and the coprocessor supplies or accepts the data and
controls the number of words transferred.

 Figure 4-28: Coprocessor data transfer instructions

Cond Rn

0111215161920212425272831

P U W L

2223

110 N CRd CP# Offset

78

Coprocessor number
Unsigned 8 bit immediate offset

Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit
0 = no write-back
1 = write address into base

Coprocessor source/destination register

Pre/Post indexing bit

Up/Down bit
0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer

Transfer length

Condition field
1 = pre; add offset before transfer

Open Access

Instruction Set

4-56 ARM8 Data Sheet
ARM DDI 0080C

4.15.1 The coprocessor fields
The CP# field is used to identify the coprocessor which is required to supply or accept
the data, and a coprocessor will only respond if its number matches the contents of
this field.

The CRd field and the N bit contain information for the coprocessor which may be
interpreted in different ways by different coprocessors, but by convention CRd is the
register to be transferred (or the first register where more than one is to be transferred),
and the N bit is used to choose one of two transfer length options. For instance N=0
could select the transfer of a single register, and N=1 could select the transfer of all the
registers for context switching.

4.15.2 Addressing modes
The processor is responsible for providing the address used by the memory system
for the transfer, and the addressing modes available are a subset of those used in
single data transfer instructions. Note, however, that for coprocessor data transfers the
immediate offsets are 8 bits wide and specify word offsets, whereas for single data
transfers they are 12 bits wide and specify byte offsets.

The 8 bit unsigned immediate offset is shifted left 2 bits and either added to (U=1) or
subtracted from (U=0) the base register (Rn); this calculation may be performed either
before (P=1) or after (P=0) the base is used as the transfer address. The modified
base value may be overwritten back into the base register (if W=1), or the old value of
the base may be preserved (W=0). Note that post-indexed addressing modes require
explicit setting of the W bit, unlike LDR and STR which always write-back when post-
indexed.

The value of the base register, modified by the offset in a pre-indexed instruction, is
used as the address for the transfer of the first word. The second word (if more than
one is transferred) will go to or come from an address one word (4 bytes) higher than
the first transfer, and the address will be incremented by one word for each subsequent
transfer. Instructions where P=0 and W=0 are reserved, and must not be used.

4.15.3 Address alignment
The base address should normally be a word aligned quantity. The bottom 2 bits of the
address will appear on A[1:0] and might be interpreted by the memory system.

4.15.4 Use of R15
If Rn is R15, the value used will be the address of the instruction plus 8 bytes. Base
write-back to R15 shall not be specified.

4.15.5 Data aborts
If the address is legal but the memory manager generates an abort, the data abort trap
is taken. The base register is restored to its original value, and all other processor state
are preserved. Any coprocessor emulation is partly responsible for ensuring that the
data transfer can restart after the cause of the abort is resolved, and must ensure that
any subsequent actions it undertakes can be repeated when the instruction is retried.

4.15.6 Instruction cycle times
All LDC and STC instructions must be emulated in software: the number of cycles
taken will depend on the coprocessor support software.

Open Access

Instruction Set

4-57ARM8 Data Sheet
ARM DDI 0080C

4.15.7 Assembler syntax
<LDC|STC>{cond}{L} p#,cd,<Addr>

where:

LDC load from memory to coprocessor

STC store from coprocessor to memory

{L} when present, perform long transfer (N=1), otherwise perform short
transfer (N=0)

{cond} two character condition mnemonic. See Figure 4-2: Condition
Codes on page 4-3.

p# the unique number of the required coprocessor

cd expression evaluating to a valid coprocessor register number that is
placed in the CRd field

<Addr> can be:

1 An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using the
PC as a base and a corrected immediate offset to address the
location given by evaluating the expression. This will be a PC
relative, pre-indexed address. If the address is out of range, an
error will be generated.

2 A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>]{!} offset of <expression> bytes

3 A post-indexed addressing specification:

[Rn],<#expression> offset of <expression> bytes

{!} write back the base register (set
the W bit) if ! is present

Rn expression evaluating to a valid
ARM8 register number

Open Access

Instruction Set

4-58 ARM8 Data Sheet
ARM DDI 0080C

4.15.8 Examples
LDC p1,c2,table ; load c2 of coproc 1 from address

; table, using a PC relative address.
STCEQL p2,c3,[R5,#24]! ; conditionally store c3 of coproc 2

; into an address 24 bytes up from R5,
; write this address back to R5, and use
; long transfer option (probably to
; store multiple words)

Note: Though the address offset is expressed in bytes, the instruction offset field is in words.
The assembler will adjust the offset appropriately.

Open Access

Instruction Set

4-59ARM8 Data Sheet
ARM DDI 0080C

4.16 Coprocessor Register Transfers (MRC, MCR)
Please refer to Chapter 4, Instruction Set for details of the coprocessor interface and
timing.

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in Figure
4-29: Coprocessor register transfer instructions .

This class of instruction is used to communicate information directly between ARM8
and a coprocessor. An example of a coprocessor to processor register transfer (MRC)
instruction would be a FIX of a floating point value held in a coprocessor, where the
floating point number is converted into a 32-bit integer within the coprocessor, and the
result is then transferred to a processor register. A FLOAT of a 32-bit value in a
processor register into a floating point value within the coprocessor illustrates the use
of a processor register to coprocessor transfer (MCR).

An important use of this instruction is to communicate control information directly from
the coprocessor into the processor CPSR flags. As an example, the result of a
comparison of two floating point values within a coprocessor can be moved to the
CPSR to control the subsequent flow of execution.

 Figure 4-29: Coprocessor register transfer instructions

21

Cond

011121516192024272831 23

CP#

78

1110 CRn CP CRm

5 4 3

1LCP Opc Rd

Coprocessor number
Coprocessor information
Coprocessor operand register

Coprocessor operation mode
Condition field

Load/Store bit
0 = Store to Co-Processor
1 = Load from Co-Processor

ARM source/destination register
Coprocessor source/destination register

Open Access

Instruction Set

4-60 ARM8 Data Sheet
ARM DDI 0080C

4.16.1 The coprocessor fields
The CP# field is used, as for all coprocessor instructions, to specify which coprocessor
is being called upon. The CP Opc, CRn, CP and CRm fields are used only by the
coprocessor, and the interpretation presented here is derived from convention only.
Other interpretations are allowed where the coprocessor functionality is incompatible
with this one. The conventional interpretation is that the CP Opc and CP fields specify
the operation the coprocessor is required to perform, CRn is the coprocessor register
which is the source or destination of the transferred information, and CRm is a second
coprocessor register which may be involved in some way which depends on the
particular operation specified.

4.16.2 Transfers from R15
Do not specify a coprocessor register transfer from ARM8 with R15 as the source
register.

4.16.3 Transfers to R15
When a coprocessor register transfer to ARM8 has R15 as the destination, bits 31, 30,
29 and 28 of the transferred word are copied into the N, Z, C and V flags respectively.
The other bits of the transferred word are ignored, and the PC and other CPSR bits
are unaffected by the transfer.

4.16.4 Instruction cycle times
Both the MRC and MCR instructions take 1 cycle to execute, provided that the
coprocessor does not “busy-wait” them.

4.16.5 Assembler syntax
<MCR|MRC>{cond} p#,<expression1>,Rd,cn,cm{,<expression2>}

where:

MRC move from coprocessor to ARM8 register (L=1)

MCR move from ARM8 register to coprocessor (L=0)

{cond} two-character condition mnemonic, see Figure 4-2:
Condition Codes on page 4-3

p# the unique number of the required coprocessor

<expression1> evaluated to a constant and placed in the CP Opc field

Rd is an expression evaluating to a valid ARM8 register number

cn and cm are expressions evaluating to the valid coprocessor register
numbers CRn and CRm respectively

<expression2> where present is evaluated to a constant and placed in the
CP field

Open Access

Instruction Set

4-61ARM8 Data Sheet
ARM DDI 0080C

4.16.6 Examples
MRC p2,5,R3,c5,c6 ; request coproc 2 to perform operation 5

; on c5 and c6, and transfer the (single
; 32-bit word) result back to R3

MCR p6,0,R4,c6,c7 ; request coproc 6 to perform operation 0
; on R4 and place the result in c6, in a
; way that may be influenced by c7

MRCEQ p3,9,R3,c5,c6,2 ; conditionally request coproc 3 to
; perform operation 9 (type 2) on c5 and
; c6, and transfer the result back to R3

Open Access

Instruction Set

4-62 ARM8 Data Sheet
ARM DDI 0080C

4.17 The Instruction Memory Barrier (IMB) Instruction
An Instruction Memory Barrier (IMB) Instruction is used to ensure that correct
instruction flow occurs after instruction memory locations are altered in any way - by
self-modifying code for example. The recommended implementation of the IMB
instructions is via an architecturally defined SWI function (see 4.13 Software
Interrupt (SWI) on page 4-50). The instruction encoding for the recommended IMB
instruction implementations is shown below:

 Figure 4-30: IMB instruction

 Figure 4-31: IMBRange instruction

IMBRange : Registers R0 and R1 contain the Range of addresses on entry to the SWI.
R0 is the lower (inclusive) address and R1 is the upper address (not included in the
range).

4.17.1 Use
During the normal operation of ARM8, the Prefetch Unit (PU) reads instructions ahead
of the core in order to attempt to remove branches. It does this by predicting whether
or not the branches are taken and then prefetching from the predicted address.

If a program changes the contents of memory with the intention of executing the new
contents as new instructions, then any prefetched instructions and/or other stored
information about instructions in the PU may be out of date because the instructions
concerned have been overwritten. Thus the PU holds the wrong instructions; if passed
to the execution unit they would cause unintentional behaviour.

In order to prevent such problems, an IMB instruction must be used between changing
the contents of memory and executing the new contents to ensure that any stored
instructions are flushed from the PU. The choice of IMB Instruction (IMB or IMBRange)
depends upon the amount of code changed.

The IMB Instruction flushes all stored information about the instruction stream.

The IMBRange Instruction flushed all stored information about instructions at
addresses in the range specified.

Please refer to Appendix D, Implementing the Instruction Memory Barrier
Instruction for further details of the IMB implementation and use.

Cond

272831

Condition field

1 1 1 1

2324 0

0xF00000

Cond

272831

Condition field

1 1 1 1

2324 0

0xF00001

Open Access

Instruction Set

4-63ARM8 Data Sheet
ARM DDI 0080C

4.17.2 Assember syntax
SWI{cond} IMB ; Where IMB = 0xF00000

; code that loads R0 and R1 with Range addresses
SWI{cond} IMBRange ; Where IMBRange = 0xF00001

4.17.3 Examples

Loading code from disk

Code that loads a program from a disk, and then branches to the entry point of that
program, should execute an IMB instruction between loading the program and trying
to execute it.

IMB EQU 0xF00000
.
.
; code that loads program from disk
.
.
SWI IMB
.
.
MOV PC, entry_point_of_loaded_program
.
.

Running BitBlt code

“Compiled BitBlt" routines optimise large copy operations by constructing and
executing a copying loop which has been optimised for the exact operation wanted.

When writing such a routine an IMB is needed between the code that constructs the
loop and the actual execution of the constructed loop.

IMBRange EQU 0xF00001
.
.
; code that constructs loop code
; load R0 with start address of the constructed loop
; load R1 with the end address of the constructed loop
SWI IMBRange
; start of constructed loop code
.
.

Open Access

Instruction Set

4-64 ARM8 Data Sheet
ARM DDI 0080C

Self-decompressing code

When writing a self-decompressing program, an IMB should be issued after the
routine which decompresses the bulk of the code and before the decompressed code
starts to be executed.

IMB EQU 0xF00000
.
.
; copy and decompress bulk of code
SWI IMB
; start of decompressed code

Open Access

Instruction Set

4-65ARM8 Data Sheet
ARM DDI 0080C

4.18 Undefined Instructions
This section shows the instruction bit patterns that will cause the Undefined Instruction
trap to be taken if ARM8 attempts to execute them. This vector location is defined in
3.4.6 Exception Vector Summary on page 3-13. There are a number of such bit
pattern classes, and these can be used to cause unimplemented instructions (for
example LDC) to be emulated through the Undefined Instruction trap service routine
code:

Class A Undefined instructions in previous ARM processor implementations

Class B Unallocated MSR/MRS-like instructions

Class C Unallocated Multiply-like instructions

Class D Unallocated SWP-like instructions

Class E Unallocated STRH/LDRH/LDRSH/LDRSB-like instructions

Note: Some or all of Classes B through E may not fall into the Undefined Instruction trap if
further implementation restrictions dictate this. ARM reserves the right to make these
decisions as necessary.

The Undefined Instruction trap is taken:

• if the condition specified by Cond is met and the instruction bit pattern is in
Table 4-6: Bit patterns for the undefined instruction trap

or

• by all coprocessor instructions whose condition is met and which are bounced
by any coprocessor. For ARM8, the coprocessor interface must bounce all
CDP, LDC and STC instructions

4.18.1 Assembler syntax
At present the assembler has no mnemonics for generating Undefined Instruction
classes A through to E.

Class Instruction Bit Pattern Notes

A Cond 011x xxxx xxxx xxxx xxxx xxx1 xxxx

B Cond
Cond
Cond

0001
0001
0011

0xx0
0xx0
0x00

xxxx
xxxx
xxxx

xxxx
xxxx
xxxx

xxxx
xxxx
xxxx

yyy0
0xx1
xxxx

xxxx
xxxx
xxxx

yyy != 000

C Cond 0000 01xx xxxx xxxx xxxx 1001 xxxx

D Cond 0001 yyyy xxxx xxxx xxxx 1001 xxxx yyyy !=0000 or 0100

E Cond
Cond

0000
000x

xx1x
xxx0

xxxx
xxxx

xxxx
xxxx

xxxx
xxxx

1yy1
11x1

xxxx
xxxx

yy !=00

 Table 4-6: Bit patterns for the undefined instruction trap

Open Access

Instruction Set

4-66 ARM8 Data Sheet
ARM DDI 0080C

4.19 Instruction Set Examples
The following examples show ways in which the basic ARM8 instructions can combine
to give efficient code. None of these methods saves a great deal of execution time
(although they may save some): mostly they just save code.

4.19.1 Using the conditional instructions

Using conditionals for logical OR
CMP Rn,#p ; if Rn=p OR Rm=q THEN
BEQ Label ; GOTO Label
CMP Rm,#q
BEQ Label

can be replaced by :
CMP Rn,#p
CMPNE Rm,#q ; if condition not satisfied
BEQ Label ; try other test

Absolute value
TEQ Rn,#0 ; test sign
RSBMI Rn,Rn,#0 ; and 2's complement if

; necessary

Multiplication by 4, 5 or 6 (run time)
MOV Rc,Ra,LSL#2 ; multiply by 4
CMP Rb,#5 ; test value
ADDCS Rc,Rc,Ra ; complete multiply by 5
ADDHI Rc,Rc,Ra ; complete multiply by 6

Combining discrete and range tests
TEQ Rc,#127 ; discrete test
CMPNE Rc,#" "-1 ; range test
MOVLS Rc,#"." ; IF Rc<=" " OR Rc=ASCII(127)

; THEN Rc:="."

Division and remainder

A number of divide routines for specific applications are provided in source form as
part of the ANSI C library provided with the ARM Cross Development Toolkit, available
from your supplier.

A short general purpose divide routine follows.

; Unsigned divide of r1 by r0
; Returns quotient in r0, remainder in r1
; Destroys r2, r3

MOV r3, #0
MOVS r2, r0
BEQ |__rt_div0| ; jump to divide-by-zero

; error handler u_loop

Open Access

Instruction Set

4-67ARM8 Data Sheet
ARM DDI 0080C

; justification stage shifts r2 left 1 bit at a time
; until r2 > (r1/2)

CMP r2, r1, LSR #1
MOVLS r2, r2, LSL #1
BCC u_loop

; now division proper can start
u_loop2

CMP r1, r2 ; perform divide step
ADC r3, r3, r3
SUBCS r1, r1, r2
TEQ r2, r0 ; all done yet?
MOVNE r2, r2, LSR #1
BNE u_loop2
MOV r0, r3

4.19.2 Overflow detection in the ARM8

Overflow in unsigned multiply with a 32-bit result
UMULL Rd,Rt,Rm,Rn ;4 to 7 cycles
TEQ Rt,#0 ;+1 cycle and a register
BNE overflow

Overflow in signed multiply with a 32-bit result
SMULL Rd,Rt,Rm,Rn ;4 to 7 cycles
TEQ Rt,Rd ASR#31 ;+1 cycle and a register
BNE overflow

Overflow in unsigned multiply accumulate with a 32-bit result
UMLAL Rd,Rt,Rm,Rn ;4 to 7 cycles
TEQ Rt,#0 ;+1 cycle and a register
BNE overflow

Overflow in signed multiply accumulate with a 32-bit result
SMLAL Rd,Rt,Rm,Rn ;4 to 7 cycles
TEQ Rt,Rd, ASR#31 ;+1 cycle and a register
BNE overflow

Overflow in unsigned multiply accumulate with a 64-bit result
SMULL R1,Rh,Rm,Rn ;4 to 7 cycles
ADDS Rl,Rl,Ra1 ;lower accumulate
ADC Rh,Rh,Ra2 ;upper accumulate
BCS overflow ;2 cycles and 2 registers

Overflow in signed multiply accumulate with a 64-bit result
UMULL R1,Rh,Rm,Rn ;4 to 7 cycles
ADDS Rl,Rl,Ra1 ;lower accumulate
ADC Rh,Rh,Ra2 ;upper accumulate
BVS overflow ;2 cycles and 2 registers

Open Access

Instruction Set

4-68ARM8 Data Sheet
ARM DDI 0080C

Note: Overflow cannot occur in signed and unsigned multiply with a 64-bit result, so overflow
checking is not applicable.

4.19.3 Pseudo random binary sequence generator
It is often necessary to generate (pseudo-) random numbers and the most efficient
algorithms are based on shift generators with exclusive-OR feedback rather like a
cyclic redundancy check generator. Unfortunately the sequence of a 32-bit generator
needs more than one feedback tap to be of maximal length (ie 2^32-1 cycles before
repetition), so this example uses a 33-bit register with taps at bits 33 and 20. The basic
algorithm is newbit:=bit 33 EOR bit 20, shift left the 33-bit number and put in newbit at
the bottom; this operation is performed for all the newbits needed (ie. 32 bits).

; enter with seed in Ra (32 bits),
; Rb (1 bit in Rb lsb), uses Rc

TST Rb,Rb,LSR#1 ; top bit into carry
MOVS Rc,Ra,RRX ; 33 bit rotate right
ADC Rb,Rb,Rb ; carry into lsb of Rb
EOR Rc,Rc,Ra,LSL#12; (involved!)
EOR Ra,Rc,Rc,LSR#20; (similarly involved!)

;
; new seed in Ra, Rb as before

4.19.4 Multiplication by constant using shifts
1 Multiplication by 2^n (1,2,4,8,16,32..)

MOV Ra, Rb, LSL #n

2 Multiplication by 2^n+1 (3,5,9,17..)
ADD Ra,Ra,Ra,LSL #n

3 Multiplication by 2^n-1 (3,7,15..)
RSB Ra,Ra,Ra,LSL #n

4 Multiplication by 6
ADD Ra,Ra,Ra,LSL #1; multiply by 3
MOV Ra,Ra,LSL#1 ; and then by 2

5 Multiply by 10 and add in extra number
ADD Ra,Ra,Ra,LSL#2 ; multiply by 5
ADD Ra,Rc,Ra,LSL#1 ; multiply by 2 and add in next

; digit

Open Access

Instruction Set

4-69ARM8 Data Sheet
ARM DDI 0080C

6 General recursive method for Rb := Ra*C, C a constant:
a) If C even, say C = 2^n*D, D odd:

D=1: MOV Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}

MOV Rb,Rb,LSL #n

b) If C MOD 4 = 1, say C = 2^n*D+1, D odd, n>1:
D=1: ADD Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

ADD Rb,Ra,Rb,LSL #n

c) If C MOD 4 = 3, say C = 2^n*D-1, D odd, n>1:
D=1: RSB Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

RSB Rb,Ra,Rb,LSL #n

This is not quite optimal, but close. An example of its non-optimality is multiply
by 45 which is done by:

RSB Rb,Ra,Ra,LSL#2 ; multiply by 3
RSB Rb,Ra,Rb,LSL#2 ; multiply by 4*3-1 = 11
ADD Rb,Ra,Rb,LSL# 2; multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL#3 ; multiply by 9
ADD Rb,Rb,Rb,LSL#2 ; multiply by 5*9 = 45

4.19.5 Loading a word from an unknown alignment
; enter with address in Ra (32 bits)
; uses Rb, Rc; result in Rd.
; Note d must be less than c e.g. 0,1
;

BIC Rb,Ra,#3 ; get word-aligned address
LDMIA Rb,{Rd,Rc} ; get 64 bits containing answer
AND Rb,Ra,#3 ; correction factor in bytes
MOVS Rb,Rb,LSL#3 ; ...now in bits and test if aligned
MOVNE Rd,Rd,LSR Rb ; produce bottom of result word

; (if not aligned) for little-endian
; operations (see note below)

RSBNE Rb,Rb,#32 ; get other shift amount
ORRNE Rd,Rd,Rc,LSL Rb; combine two halves to get result

; for little-endian operation (see note
; below)

Note: for big-endian operation replace the first “LSR” with “LSL” and the final “LSL” by
“LSR”.

Open Access

Instruction Set

4-70 ARM8 Data Sheet
ARM DDI 0080C

Open Access

5-1ARM8 Data Sheet
ARM DDI 0080C

The Prefetch Unit

This chapter describes the functions of the prefetch unit.

5.1 Overview 5-2
5.2 The Prefetch Buffer 5-2
5.3 Branch Prediction 5-2

5

Open Access

The Prefetch Unit

5-2 ARM8 Data Sheet
ARM DDI 0080C

5.1 Overview
The ARM8 Prefetch Unit (PU) supplies the ARM8 Core with instructions from the
memory system. The bus from the memory system to the PU is 32 bits wide but is
capable of supplying two words to the PU every clock cycle. The memory system
bandwidth is therefore greater than the bandwidth requirement of the Core. The
Prefetch Unit makes use of this fact by buffering instructions in its FIFO and then
predicting some of the branches and removing them from the instruction stream to the
Core. This reduces the CPI of the Branch instruction, so increasing the processor’s
performance.

The Prefetch Unit is responsible for fetching and supplying instructions to the Core,
and has its own PC and incrementer to provide the memory system address.

5.2 The Prefetch Buffer
Each 32-bit instruction is buffered together with its (offset) address in a FIFO called the
Prefetch Buffer. The depth of this buffer is 8 instructions. At the far end of the FIFO, the
instructions are removed one at a time and presented to the Core.

5.3 Branch Prediction
ARM8 employs static branch prediction. This is based solely on the characteristics of
a Branch instruction, and uses no history information. Branch prediction is performed
only when the PredictOn external input signal is HIGH.

In ARM processors that have no Prefetch Unit, the target of a Branch is not known until
the end of the Execute stage; at which time it is known whether or not the Branch will
be taken. The best performance is therefore obtained by predicting all Branches as not
taken, and filling the pipeline with the instructions that follow the Branch. With that type
of scheme, an untaken Branch requires 1 cycle and a taken Branch requires 3 cycles.

By adding a Prefetch Buffer, it is possible to detect a Branch before it enters the Core.
This allows the use of a different prediction scheme - for instance, one which predicts
that all conditional forward Branches are not taken and all conditional backward
Branches are taken. This scheme is the one implemented in ARM8 and, because it
models actual conditional branch behaviour more accurately, it reduces the average
branch CPI, thus improving the processor’s performance.

Using ARM8’s Prefetch Unit, around 65% of all Branches are preceded by enough
non-Branch cycles to be completely predicted. The Core itself must deal with the
Branches that the Prefetch Unit does not have time to predict. See 8.1 Branch and
Branch with Link (B, BL) for the effect of mispredictions on the instruction cycle
counts.

5.3.1 Incorrect predictions and correction
Whenever a potentially incorrect prediction is made, information necessary for
recovering from the error is stored. This is the fall-through address in the case of a
predicted taken Branch, and the Branch’s target address in the case of a predicted not
taken Branch.

The Prefetch Unit uses the Core’s condition codes to establish the accuracy of a
prediction. If the prediction is found to be in error, the Prefetch Unit begins fetching
from the saved alternate address, and cancels any instructions that have been
incorrectly passed to the core. See 8.1 Branch and Branch with Link (B, BL) on
page 8-2 for the effect of mis-predictions on the instruction cycle counts.

Open Access

The Prefetch Unit

5-3ARM8 Data Sheet
ARM DDI 0080C

5.3.2 Prediction details
This section describes the conditions under which prediction is made, and the result
of the prediction based upon the direction of the branch.

BL is only predicted if it is an unconditional instruction. When predicted, the instruction
is effectively changed into a linking instruction and a branch instruction. The link part
of the instruction is passed to the core as a MOV instruction, and the branch part is
predicted with the same rules as for the prediction of normal B instructions.

The following summarises the prediction scheme:

If any instruction is not predicted, then it is passed straight through to the core without
change.

Instructions will not be predicted if:

• Instruction[27:24]==“1011” AND Instruction[31:28]!=“1110” (Conditional BL)
or

• PredictOn is LOW
or

• A prefetch abort occurs when fetching the instruction
or

• Instruction[31:28]==“1111” (Invalid condition code)
or

• Instruction[27:25]!=“101” (Non-branch instruction)

otherwise the instruction will be predicted as taken if:

• Instruction[31:28]==“1110” (Always condition code)
or

• Instruction[24]==“0” AND Instruction[23]==“1” (Backwards branch)

otherwise the instruction will be predicted as not-taken if:

• Instruction[24]==“0” AND Instruction[23]==“0” (Forwards branch)

Consequences of branch prediction and the prefetch buffer

Due to the speculative prefetching of instructions that the Prefetch Unit performs, it is
possible for the prefetch buffer to contain incorrect instructions. In such circumstances
the prefetch buffer must be flushed, and ARM8 provides a means to do this with the
IMB instruction. Please refer to 4.17 The Instruction Memory Barrier (IMB)
Instruction on page 4-62 for details of when and how to use the IMB instruction.

5.3.3 Turning branch prediction on and off
Branch Prediction is turned on by setting PredictOn HIGH and turned off by setting
PredictOn LOW. Turning branch prediction off by switching the PredictOn signal from
HIGH to LOW simply disables the Branch Predictor. If the Prefetch Unit is already
prefetching from a speculative execution thread it will continue to do so. Thus simply
switching PredictOn to LOW could allow that prefetch thread to fall through into a
read-sensitive I/O location. In order to prevent such a situation, the following code
sequence (or equivalent) should be used. This code has been written for a system that
uses Coprocessor 15 register 1, bit 11, to control the state of PredictOn directly (as is

Open Access

The Prefetch Unit

5-4 ARM8 Data Sheet
ARM DDI 0080C

the case in the ARM810 for instance). The code ensures that the Prefetch Unit is
prefetching from a safe area when the Branch Predictor is turned off.

SysControl_Z EQU &00000800 ; PredictOn control bit 11

Branch_Predict_Off:

; code to save R0 and CPSR if required by your calling
; convention.

; *** Critical Code Section Starts here ***

Branch_Predict_Bound:

MRC p15,0,R0,c1,c0,0 ;Read System Control
;Register 1

BIC R0,R0,#SysControl_Z;Turn off the PredictOn
;bit

MCR p15,0,R0,c1,c0,0;Write back modified
;control register 1

; Now the prefetching containment part:
MSR CPSR_flg, #0xF0000000 ;Set the carry so that

;BCC will skip
BCC Branch_Predict_Bound ;Branch to direct the

; prefetch activity
; This branch will never be taken. However backwards
; conditional branches are predicted taken, so the PU ;
will be prefetching between the label
; Branch_Predict_Bound and this instruction when the
; MCR is executed.

; *** Critical Code Section Ends here ***

; Return to caller with normal calling convention
; restoring CPSR and R0 if required.
MOV PC, LR (or whatever)

This code sequence is highly implementation-specific. It is strongly recommended that
software systems are structured so that turning off Branch Prediction is performed by
one piece of system software that can be easily updated when your software is migrat-
ed to future ARM Microprocessors.

Open Access

6-1ARM8 Data Sheet
ARM DDI 0080C

Memory Interface

This chapter describes the ARM8 memory interface.

6.1 Overview 6-2
6.2 Memory Interface Timing 6-3
6.3 Details of the Memory System Interface 6-4
6.4 Types of Responses from the Memory System 6-8

6

Open Access

Memory Interface

6-2 ARM8 Data Sheet
ARM DDI 0080C

6.1 Overview
This interface users the concept of word buffers to store sequential data and
instructions. There is a buffer for each, and this means that the sequentiality of
instruction fetching need not be interrupted by data accesses; sequential instruction
fetches can be made, even though data may have been read or written between
fetches. This concept fits well with word lines in a cached system.

The ARM8 interface to the memory system is designed to read instructions or data at
twice the bandwidth that instructions are required by the core. This enables the
Prefetch Unit to improve the performance of the ARM8 by predicting Branches and
removing them from the instruction stream that is presented to the Core, reducing the
CPI of Branches.

Double bandwidth reads also improve the CPI of LDMs, and as a result, the
memory-to-ARM8 interface is required to work at twice the processor clock frequency.
The interface has been designed so that it is not necessary to turn around the direction
of any bus at this speed; saving the resultant clock speed penalty of a guaranteed
non-overlap time. The interface comprises:

• Three unidirectional 32-bit data buses:
- VAddress
- Wdata
- Rdata

• Four control buses
- ARequest
- AResponse
- RRequest
- RResponse

• Five other control signals
- Privileged
- TwentySixBit
- IExhausted
- DExhausted
- Confirm

The VAddress bus provides addresses to the memory system.

Addresses are only provided by the Core or the Prefetch Unit when the
instruction or data buffers are empty or need to be reloaded. This reduces the
traffic on the VAddress bus at the cost of a small incrementer in the memory
system.

The Wdata bus provides write data to the memory system.

The Rdata bus transfers read data and instructions from the memory system.

Please refer to 2.3 ARM8 <-> Memory Interface Signals on page 2-4 for signal
descriptions.

Open Access

Memory Interface

6-3ARM8 Data Sheet
ARM DDI 0080C

6.2 Memory Interface Timing

 Figure 6-1: Memory interface timing diagram

ARM8 Memory Interface timing
Normal operation

Operation

Cycle

Clock

VAddress[31:0]

Wdata[31:0]

ARequest[]
RRequestD[]

Privileged
TwentySixBit
RRequestIC
RRequestIP

AResponse[]
RResponse[]
DExhausted
IExhausted

Rdata[31:0]

Confirm

STORE
LOAD/FETCH

(linked)
LOAD/FETCH

(single)

1 2 3 4

 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1

1 2 4

1

1 2 3 4

1 2 3

2a 2b 3a

0 1 2 3

Open Access

Memory Interface

6-4 ARM8 Data Sheet
ARM DDI 0080C

6.3 Details of the Memory System Interface
This interface has been designed for use with a cached Memory System - such as in
an ARM810 - and permits the streaming of Instructions and Data words over a single
bus. The interface is based on the ARM8 issuing requests to the Memory System at
the end of Phase 2, and receiving responses from the Memory System that are set up
at the end of the next Phase 1 and are stable for Phase 2. Based on these responses
from the Memory System, ARM8 will issue the next requests by the end of the next
Phase 2. See Figure 6-1: Memory interface timing diagram on page 6-3.

This timing gives the Memory System less than one phase in which to give the correct
response, so the response given is a provisional one at that point. The provisional
response then has to be confirmed by the end of Phase 2 using the Confirm signal.

If Confirm is HIGH, ARM8 will respond by stopping its internal clock because the
provisional response was wrong (for example: in a cached Memory System like
ARM810, this would happen during a cache miss, an uncacheable read or write, an
MMU Abort or an MMU TLB miss). Then once the Memory System has corrected
itself, it will return the appropriate response to ARM8 and then bring Confirm LOW,
allowing ARM8 to restart its clock.

The effect of this mechanism is that when ARM8 issues a request, it always expects
the correct response at the end of the cycle. If the cache cannot respond correctly
within one cycle, then ARM8’s internal clock is stopped until the correct response can
be given. The clock stopping holds the clock in Phase 2.

6.3.1 Types of requests to the memory system
There are two types of request that ARM8 can make, these are described below.

Access requests

ACCESS requests are those associated with addresses on VAddress[31:0] and also
write data on Wdata[31:0] being driven by ARM8. These requests can be to load data
or instructions from the address specified by VAddress[] , or to store the data
presently on Wdata[] at the address specified by VAddress[] .

Return requests

RETURN requests are those associated with reading instructions or data words from
the Memory System. These words are ready for ARM8, one at the end of Phase 2 and
other at the end of Phase 1 of the next cycle on the Rdata[31:0] bus.

Making requests to the memory system

ACCESS and RETURN requests may be issued together at the end of each phase 2:
either because they are linked or because the requests can be handled together due
to the separate write and read data buses (Wdata[] and Rdata[] respectively).
The requests are shown in Table 6-1: Memory system requests on page 6-5.

Open Access

Memory Interface

6-5ARM8 Data Sheet
ARM DDI 0080C

6.3.2 Summary of access request types (ARequest[])
The types of Access Requests that can be made are shown below in Figure 6-2:
Access request type summary .

Note: This table does not show the signal encodings of these types.

(M) indicates that there are more words to be loaded or stored as part of the same load
or store multiple.

Type Request

Linked • ACCESS request to load Instructions into the instruction buffer, and RETURN
request for the same instructions from the instruction buffer.

• ACCESS request to load Data into the data buffer, and RETURN request to
get the same data from the data buffer.

Single • RETURN request to get instructions, previously loaded into the instruction
buffer.

• RETURN request to get data, previously loaded into the data buffer.
• ACCESS request to store data at the specified address on VAddress[] .

Parallel • ACCESS request to store data, and a RETURN request to get instructions,
previously loaded into the instruction buffer.

 Table 6-1: Memory system requests

SIGNAL Operation/Description Access type Relevance

AREQ_NONE None

AREQ_LOAD(M) Load Data from the address on VAddress[] . Normal LDR/LDM

AREQ_LOAD_S(M) Load Data from the address on VAddress[], the
address being sequential to the previous
AREQ_LOAD or AREQ_LOAD_S .

Sequential to
last Data Load

LDM

AREQ_LOAD_B Load Data from the address on VAddress[] . The byte
must be supplied on Rdata[] in the correct bit posi-
tions:

Address MOD 4 Endian Rdata bits
0 Little 7:0
1 Little 15:8
2 Little 23:16
3 Little 31:24
0 Big 31:24
1 Big 23:16
2 Big 15:8
3 Big 7:0

The other 24 bits are ignored.

Byte LDRB
LDRSB

 Figure 6-2: Access request type summary

Open Access

Memory Interface

6-6 ARM8 Data Sheet
ARM DDI 0080C

AREQ_LOAD_H Load Data from the address on VAddress[] .
The halfword must be supplied on Rdata[] in the cor-
rect bit positions:

Address MOD 4 Endian Rdata bits
0 Little 15:0
2 Little 31:16
0 Big 31:16
2 Big 15:0

The behaviour when the Address MOD 4 is 1 or 3 is
left undefined and should not be used.
The other 16 bits are ignored.

Half-Word LDRH
LDRSH

AREQ_LOAD_X Do the Load part of a SWP with the Data from the
address on VAddress[] .

Swap SWP

AREQ_LOAD_BX Do the Load part of a SWPB with the Data from the
address on VAddress[] .

Byte Swap SWPB

AREQ_FETCH Load Instruction(s) from the address given on VAd-
dress[] .

Normal

AREQ_FETCH_S Load Instruction(s) from the address given on VAd-
dress[] the address being sequential to the previous
instruction fetch. (A load/load multiple or store/store
multiple could occur between instruction fetches and
these fetches would still be considered as sequential.)

Sequential to
last Instruction
fetch.

AREQ_SPEC A speculative request to load instruction(s) from the
address given on VAddress[] . The memory system
does not have to supply these instruction(s) as this is a
speculative request.

Normal, specu-
lative

AREQ_SPEC_S A speculative request to load instruction(s) from the
address sequential to the last instruction loaded. The
memory system does not have to supply these instruc-
tion(s) as this is a speculative request.
(A load/load multiple or store/store multiple could occur
between instruction fetches and these fetches would
still be considered as sequential.)

Sequential to
last instruction
fetch, specula-
tive

AREQ_STORE(M) Store the Word put onto Wdata[] during the next
Phase 1 at the address currently on Vaddress[] .

Normal STR/STM

AREQ_STORE_S(M
)

Store the Word put onto Wdata[] during the next
Phase 1 at the address sequential to the previous
store address.

Sequential to
the last Data
store request
(the next Word)

STM

SIGNAL Operation/Description Access type Relevance

 Figure 6-2: Access request type summary (Continued)

Open Access

Memory Interface

6-7ARM8 Data Sheet
ARM DDI 0080C

6.3.3 Instruction return requests (RRequestIC, RRequestIP)
Instruction RETURN requests are specified via the RRequestIC and RRequestIP
signals. If RRequestIC or RRequestIP is HIGH at the end of Phase 2, two instruction
words have been requested, otherwise none have been requested.

Note If both a data and an instruction RETURN request is given at the same time, the
memory system must give priority to the data RETURN request.

6.3.4 Summary of data return request types (RRequestD[])
Table 6-2: Return request type summary shows the types of data Return Requests.

Note: This does not show the signal encodings of these types.

AREQ_STORE_B Store the Byte put onto Wdata[] during the next Phase
1 at the address currently on VAddress[] . The Byte
will be replicated four times across all of Wdata[] .

Byte STRB

AREQ_STORE_H Store the Halfword put onto Wdata[] during the next
Phase 1 at the address currently on VAddress[] . The
Halfword will be replicated twice across all of Wdata[] .

Half_Word STRH

AREQ_STORE_X Do the Store part of a SWP to the address on VAd-
dress[] . The Data Word will be driven onto Wdata[]
during the following Phase 1.

Swap SWP

AREQ_STORE_BX Do the Store part of a SWPB to the address on VAd-
dress[] . The Data Byte will be replicated four times
and driven across all of Wdata[] in the following Phase
1.

Byte SWPB

AREQ_CONTROL An MCR instruction is being executed with the data put
onto VAddress[] . See Chapter 7, Coprocessor Inter-
face . This allows an MCR instruction to control the
memory system.

Special MCR

SIGNAL Operation/Description Access type Relevance

 Figure 6-2: Access request type summary (Continued)

Signal Operation

RREQD_NONE Return 0 Data words from the Memory System

RREQD_ONE Return 1 Data word from the Memory System

RREQD_TWO Return 2 Data words from the Memory System

 Table 6-2: Return request type summary

Open Access

Memory Interface

6-8 ARM8 Data Sheet
ARM DDI 0080C

6.4 Types of Responses from the Memory System
There are two types of responses that the Memory System can make:

• Access Responses
• Return Responses

Access responses

These indicate a response to the ACCESS request and show :

• no ACCESS request was made or the speculative instruction fetch has not
been performed.

• the MMU generated an abort
• the ACCESS request has completed

Table 6-3: Access response type summary shows the types of Access Responses,
but does not show the signal encodings of these types.

Return responses

These indicate a response to the RETURN request and show:

1 On the RResponse bus:
a) no data or instruction words are being returned

b) whether there was an abort associated with the data or instructions being
returned

c) what part of the request was granted (eg. whether data or instructions are
being returned, and whether one word or two is being returned)

d) whether a speculative prefetch was granted or not

2 On the IExhausted and DExhausted signals:
a) whether it will be possible to request sequential instructions and/or data

after the current RETURN request is complete

Table 6-4: Return response type summary shows the types of these Return
Responses, but does not show the signal encodings of these types.

Signal Description

ARESP_NOTDONE No ACCESS request was made or the speculative instruc-
tion request has not been performed

ARESP_ABORT The ACCESS Request has completed with an (MMU) gen-
erated abort

ARESP_DONE The ACCESS Request has completed normally or an
external abort has occurred

 Table 6-3: Access response type summary

Open Access

Memory Interface

6-9ARM8 Data Sheet
ARM DDI 0080C

Signal Description

RRESP_NOTHING No data or instruction words are being returned because:
• No RETURN request was made, or
• No instructions are being returned for the speculative

instruction fetch request, or
• An access request has completed with an MMU abort.

RRESP_EXTABORT_D An External Abort was generated on the Data RETURN Request.
If an Instruction RETURN Request exists, then it has not succeeded
and must be re-issued if it is still wanted. This may need a linked
ACCESS request if the instruction buffer is empty.

RRESP_EXTABORT_I An External Abort was generated on the Instruction RETURN Request
AND there is no Data RETURN Request.

RRESP_DATA1 The Data RETURN Request has completed normally and is returning
1 Data word. If an Instruction RETURN Request exists, then it has not
succeeded and must be re-issued if it is still wanted.This may need a
linked ACCESS request if the instruction buffer is empty.

RRESP_DATA2 The Data RETURN Request has completed normally and is returning
2 Data words; if an Instruction RETURN Request exists, then it has not
succeeded and must be re-issued if it is still wanted. This may need a
linked ACCESS request if the instruction buffer is empty.

RRESP_INSTR1 The Instruction RETURN Request has completed normally and is
returning 1 Instruction word. No Data RETURN Request was made.

RRESP_INSTR2 The Instruction RETURN Request has completed normally and is
returning 2 Instruction words. No Data RETURN Request was made.

 Table 6-4: Return response type summary

Open Access

Memory Interface

6-10ARM8 Data Sheet
ARM DDI 0080C

Open Access

7-1ARM8 Data Sheet
ARM DDI 0080C

Coprocessor Interface

This chapter describes the interface between the ARM8 and any on-chip coprocessors,
and gives descriptions and timing diagrams to show its operation.

7.1 Introduction 7-2
7.2 Overview 7-3
7.3 Operational Summary 7-4
7.4 Data Buses 7-5
7.5 Busy-Waiting and Interrupts 7-6
7.6 MCR Instructions 7-7
7.7 MRC Instructions 7-10
7.8 Cancelled Coprocessor Instructions 7-13
7.9 Bouncing Coprocessor Instructions and Absent Coprocessors 7-14
7.10 Interlocking 7-17
7.11 Coprocessor Instructions not Supported on this Interface 7-18

7

Open Access

Coprocessor Interface

7-2 ARM8 Data Sheet
ARM DDI 0080C

7.1 Introduction
ARM8 only supports register transfer operations on this interface. All other
coprocessor instructions must be bounced by the coprocessor so that they will take
the Undefined Instruction trap.

For a description of all the interface signals referred to in this chapter please refer to
2.4 ARM8 <-> Co-processor Interface Signals on page 2-6.

In the Timing Diagrams that follow, P and N refer to the Previous and Next instruction’s
signal space. The values of the signals during these times are not relevant to the
instruction under consideration.

Note: This interface will only support on-chip coprocessors directly. If the use of an off-chip
coprocessors is required, then this will have to be done through an on-chip
“interfacing” coprocessor. This document does not address the design of such an
“interfacing” coprocessor.

Open Access

Coprocessor Interface

7-3ARM8 Data Sheet
ARM DDI 0080C

7.2 Overview
Coprocessors need to determine which instructions they are supposed to execute.
ARM8 does this by means of a “pipeline follower” in the coprocessor; as each
instruction arrives from memory, it enters the coprocessor’s pipeline follower in parallel
with going into the real ARM pipeline. As each instruction enters the Execute stage of
the ARM8 pipeline the processor informs the coprocessor whether the instruction
needs to be executed (the condition codes may indicate otherwise for example).

The following summarizes the interface:

1 The ARM8 coprocessor interface follows ARM8’s pipeline with a delay of
1 phase.

2 Many things can happen to an instruction as it progresses through ARM8’s
pipeline. For example, an instruction might get cancelled in the Decode stage
of the core and then be overwritten by another instruction from the Prefetch
Unit whilst a multi-cycle instruction is executing. The instruction thus
“vanishes” from ARM8’s pipeline. In order that the coprocessor can track this,
ARM8 provides a signal (CEnterExecute) to the coprocessor indicating that
an instruction is moving from the Decode stage to the Execute stage of its
pipeline.

3 Coprocessors typically receive their final confirmation for instruction execution
(via CExecute) during the second phase after the instruction enters the
Execute stage of ARM8.

4 All instructions are broadcast to coprocessors. Only if the instruction is a
coprocessor instruction will the coprocessors be offered a chance to execute
it. Otherwise, the coprocessors are told that the instruction is not a
coprocessor instruction. (Note: this means that coprocessors will no longer be
required to reject Undefined instructions that are not Coprocessor instructions
such as in the ARM7.)

Open Access

Coprocessor Interface

7-4 ARM8 Data Sheet
ARM DDI 0080C

7.3 Operational Summary
The bus for transferring instructions to the coprocessor(s) is called CInstruct[25:0] .
CInstruct[] is only 26 bits wide as coprocessors have no need to access the condition
code (bits 31:28), and because all coprocessor instructions have bits 27 and 26 equal
to 1.

The coprocessor is told whether the instruction entering the Decode stage is a
coprocessor instruction or not. This is done by forcing CInstruct[25:24] to be “11” for
non-coprocessor instructions. Any other value on CInstruct[25:24] indicates a
coprocessor instruction.

This interface does not offer Undefined instructions to the coprocessor. So, for
example, instructions with bit pattern xxxx 011x xxxx xxxx xxxx xxxx xxx1 xxxx will not
be offered for execution to the coprocessor.

The signal CEnterDecode indicates that the instruction on the CInstruct[] bus has
just entered ARM8’s Decode stage. Signal CEnterExecute indicates that the
instruction in ARM8’s Decode stage has just entered the ARM8’s Execute stage.

Normally, one phase after CEnterExecute is asserted, signal CExecute is asserted if
ARM8 has decided that the instruction really needs to be executed - this means that it
has not failed its condition, been cancelled by the Prefetch Unit or been discarded
because of a data abort in the preceding instruction. See 7.5 Busy-Waiting and
Interrupts on page 7-6 for further information about the rules for making permanent
changes to coprocessor state.

While the coprocessor can legitimately start executing the instruction before
CExecute is asserted, and indeed is expected to in some cases, the instruction must
not be allowed to cause any permanent changes to coprocessor state until the phase
1 after CExecute has been asserted. (Note that transmitting data to ARM8 via CData[]
does not constitute a permanent change: ARM8 is responsible for ensuring that such
data is discarded if the instruction is not to be executed.)

Open Access

Coprocessor Interface

7-5ARM8 Data Sheet
ARM DDI 0080C

7.4 Data Buses
One bidirectional data bus exists between ARM8 and the (on-chip) coprocessors:
CData[31:0] . This is used to transport register data for MRC and MCR instructions
between ARM8 and the coprocessor. Values on the bus change during Phase 1 of the
cycle that the instruction occupies in the Execute stage of ARM8’s pipeline, or
equivalently in any Phase 1 when it will be in the Execute stage of the coprocessor
pipeline in the next phase.

ARM8 has the added functionality of putting MCR data onto VAddress in phase 2 of
the cycle that the instruction occupies in the execute stage of ARM8’s pipeline. The
first implementation of ARM8 makes use of this functionality to simplify the memory
system routing and does not use the CData during MCR instructions. In this
implementation, CData is just treated as a unidirectional input bus.

Open Access

Coprocessor Interface

7-6 ARM8 Data Sheet
ARM DDI 0080C

7.5 Busy-Waiting and Interrupts
The coprocessor is permitted to stall (or “busy-wait”) the processor during execution
of a coprocessor instruction if, for example, it is still busy with an earlier coprocessor
instruction. To do so, the coprocessor associated with the decode stage instruction
asserts a signal CBusyWaitD during Phase 2. When the instruction concerned
advances to the Execute stage of ARM8’s pipeline (as indicated by CEnterExecute),
it enters a busy-wait loop. The coprocessor may then assert a signal CBusyWaitE
during phase 2 for as many cycles as it wants in order to keep the instruction in the
busy-wait loop.

If the instruction is not busy-waiting when it enters the Execute stage, CBusyWaitE
must be set to LOW by the coprocessor.

For interrupt latency reasons ARM8 may be interrupted from a busy-wait state,
causing execution of the instruction to be abandoned. Abandoning execution is done
through an extension to the definition of the CExecute signal: in addition to being
significant one phase after CEnterExecute is asserted, it is also significant on each
subsequent cycle for as long as the instruction is being busy-waited.

During the busy-wait loop:

CExecute =0 means execution of the instruction must no longer be
attempted

CExecute =1 means the instruction should still be executed.

This means that permanent changes to coprocessor state may not occur until
CExecute =1 at the start of the following Phase 1 in which the instruction is no longer
being busy-waited.

The following figures show the signal timings of busy-waited instructions:

Figure 7-2: 1-cycle busy-waited operation of an MCR instruction
Figure 7-4: 1-cycle busy-waited operation of an MRC instruction
Figure 7-5: 2-cycle busy-waited operation of an MRC instruction

Open Access

Coprocessor Interface

7-7ARM8 Data Sheet
ARM DDI 0080C

7.6 MCR Instructions
In the same Phase 1 that CEnterExecute is asserted (Phase 1 of the Execute cycle
of ARM8’s pipeline), ARM8 drives the data from the ARM register (Rd) on to CData[] .

In addition, ARM8 uses the ARequest[] and VAddress[] memory interface signals to
make a special memory ACCESS request during the following Phase 2. The memory
request sets:

ARequest[] equal to AREQ_CONTROL

VAddress[] equal to the value of the ARM register (Rd)

This provides a mechanism for optional system-specific bus requests, that need to
specify an address, to be made via the MCR instruction. An example in a cached
system would be to flush a specific cache line.

Figure 7-1: Normal operation of an MCR instruction shows the signal timings for
normal operation of an MCR instruction.

If the MCR instruction is busy-waited, then the same data is driven onto the
VAddress[] bus each cycle until the instruction is executed and/or abandoned. On the
coprocessor side, the only complication is that it must not write the data to its
destination register until CExecute is asserted. The AREQ_CONTROL memory
request is only made when, and if, the instruction is finally executed.

Open Access

Coprocessor Interface

7-8 ARM8 Data Sheet
ARM DDI 0080C

 Figure 7-1: Normal operation of an MCR instruction

Figure 7-2: 1-cycle busy-waited operation of an MCR instruction shows the signal
timings for an MCR instruction which is busy-waited for one cycle.

Normal execution of an MCR instruction
(1 cycle in decode stage)

gclk

ARM8
Pipeline

Coprocessor
Pipeline

CInstruct[]

CEnterDecode

CEnterExecute

CExecute

CBusyWaitD

CBounceD

CBusyWaitE

CBounceE

(1) CData[]

ARequest[]

VAddress[]

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1

DECODE EXECUTE [MEMORY]

DECODE EXECUTE
REGISTER
WRITTEN

INSTRPrev Next

P N

P N

P N

P N

P N

P N

P N

Rd valueP N

AREQ_CONTROLP N

Rd valueP N

Pipeline Positions

Interface Signals

1 The first implementation does not drive CData

Open Access

Coprocessor Interface

7-9ARM8 Data Sheet
ARM DDI 0080C

 Figure 7-2: 1-cycle busy-waited operation of an MCR instruction

Busy-Waited execution of an MCR instruction
(1 cycle in decode stage)

gclk

ARM8
Pipeline

Coprocessor
Pipeline

CInstruct[]

CEnterDecode

CEnterExecute

CExecute

CBusyWaitD

CBounceD

CBusyWaitE

CBounceE

(1) CData[]

ARequest[]

VAddress[]

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1

DECODE
EXECUTE
(busy-wait)

EXECUTE [MEMORY]

DECODE
EXECUTE
(waiting)

EXECUTE
REGISTER
WRITTEN

INSTRPrev Next

P N

P N

P N

P N

P N

P N

P N

Rd valueP N

AREQ_NONE AREQ_CONTROLP N

ignored Rd valueP N

Pipeline Positions

Interface Signals

1 The first implementation does not drive CData

Open Access

Coprocessor Interface

7-10 ARM8 Data Sheet
ARM DDI 0080C

7.7 MRC Instructions
These are similar to MCR instructions with the main exception that the
AREQ_CONTROL memory operation is not performed, and the data bus is driven to
ARM8 from the coprocessor. The CData[] bus must be driven by the Coprocessor in
Phase 1 of ARM8’s Execute cycle.

Figure 7-3: Normal operation of an MRC instruction shows the signal timings for
the normal operation of an MRC instruction.

 Figure 7-3: Normal operation of an MRC instruction

Normal execution of an MRC instruction
(1 cycle in decode stage)

gclk

ARM8
Pipeline

Coprocessor
Pipeline

CInstruct[]

CEnterDecode

CEnterExecute

CExecute

CBusyWaitD

CBounceD

CBusyWaitE

CBounceE

CData[]

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1

DECODE EXECUTE
REGISTER
WRITTEN

DECODE EXECUTE

INSTRPrev Next

P N

P N

P N

P N

P N

P N

P N

DATAP N

Pipeline Positions

Interface Signals

Open Access

Coprocessor Interface

7-11ARM8 Data Sheet
ARM DDI 0080C

If the timing requirements, for the return of data onto Cdata[] in the same Phase 1 as
CEnterExecute is asserted, is too stringent, the coprocessor can be designed to
always busy-wait MRC instructions for one or more cycles. This gives more cycles in
which to complete the operation.

If the MCR instruction is busy-waited, then the data only needs to be driven on to the
Cdata[] bus for the cycle in which it is finally executed.

Figure 7-4: 1-cycle busy-waited operation of an MRC instruction shows the signal
timings for an MRC instruction which is busy-waited for one cycle.

 Figure 7-4: 1-cycle busy-waited operation of an MRC instruction

Busy-Waited execution of an MRC instruction
(1 cycle in decode stage)

gclk

ARM8
Pipeline

Coprocessor
Pipeline

CInstruct[]

CEnterDecode

CEnterExecute

CExecute

CBusyWaitD

CBounceD

CBusyWaitE

CBounceE

CData[]

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1

DECODE
EXECUTE
(busy-wait)

EXECUTE
REGISTER
WRITTEN

DECODE
EXECUTE
(waiting)

EXECUTE

INSTRPrev Next

P N

P N

P N

P N

P N

P N

P N

ignored DATAP N

Pipeline Positions

Interface Signals

Open Access

Coprocessor Interface

7-12 ARM8 Data Sheet
ARM DDI 0080C

Figure 7-5: 2-cycle busy-waited operation of an MRC instruction shows the signal
timings for an MRC instruction which is busy-waited for two cycles.

 Figure 7-5: 2-cycle busy-waited operation of an MRC instruction

2-cycle Busy-Waited execution of an MRC instruction
(1 cycle in decode stage)

gclk

ARM8
Pipeline

Coprocessor
Pipeline

CInstruct[]

CEnterDecode

CEnterExecute

CExecute

CBusyWaitD

CBounceD

CBusyWaitE

CBounceE

CData[]

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1

DECODE
EXECUTE
(busy-wait)

EXECUTE
(busy-wait)

EXECUTE
REGISTER
WRITTEN

DECODE
EXECUTE
(waiting)

EXECUTE
(waiting)

EXECUTE

INSTRPrev Next

P N

P N

P N

P N

P N

P N

P N

ignored ignored DATAP N

Pipeline Positions

Interface Signals

Open Access

Coprocessor Interface

7-13ARM8 Data Sheet
ARM DDI 0080C

7.8 Cancelled Coprocessor Instructions
Figure 7-6: Cancelled instruction operation shows the signal timings for any
coprocessor instruction that spends one cycle in the Decode stage, is not busy-waited,
but fails its condition codes and is cancelled by ARM8.

 Figure 7-6: Cancelled instruction operation

Cancelled instruction after Condition Code failure
without busy-wait

(1 cycle in decode stage)

gclk

ARM8
Pipeline

Coprocessor
Pipeline

CInstruct[]

CEnterDecode

CEnterExecute

CExecute

CBusyWaitD

CBounceD

CBusyWaitE

CBounceE

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1

DECODE EXECUTE [MEMORY]

DECODE EXECUTE ABANDONED

INSTRPrev Next

P N

P N

P N

P N

P N

P N

P N

Pipeline Positions

Interface Signals

Open Access

Coprocessor Interface

7-14 ARM8 Data Sheet
ARM DDI 0080C

7.9 Bouncing Coprocessor Instructions and Absent Coprocessors

7.9.1 Bouncing coprocessor instructions
A coprocessor can “bounce” coprocessor instructions if it is unable to deal with them
itself. Such bounced instructions cause ARM8 to take the Undefined instruction
exception vector, whereupon the bounced instruction can be emulated or dealt with in
some other way.

The coprocessor asserts the signal CBounceD during Phase 2 to cause the bounce.
If the instruction concerned advances to the Execute stage of ARM8’s pipeline during
the following Phase 1 (as indicated by CEnterExecute), ARM8 treats the instruction
as an Undefined Instruction rather than continuing to try and execute it.

Figure 7-7: Bounced instruction operation shows the signal timings for a Bounced
Instruction.

 Figure 7-7: Bounced instruction operation

Bounced instruction
(1 cycle in decode stage)

gclk

ARM8
Pipeline

Coprocessor
Pipeline

CInstruct[]

CEnterDecode

CEnterExecute

CExecute

CBusyWaitD

CBounceD

CBusyWaitE

CBounceE

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1

DECODE
EXCEPTION

ENTRY START
EXCEPTION
CONTINUES

DECODE BOUNCED

INSTRPrev Next

P N

P N

P N

P N

P N

ignoredP N

ignoredP N

Instruction Pipeline Positions

Interface Signals

Open Access

Coprocessor Interface

7-15ARM8 Data Sheet
ARM DDI 0080C

At any time that a coprocessor instruction is busy-waiting, the coprocessor can “bounce” it
instead of continuing to busy-wait it or letting it proceed to execution. To do this, the coprocessor
asserts the signal CBounceE during Phase 2. This causes the busy-wait loop to be abandoned
and ARM8 will again treat the instruction as an Undefined instruction rather than continuing to
try and execute it.

Figure 7-8: Busy-wait followed by bounce operation shows the signal timings for an
instruction that is busy-waited then Bounced.

 Figure 7-8: Busy-wait followed by bounce operation

Busy-waited instruction bounced after 1 cycle
(1 cycle in Decode stage)

gclk

ARM8
Pipeline

Coprocessor
Pipeline

CInstruct[]

CEnterDecode

CEnterExecute

CExecute

CBusyWaitD

CBounceD

CBusyWaitE

CBounceE

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1

DECODE
EXECUTE
(busy-wait)

EXCEPTION
ENTRY START

EXCEPTION
CONTINUES

DECODE
EXECUTE
(waiting)

BOUNCED

INSTRPrev Next

P N

P N

P N

P N

P N

ignoredP N

ignoredP N

Pipeline Positions

Interface Signals

Open Access

Coprocessor Interface

7-16 ARM8 Data Sheet
ARM DDI 0080C

7.9.2 Absent coprocessors
The ARM8 coprocessor interface assumes that every coprocessor exists, and requires that the
hardware will respond to its instructions. This is essentially saying that some coprocessor in the
system simply bounces every coprocessor instruction that is for an absent coprocessor.

For instance, in a system that only has coprocessor 15 (CP15) for system control, rather than
simply ignoring coprocessors 0 to 14, the interface signals should be driven so as to bounce all
coprocessor instructions except those for CP15.

As a second example, in a future chip with an on-chip “interfacing” coprocessor, CP15 would
just handle coprocessor 15 instructions. The “interfacing” coprocessor would try to get any of
the off-chip coprocessors to handle all instructions for coprocessors 0 to 14. This would be done
by sending those instructions to the off-chip coprocessors and then bouncing them via
CBounceE if no response occurred.

Open Access

Coprocessor Interface

7-17ARM8 Data Sheet
ARM DDI 0080C

7.10 Interlocking
When the coprocessor reads an ARM register during an MCR instruction, it is possible that an
interlock will occur if the previous instruction had just loaded the same register (and in some
cases the second preceding instruction).

When this occurs, the coprocessor is prevented from executing the instruction by the Interlock
signal from the ARM8. This signal is produced in Phase 2 of each cycle, and if it is HIGH at the
end of Phase 1 then this means that the Execute cycle that ARM8 is about to start is interlocked,
and will be repeated for the next cycle. The Interlock signal must not be evaluated until the end
of Phase 1.

Figure 7-9: Interlocked MCR instruction operation shows the signal timings for an
Interlocked MCR Instruction.

Any coprocessor is expected to respond to an Interlock by delaying any effects that the
instruction may have until the next cycle. If the next cycle is not interlocked again, then the
instruction will have its normal effect then - with the expectation that the CExecute signal will
be produced a cycle later overall.

It is possible that ARM8 will interlock an instruction, and that the coprocessor will busy-wait it
at the same time. These have very similar effects as both are expected to delay the real start
of execution of the instruction. The delay should be maintained until the instruction is neither
interlocked nor busy-waited. In particular, the coprocessor should not delay the production of
the CBusyWaitD and CBusyWaitE signals because of an interlock.

Open Access

Coprocessor Interface

7-18 ARM8 Data Sheet
ARM DDI 0080C

 Figure 7-9: Interlocked MCR instruction operation

7.11 Coprocessor Instructions not Supported on this Interface
As indicated in the introduction, ARM8 only supports register transfers between the ARM and
coprocessors. Thus, coprocessor instructions MCR and MRC are supported, and CDP, LDC
and STC are not supported. These unsupported coprocessor instructions must be bounced by
the coprocessor, otherwise ARM8 will behave unpredictably.

Interlocked execution of an MCR instruction
(1 cycle in decode stage, 1 cycle interlock)

gclk

ARM8
Pipeline

Coprocessor
Pipeline

CInstruct[]

CEnterDecode

CEnterExecute

CExecute

Interlock

CBusyWaitD

CBounceD

CBusyWaitE

CBounceE

CData[]

ARequest[]

VAddress[]

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1

DECODE
EXECUTE
(interlock)

EXECUTE [MEMORY]

DECODE
EXECUTE
(interlock)

EXECUTE
REGISTER
WRITTEN

INSTRPrev Next

P N

P N

P N

P N

P N

P N

P N

P N

Bad data Good dataP N

NONE CONTROLP N

ignored Good dataP N

Pipeline Positions

Interface Signals

Open Access

8-1ARM8 Data Sheet
ARM DDI 0080C

Instruction Cycle Timings
Summary

This chapter summarises the cycle count timings for all ARM8 instructions.

8.1 Branch and Branch with Link (B, BL) 8-2
8.2 PSR Transfers (MRS, MSR) 8-2
8.3 Data Processing Instructions 8-3
8.4 Multiply and Multiply-Accumulate 8-4
8.5 Block Data Transfers (LDM, STM) 8-5
8.6 Single Data Transfers (LDR, STR) 8-6
8.7 Single Data Swap (SWP) 8-6
8.8 Software Interrupt (SWI) 8-7
8.9 Coprocessor Register Transfers (MRC, MCR) 8-7
8.10 Undefined Instructions 8-7
8.11 Interlocking Instructions 8-7

8

Open Access

Instruction Cycle Timings Summary

8-2 ARM8 Data Sheet
ARM DDI 0080C

8.1 Branch and Branch with Link (B, BL)
The following table gives cycle counts for predicted branches based on the number of
instructions that are in the PU FIFO at the time the prediction is made. This number
will depend upon when the PU FIFO was last flushed, how many instruction fetch
requests the PU has been able to make, and how many instructions were actually
fetched.

1 BL is only predicted if it is unconditional, and is therefore never predicted incorrectly.

Notes: Prefetch Unit flushes are caused by:
- an incorrect prediction of a taken branch (predicted not-taken)
- any SWI
- data processing operations that write to the PC (Rd=15)
- LDR that writes to the PC (Rd=15)
- LDM that writes to the PC (R15 in the register list)
- exception vector entry
- PU starvation due to core priority on successive LDRs, STRs, LDMs or

STMs

8.2 PSR Transfers (MRS, MSR)
MRS takes 1 cycle.

MSR takes 1 cycle, + 2 cycles if the destination is CPSR and not CPSR_flag.

Summary of
Branch
cycle counts

Unpredicted Predicted correctly Predicted incorrectly

Taken
Branch

Untaken
Branch

As a taken Branch
As an
untaken
Branch

As a taken
Branch
(but not
taken)

As an untaken
Branch (but
taken)

#Instructions
in PU FIFO

0+ 0+ 0 1 2 3+ 0 1+ 0-3 4+ 0 1+

B 3 1 3 2 1 0 1 0 1 2 3 3

BL1 3 1 3 2 1 1 1 1 N/A N/A N/A N/A

 Table 8-1: Branch cycle counts

Open Access

Instruction Cycle Timings Summary

8-3ARM8 Data Sheet
ARM DDI 0080C

8.3 Data Processing Instructions

Instruction

Normal
(Base)
cycles

Complex Shift
(other than
LSL by 0,1,2
or 3)

If the PC is written, and the..

Register-specified
shiftS bit is NOT set S bit is set

ADC 1 +1 +2 +3 +1

ADD 1 +1 +2 +3 +1

AND 1 +2 +3 +1

BIC 1 +2 +3 +1

CMN 1 +1 +1

CMP 1 +1 +1

EOR 1 +2 +3 +1

MOV 1 +2 +3 +1

MVN 1 +2 +3 +1

ORR 1 +2 +3 +1

RSB 1 +1 +2 +3 +1

RSC 1 +1 +2 +3 +1

SBC 1 +1 +2 +3 +1

SUB 1 +1 +2 +3 +1

TEQ 1 +1

TST 1 +1

Open Access

Instruction Cycle Timings Summary

8-4 ARM8 Data Sheet
ARM DDI 0080C

8.4 Multiply and Multiply-Accumulate

(MUL, SMULL, UMULL, MLA, SMLAL, UMLAL)
The number of 8-bit multiplier array cycles required to complete the multiply is
indicated by m in Table 8-2: Multiply and multiply-accumulate on page 8-4. This is
controlled by the value of the multiplier operand specified by Rs:

m=1 Rs[31:8] are all either all 0s or all 1s
(excepting all 1s for UMULL and UMLAL)

m=2 Rs[31:16] are all either all 0s or all 1s
(excepting all 1s for UMULL and UMLAL)

m=3 Rs[31:24] are all either all 0s or all 1s
(excepting all 1s for UMULL and UMLAL)

m=4 Otherwise

Instruction m=4 m=3 m=2 m=1

Multiply 6 5 4 3

Multiply-Accumulate 6 5 4 3

Multiply long 7 6 5 4

Multiply-Accumulate long 7 6 5 4

 Table 8-2: Multiply and multiply-accumulate

Open Access

Instruction Cycle Timings Summary

8-5ARM8 Data Sheet
ARM DDI 0080C

8.5 Block Data Transfers (LDM, STM)

LDM instruction

Number of Ordinary
Registers transferred

Cycles when PC (R15)
is not in register list

Cycles when PC (R15)
is in register list

0 - 5

1 2 6

2 2 6

3 3 7

4 3 7

5 4 8

6 4 8

7 5 9

8 5 9

9 6 10

10 6 10

11 7 11

12 7 11

13 8 12

14 8 12

15 9 13

 Table 8-3: LDM instruction

Open Access

Instruction Cycle Timings Summary

8-6 ARM8 Data Sheet
ARM DDI 0080C

STM instruction

8.6 Single Data Transfers (LDR, STR)

8.7 Single Data Swap (SWP)
SWP2 cycles

Number of Ordinary
Registers transferred

Cycles when PC (R15)
is not in register list

Cycles when PC (R15)
is in register list

0 - 2

1 2 2

2 2 3

3 3 4

4 4 5

5 5 6

6 6 7

7 7 8

8 8 9

9 9 10

10 10 11

11 11 12

12 12 13

13 13 14

14 14 15

15 15 16

 Table 8-4: STM instruction

Instruction Base
cycle count

Register-specified
Offset

Register-specified Offset
with complex shift (LSL
by anything other than
0,1,2 or 3)

Loading the PC
(R15)

LDR,LDRH,
LDRSB, LDRSH

1 - +1 +4

STR, STRH 1 +1 - n/a

 Table 8-5: Single data transfers

Open Access

Instruction Cycle Timings Summary

8-7ARM8 Data Sheet
ARM DDI 0080C

8.8 Software Interrupt (SWI)
SWI4 cycles +f

where f is the number of cycles in the SWI service routine

8.9 Coprocessor Register Transfers (MRC, MCR)
MCR1 cycle + number of busy-wait cycles (if any)

MRC1 cycle + number of busy-wait cycles (if any)

8.10 Undefined Instructions
Undef4 cycles +h

where h is the number of cycles in the Undefined Instruction Trap service routine.

8.11 Interlocking Instructions
Pipelining in the ARM8 leads to cases where data loaded by one instruction cannot be
used in the following instruction without incurring instruction cycle interlock penalties.

When a load instruction is followed by an instruction which wants to use the loaded
value, a 1-cycle penalty is usually incurred. The penalty may be 0 or 2 in some cases.

When a load instruction is followed by a 1-cycle instruction and then an instruction that
wants to use the loaded value, a 1-cycle penalty may be incurred.

Open Access

Instruction Cycle Timings Summary

8-8 ARM8 Data Sheet
ARM DDI 0080C

Open Access

9-1ARM8 Data Sheet
ARM DDI 0080C

AC Parameters

This chapter lists the AC parameters for the ARM8.

Note: this chapter is incomplete at this time and does not yet contain timing data.

9.1 AC Parameters for the ARM8 Interface 9-2
9.2 AC Parameters Table 9-4

9

Open Access

AC Parameters

9-2 ARM8 Data Sheet
ARM DDI 0080C

9.1 AC Parameters for the ARM8 Interface

 Figure 9-1: AC parameters for the ARM8 Interface

AC parameters for the ARM8 Interface

gclk

Confirm

Vaddress[31:0]

Wdata[31:0]

ARequest[]

Privileged

TwentySixBit

AResponse[]

RRequestD[]

RRequestIC

RRequestIP

RResponse[]

Rdata[31:0]

DExhausted

IExhausted

tCS tCH

tVAV tVAH

tWDV tWDH

tAQV tAQH

tPV tPH

tTSV tTSH

tARS
tARS2

tARH

tRQDV tRQDH

tRQICV tRQICH

tRQIPV tRQIPH

tRRS
tRRS2

tRRH

tRD1S tRD1H
tRD2S tRD2H

tDES
tDES2

tDEH

tIES
tIES2

tIEH

 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2

1 2

Open Access

AC Parameters

9-3ARM8 Data Sheet
ARM DDI 0080C

 Figure 9-2: AC parameters for the ARM8 Interface

AC parameters for the ARM8 Interface

gclk

BIGEND

ISYNC

nFIQ
ISYNC=1

nIRQ
ISYNC=1

PredictOn

nReset

CBounceD

CBounceE

CBusyWaitD

CBusyWaitE

CInstruct

CEnterDecode

CEnterExecute

CExecute

Interlock

CPrivileged

CData
(input)

tBGH tBGS

tISS tISH

tNFH tNFS

tNIH tNIS

tPRH tPRS

tNRH tNRS

tCBDH tCBDS

tCBEH tCBES

tCWDH tCWDS

tCWEH tCWES

tCIV tCIH

tCEDV tCEDH

tCEEV tCEEH

tCEXV tCEXH

tINV tINH

tCPV tCPH

tCDS tCDH

 Phase 2 Phase 1 Phase 2 Phase 1

Open Access

AC Parameters

9-4 ARM8 Data Sheet
ARM DDI 0080C

9.2 AC Parameters Table
Provisional: subject to change due to characterization.

Symbols Parameters Min (ns) Max

tCKL Clock low time 8

tCKH Clock high time 8

tCS Confirm setup to CKf 0.7

tCH Confirm hold from CKr 0.3

tVAV VAddress valid from Ckr 6.7

tVAH VAddress hold from CKf 0.5

tWDV Wdata valid from Ckf 3.5

tWDH Wdata hold from CKf 0.5

tAQV ARequest valid from Ckr 6.4

tAQH ARequest hold from CKr 0.5

tPV Privileged valid from Ckr 6.4

tPH Privileged hold from CKr 0.5

tTSV TwentySixBit valid from Ckr 5.0

tTSH TwentySixBit hold from CKr 0.5

tARS AResponse setup to CKr (1) 5.0

tAR2S AResponse setup to CKf (2) 9.0

tARH AResponse hold from CKf 0.3

tRQDV RRequestD valid from Ckr 6.4

tRQDH RRequestD hold from CKr 0.5

tRQICV RRequestIC valid from Ckr 6.4

tRQICH RRequestIC hold from CKr 0.5

tRQIPV RRequestIP valid from Ckr 6.4

tRQIPH RRequestIP hold from CKr 0.5

tRRS RResponse setup to CKr (1) 5.0

tRR2S RResponse setup to CKf (2) 9.0

tRRH RResponse hold from CKf 0.3

tRD1S Rdata ph2 data setup to CKf 1.5

tRD1H Rdata ph2 data hold from CKf 0.3

Open Access

AC Parameters

9-5ARM8 Data Sheet
ARM DDI 0080C

tRD2S Rdata ph1 data setup to CKr 5.0

tRD2H Rdata ph1 data hold from CKr 0.3

tIES IExhausted setup to CKr (1) 5.0

tIE2S IExhausted setup to CKf (2) 9.0

tIEH IExhausted hold from CKf 0.3

tDES DExhausted setup to CKr (1) 5.0

tDE2S DExhausted setup to CKf (2) 9.0

tDEH DExhausted hold from CKf 0.3

tBGH BIGEND hold from CKr 0.7

tBGS BIGEND setup to CKf 3.0

tISS ISYNC setup to CKr 2.0

tISH ISYNC hold from CKr 0.7

tNFH nFIQ hold from CKr 0.7

tNFS nFIQ setup to CKf 2.2

tNIH nIRQ hold from CKr 0.7

tNIS nIRQ setup to CKf 2.2

tPRH PredictOn hold from CKr 0.7

tPRS PredictOn setup to CKf 3.6

tNRH nReset hold from CKf 0.5

tNRS nReset setup to CKr 4.8

tCBDH CBounceD hold from CKr 0.7

tCBDS CBounceD setup to CKf 2.2

tCBEH CBounceE hold from CKr 0.7

tCBES CBounceE setup to CKf 2.2

tCWDH CBusyWaitD hold from CKr 0.7

tCWDS CBusyWaitD setup to CKf 2.2

tCWEH CBusyWaitE hold from CKr 0.7

tCWES CBusyWaitE setup to CKf 2.2

tCIV CInstruct valid from CKf 4.3

tCIH CInstruct hold from CKf 0.5

tCEDV CEnterDecode valid from CKf 4.3

tCEDH CEnterDecode hold from CKf 0.5

Symbols Parameters Min (ns) Max

Open Access

AC Parameters

9-6 ARM8 Data Sheet
ARM DDI 0080C

Notes

1 AResponse , RResponse , DExhausted and IExhausted are normally expected to
change in phase 1 and meet tARS , tRRS, tDES and tIES respectively. However, if
Confirm is used to indicate that the phase 1 (provisional) reponses were incorrect,
then as far as ARM8 is concerned the clock is stretched while high and the new
(modified responses) arrive in what looks like phase 2. In this case the second set of
setup times: tARS2 , tRRS2, tDES2 and tIES2 apply.

2 Meeting the phase 1 setup requirements ensures that the request signals (ARequest ,
RRequestD , RRequestIC , RRequestIP, Privileged and TwentySixBit) change
monotonically. Chnges in the response signals when Confirm is active can result in
combinatorial changes onto Vaddress , ARequest , Privileged , TwentySixBit ,
RRequestD , RRequestIC and RRequestIP.

tCEEV CEnterExecute valid from CKf 4.3

tCEEH CEnterExecute hold from CKf 0.5

tCEXV CExecute valid from CKr 4.3

tCEXH CExecute hold from CKr 0.5

tINV Interlock valid from CKr 7.9

tINH Interlock hold from CKr 0.5

tCPV CPrivileged valid from CKr 7.9

tCPH CPrivileged hold from CKr 0.5

tCDS CData setup to CKf 3.0

tCDH CData hold from CKf 0.7

Symbols Parameters Min (ns) Max

Open Access

10-1ARM8 Data Sheet
ARM DDI 0080C

DC Parameters

Not available for this release.

10

Open Access

DC Parameters

10-2 ARM8 Data Sheet
ARM DDI 0080C

Open Access

11-1ARM8 Data Sheet
ARM DDI 0080C

Backward Compatibility

This chapter summarises the changes in ARM8 when compared to previous ARM
processors.

ARM8 will be able to run binary code targetted to earlier processors with only a few
exceptions. The following changes from previous implementations of the ARM should
be noted. See Appendix A, Instruction Set Changes for a more detailed discussion.

11.1 Instruction Memory Barrier 11-2
11.2 Undefined Instructions 11-2
11.3 PC Offset 11-2
11.4 Write-back 11-2
11.5 Misaligned PC Loads and Stores 11-2
11.6 Data Aborts 11-2

11

Open Access

Backward Compatibility

11-2 ARM8 Data Sheet
ARM DDI 0080C

11.1 Instruction Memory Barrier
The requirement for an Instruction Memory Barrier (IMB) instruction means that if code
changes the instruction stream and then tries to execute it without an intervening IMB,
the consequences will be unpredictable. For example, there must be an IMB
instruction between loading code into memory and executing it. See 4.17 The
Instruction Memory Barrier (IMB) Instruction on page 4-62 for more information.

11.2 Undefined Instructions
In ARM8, unallocated instruction bit patterns in the instruction set space enter the
Undefined Instruction trap. See 4.18 Undefined Instructions on page 4-65 for further
information.

11.3 PC Offset
Rare ARM7 instructions which read a stored R15 value from memory as the address
of the instruction plus an offset of 12 will now either use an offset of 8 instead or will
no longer be valid on ARM8. The following summarises their behaviour on ARM8:

• STR instructions with Rd = R15 store the address of the instruction plus 8
• STM instructions with R15 in the list of registers to be stored store the address

of the instruction plus 8
• Data processing instructions with a register-specified shift and at least one of

Rm and Rn equal to R15 are no longer valid
• MCR instructions with R15 as the source register are no longer valid

11.4 Write-back
Loading a register with write-back to it will have unpredictable effects.

The rules governing whether stores with write-back to the stored register store the
register’s old or new value differ from those of ARM7. See 4.11.6 Inclusion of the
base in the register list on page 4-41 for further details.

11.5 Misaligned PC Loads and Stores
Misaligned loads or stores of the PC have unpredictable effects.

11.6 Data Aborts
In all cases where a data abort occurs, any base register is restored to its original value
(before the instruction started), regardless of whether writeback is specified or not.

Open Access

A-1ARM8 Data Sheet
ARM DDI 0080C

Instruction Set Changes

This appendix gives an overview of changes to the instruction set when compared to
ARM7.

A.1 General Compatibility A-2
A.2 Instruction Set Differences A-2

A

Open Access

Instruction Set Changes

A-2 ARM8 Data Sheet
ARM DDI 0080C

A.1 General Compatibility

Existing code will run subject to all of the restrictions described in all ARM Datasheets
up to ARM8, in addition to those in this data sheet.

As previous code does not have the IMB instructions, some code may not be
compatible in certain circumstances.

For example:

• Code that constructs a routine in memory and then branches to it will be
incompatible unless branch prediction has been turned off, or a calculated
branch was used to get to it.

• Code that constructs a routine in memory, and then falls through to it
sequentially will be incompatible unless the fall-through code instruction has
been constructed at least 12 instructions in advance of its execution.

A.2 Instruction Set Differences

This section describes the instruction set additions and changes that have been made
for ARM8.

A.2.1 New features

An Instruction Memory Barrier (IMB) instruction

This tells the ARM to flush any stored information about the instruction stream, and
must be issued between modifying an instruction area and executing it.

Please refer to 4.17 The Instruction Memory Barrier (IMB) Instruction on
page 4-62 and Appendix D, Implementing the Instruction Memory Barrier
Instruction for details.

Half-word and signed byte support

This has been added to the instruction set. Please refer to 4.10 Halfword and Signed
Data Transfer on page 4-33 for details.

A.2.2 Existing instructions

STM instructions with base writeback and the base register in the register list

This concerns the order of writeback and reading the value to be stored:

• If the base register is the lowest numbered register in the list, then the
original base value is stored.

• Otherwise, the stored value is undefined at present.

LDM instructions with base writeback and the base register in the register list

This has no function, since the written-back register value is overwritten by
the loaded value.
The behaviour is now architecturally undefined.

LDR instructions with writeback which load the base register

The behaviour is already architecturally undefined; see Application Note
A002.

Open Access

Instruction Set Changes

A-3ARM8 Data Sheet
ARM DDI 0080C

LDRB PC

The behaviour is already architecturally undefined; see Application Note
A002.

LDR PC from a misaligned address

The behaviour is now architecturally undefined.

STRB PC

The behaviour is architecturally undefined; see Application Note A002.

STR PC to a misaligned address

The behaviour is now architecturally undefined.

STR PC

These were expected to store the address of the instruction plus 12, not the
normal address of instruction plus 8.
These now store the address of instruction plus 8.

STM ...,PC}

These were expected to store the address of the instruction plus 12, not the
normal address of instruction plus 8.
These now store the address of instruction plus 8.

Data processing instructions that do a register-controlled shift and have either or
both of the main operand registers equal to the PC.

The behaviour is now architecturally undefined.

MCR instructions (coprocessor register transfers from ARM to coprocessor) with the
PC as the source register.

The behaviour is now architecturally undefined.

Open Access

Instruction Set Changes

A-4 ARM8 Data Sheet
ARM DDI 0080C

Open Access

-1ARM8 Data Sheet
ARM DDI 0080C

26-bit Operations on ARM8

This appendix describes the 26-bit operations on ARM8.

B.1 Introduction B-2
B.2 Instruction Differences B-3
B.3 Performance Differences B-4
B.4 Hardware Compatibility Issues B-4

B

Open Access

-2 ARM8 Data Sheet
ARM DDI 0080C

B.1 Introduction

To maintain compatibility with earlier ARM processors, it is possible to execute code in
26-bit operating modes usr26 , fiq26 , irq26 and svc26 . Details of how to do this have
already been written for earlier ARM processors, and these have been included here
for your information.

This appendix summarises how 26-bit binary code will be able to run on the ARM8
processor. The details below show the instruction and performance differences when
ARM8 is operated in 26-bit modes. The last section describes the hardware changes
that affect 26-bit operation.

Use of 26-bit modes for any reason other than executing existing 26-bit code is
strongly discouraged, as this will no longer be supported in ARM processors after the
ARM8. It is also worth noting that ARM8's performance in 26-bit modes may be poorer
than in 32-bit modes.

Open Access

-3ARM8 Data Sheet
ARM DDI 0080C

B.2 Instruction Differences

When ARM8 is executing in a 26-bit mode, the top 6 bits of the PC are forced to be
zero at all times. The following restrictions must be obeyed to avoid problems due to
the Prefetch Unit having prefetched an unknown distance beyond the current
instruction:

• Do not enter any 26-bit mode when at an address outside the 26-bit address
space.

• Do not execute code sequentially from address 0x03FFFFFC to address
0x00000000 in 26-bit code.

An additional requirement for 32-bit and 26-bit operations is that if a system contains
code that is intended for execution in both 26-bit and 32-bit modes, an IMB instruction
must accompany any change from any 26-bit mode to any 32-bit mode, and vice
versa. It is therefore advisable to keep code intended for 26-bit modes and code
intended for 32-bit modes completely separate.

26-bit operation removes some of the instruction constraints placed on 32-bit code.
26-bit code must obey the constraints laid out for 32-bit code with the following
exceptions:

1 CMN, CMP, TEQ, TST
A second form of these instructions becomes available, which is encoded in
the instruction by setting the Rd field to “1111” and in the assembler syntax
by using:

<opcode>{cond}P

in place of the normal

<opcode>{cond}

In all modes, the normal setting of the CPSR flags is suppressed for the new
form of the instruction. Instead, the normal arithmetic result is calculated
(Op1+Op2, Op1-Op2, Op1 EOR Op2 and Op1 AND Op2 for CMN, CMP,
TEQ and TST respectively) and used to set selected CPSR bits. In user
mode, the N, Z, C and V bits of the CPSR are set to bits 31 to 28 of the
arithmetic result; in non-user modes, the N, Z, C, V, I, F, M1 and M0 bits of the
CPSR are set to bits 31 to 26, 1 and 0 of the arithmetic result.
The CMNP, CMPP, TEQP and TSTP instructions take a base of 3 cycles to
execute, along with the extra cycles listed in 4.5.8 Instruction cycle times on
page 4-13 for complex and register-specified shifts.

2 Data processing instructions with destination register R15 and the S bit set
These become valid in User mode, and their behaviour in all modes is altered.
In all modes, the normal setting of the CPSR flags from the current mode’s
SPSR is suppressed. In user mode, the N, Z, C and V bits of the CPSR are
set to bits 31 to 28 of the arithmetic result; in non-user modes, the N, Z, C, V,
I, F, M1 and M0 bits of the CPSR are set to bits 31 to 26, 1 and 0 of the
arithmetic result.

3 LDM with R15 in Register list, and the S bit set
This becomes valid in User mode, and its behaviour in all modes is altered.

Open Access

-4 ARM8 Data Sheet
ARM DDI 0080C

In all modes, the normal setting of the CPSR flags from the current mode’s
SPSR is suppressed. In user mode, the N, Z, C and V bits of the CPSR are
set to bits 31 to 28 of the value loaded for R15; in non-user modes, the N, Z,
C, V, I, F, M1 and M0 bits of the CPSR are set to bits 31 to 26, 1 and 0 of the
value loaded for R15.

4 Address Exceptions
The address exceptions which occur on true 26-bit ARM processors cannot
occur on ARM8. If required, these should now be generated externally to the
ARM8 as aborts, along with an abort handler routine which recognises the
address exception.

Note: Some unusual coding cases may present problems: for example, LDMs and STMs
wrapping around from the top of 26-bit memory space to the bottom. It is thought that
such cases are not in common use, and so should not present any difficulties.

B.3 Performance Differences

This information is provisional at this release of the data sheet. Implementation details
may affect performance.

There is no cycle count performance degradation for operating in 26-bit mode;
the cycle counts are the same as those for 32-bit mode operations. However, there
may be degradation due to the additional software overheads in getting to and from
32-bit-mode-only operations.

B.4 Hardware Compatibility Issues

This section describes the ways in which the ARM8 will differ from previous ARM
processors, as far as its hardware is concerned, for 26-bit compatibility.

B.4.1 Pin-out

ARM8 will not have the two configuration pins, DATA32 and PROG32 as can be found
on ARM6 and ARM7 processors.

As such, the processor's normal mode of operation is in full 32-bit modes: as if both of
these pins were in their active HIGH state. Aborts on Read and Write of the Exception
Vectors can be done by the Memory Manager, thus stimulating the original hardware
configurations in software.

Open Access

-1ARM8 Data Sheet
ARM DDI 0080C

 Comparing ARM6 and Earlier
ARM Processors

This appendix describes the differences between the ARM6 series and earlier ARM
processors. It is included here for completeness as it provides additional information on
the differences between 26-bit and 32-bit codes to that described in Appendix B, 26-bit
Operations on ARM8 . The information in the rest of the datasheet supersedes this
appendix.

C.1 Introduction C-2
C.2 The Program Counter and Program Status Register C-2
C.3 Operating Modes C-2
C.4 Instruction Set Changes C-3
C.5 Transferring between 26-bit and 32-bit Modes C-4

C

Open Access

-2 ARM8 Data Sheet
ARM DDI 0080C

C.1 Introduction

The ARM6 series (ARM6, ARM60 and ARM600) is a family of ARM processors which
have 32-bit program counters. Earlier ARMs (ARM2, ARM3 and ARM2aS) had a 26-bit
program counter (PC). This appendix describes the major differences between the two
types of processor.

C.2 The Program Counter and Program Status Register

The introduction of the larger program counter has meant that the flags and control bits
of R15 (the combined PC and PSR) have been moved to a separate register. The extra
space in the new register (the CPSR, Current Program Status Register) allows for
more control bits. A further 3 mode bits have been added to allow for a larger number
of operating modes.

The removal of the PSR to a separate register also means that it is no longer possible
to save these flags automatically in R14 when a Branch with Link (BL) instruction is
executed, or when an exception occurs. Program analysis has shown that the saving
of these flags is only required in 3% of subroutine calls, so there is only a slight
overhead in explicitly saving them on a stack when necessary. To cope with the
requirement of saving them when an exception occurs, 5 further registers have been
provided to hold a copy of the CPSR at the time of the exception. These registers are
the Saved Program Status Registers (SPSRs). There is one SPSR for each of the
modes that the processor may enter as a result of the various types of exception.

The expansion of the PC to 32 bits also means that the Branch instruction, being
limited to +/-32 MB, can no longer specify a branch to the entire program space.
Branches greater than +/-32 MB can be made with other instructions, but the
equivalent of the Branch with Link instruction will require a separate instruction to save
the PC in R14.

C.3 Operating Modes

There are a total of 10 operating modes in two overlapping sets. Four modes - User26 ,
IRQ26, FIQ26 and Supervisor26 - allow the processor to behave like earlier ARM
processors with a 26-bit PC. These correspond to the four operating modes of the
ARM2 and ARM3 processors. A further four operating modes correspond to these, but
with the processor running with the full 32-bit PC: these are User32 , IRQ32, FIQ32
and Supervisor32 .

The final two modes are Undefined32 and Abort32 , and are entered when the
Undefined instruction and Abort exceptions occur. They have been added to remove
restrictions on Supervisor mode programs which exist with the ARM2 and ARM3
processors. The two sets of User, FIQ, IRQ and Supervisor modes each share a set
of banked registers to allow them to maintain some private state at all times. The Abort
and Undefined modes also have a pair of banked registers each for the same purpose.

Open Access

-3ARM8 Data Sheet
ARM DDI 0080C

C.4 Instruction Set Changes

The instruction set is changed in two major areas: new instructions have been
introduced and restrictions have been placed on existing ones.

C.4.1 New instructions

The new instructions allow access to the CPSR and SPSR registers. They are formed
by using opcodes from the Data Processing group of instructions that were previously
unused. Specifically, these are the TST, TEQ, CMP and CMN instructions with the S
flag clear. They are now known as MSR to move data into the CPSR and SPSR
registers, and MRS to move from the CPSR and SPSR to a general register. The data
moved to CPSR and SPSR can be either the contents of a general register or an
immediate value.

C.4.2 Instruction set limitations

When configured for 32-bit program and data space, the ARM6 family supports
operation in 26-bit modes for compatibility with ARM processors that have a 26-bit
address space. The 26-bit modes are User26 , FIQ26, IRQ26 and Supervisor26 .
When a 26-bit mode is selected, the programmer’s model reverts to that of existing
26 bit ARMs (ARM2, ARM3, ARM2aS). The behaviour is that of the ARM2aS
macrocell with the following alterations:

• Address exceptions are never generated. The OS may simulate the behaviour
of address exception by using external logic such as a memory management
unit to generate an abort if the 64 MB range is exceeded, and converting that
abort into an “address exception” trap for the application.

Note: Address exceptions are still possible when the processor is configured for
26-bit program and data space.

• The new instructions to transfer data between general registers and the
program status registers remain operative. The new instructions can be used
by the operating system to return a 32-bit operating mode after calling a binary
containing code written for a 26-bit ARM.

• All exceptions (including Undefined Instruction and Software Interrupt) return
the processor to a 32-bit mode, so the operating system must be modified to
handle them.

• The ARM6 family includes hardware which prevents the write operation and
generates a data abort if the processor attempts to write to a location between
&00000000 and &0000001F inclusive (the exception vectors) when operating
in 26-bit mode. This allows the operating system to intercept all changes to
the exception vectors and redirect the vector to some veneer code. The
veneer code should place the processor in a 26-bit mode before calling the
26-bit exception handler.

In all other respects, the ARM6 family behaves like a 26-bit ARM when operating in
26 bit mode. The relevant bits of the CPSR appear to be incorporated back into R15
to form the PC/CPSR with the I and F bits in bits 27 and 26. The instruction set
behaves like that of the ARM2aS macrocell with the addition of the MRS and MSR
instructions.

Open Access

-4 ARM8 Data Sheet
ARM DDI 0080C

C.5 Transferring between 26-bit and 32-bit Modes

A program executing in a privileged 32-bit mode can enter a 26-bit mode by executing
an MSR instruction which alters the mode bits to one of the values shown below:

Transfer between 26-bit and 32-bit mode happens automatically whenever an
exception occurs in 26-bit mode. Note that an exception (including Software Interrupt)
arising in 26-bit mode will enter 32-bit mode and the saved value in R14 will contain
only the PC, even though the PSR was also considered part of R15 when the
exception arose.

In addition, the MSR instruction provides the means for a program in a privileged 26-bit
mode to alter the mode bits to change to a 32-bit mode.

M[4:0] Mode Accessible register set

00000 usr26 PC/PSR, R14..R0, CPSR

00001 fiq26 PC/PSR, R14_fiq..R8_fiq, R7..R0, CPSR, SPSR_fiq

00010 irq26 PC/PSR, R14_irq..R13_fiq, R12..R0, CPSR, SPSR_irq

00011 svc26 PC/PSR, R14_svc..R13_svc, R12..R0, CPSR, SPSR_svc

 Table 11-1: MSR instruction altering the mode bits

Open Access

-1ARM8 Data Sheet
ARM DDI 0080C

Implementing the Instruction
Memory Barrier Instruction

This appendix is written to help Operating System designers understand and
implement the IMB Instructions. It firstly describes the generic approach that should be
used for future compatibilty and then goes on to ARM8-specific details.

D.1 Introduction D-2
D.3 Generic IMB Use D-2
D.2 ARM8 IMB Implementation D-2

D

Open Access

-2 ARM8 Data Sheet
ARM DDI 0080C

D.1 Introduction

This appendix describes the processor specific code that must be included in the SWI
handler to implement the two Instruction Memory Barrier (IMB) Instructions:

• IMB
• IMBRange

These are implemented as calls to specific SWI numbers. Please refer to 4.17 The
Instruction Memory Barrier (IMB) Instruction on page 4-62 for further details of this
and for examples of use.

Two IMB instructions are provided so that when only a small area of code is altered
before being executed the IMBRange instruction can be used to efficiently and quickly
flush any stored instruction information from addresses within a small range rather
than flushing all information about all instructions using the IMB instruction.
By flushing only the required address range information, the rest of the information
remains to provide improved system performance.

D.2 ARM8 IMB Implementation

For ARM8, executing the SWI instruction is sufficient in itself to cause the IMB
operation. Also, for ARM8, both the IMB and the IMBRange instructions flush all stored
information about the instruction stream.

This means that for ARM8, all IMB instructions can be implemented in the Operating
System by simply returning from the IMB/IMBRange service routine AND that the
service routines can be exactly the same. The following service routine code can be
used for ARM8:

IMB_SWI_handler
IMBRange_SWI_handler

MOVS PC, R14_svc; Return to the code after the SWI call

Note: It is strongly encouraged that in code from now on, the IMBRange instruction is used
whenever the changed area of code is small: even if there is no distinction between it
and the IMB instruction on ARM8. Future processors may well implement the
IMBRange instruction in a much more efficient and faster manner, and code migrated
from ARM8 will benefit when executed on these processors.

D.3 Generic IMB Use

Using SWI's to implement the IMB instructions means that any code that is written now
will be compatible with any future processors - even if those processors implement
IMB in different ways. This is achieved by changing the Operating System SWI service
routines for each of the IMB SWI numbers that differ from processor to processor.

Below are examples that show what should happen during the execution of IMB
instructions. These examples are taken from 4.17.3 Examples on page 4-63.

The pseudo code in the square brackets shows what should happen to execute the
IMB instruction (or IMBRange) in the SWI handler.

Open Access

-3ARM8 Data Sheet
ARM DDI 0080C

D.3.1 Loading code from disk

Code that loads a program from a disk, and then branches to the entry point of that
program, must execute an IMB instruction between loading the program and trying to
execute it.

IMB EQU 0xF00000
.
.
; code that loads program from disk
.
.
SWI IMB

[branch to IMB service routine]
[perform processor-specific operations to execute IMB]
[return to code]
.

MOV PC, entry_point_of_loaded_program
.
.

D.3.2 Running BitBlt code

“Compiled BitBlt” routines optimise large copy operations by constructing and
executing a copying loop which has been optimised for the exact operation wanted.
When writing such a routine an IMB is needed between the code that constructs the
loop and the actual execution of the constructed loop.

IMBRange EQU 0xF00001

.

.
; code that constructs loop code
; load R0 with the start address of the constructed loop
; load R1 with the end address of the constructed loop
SWI IMBRange

[branch to IMBRange service routine]
[read registers R0 and R1 to set up address range

parameters]
[perform processor-specific operations to execute

IMBRange within address range]
[return to code]

; start of loop code
.
.

Open Access

-4 ARM8 Data Sheet
ARM DDI 0080C

